Cryptanalysis of a Provably Secure Cryptographic Hash Function

Jean-Sébastien Coron1 and Antoine Joux2

1 Gemplus Card International
34 rue Guynemer, 92447 Issy-les-Moulineaux, France
jean-sebastien.coron@gemplus.com

2 DCSSI Crypto Lab
51, Bd de Latour-Maubourg, 75700 Paris, France
antoine.joux@m4x.org

Abstract. We present a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner’s generalized birthday attack. It is significantly faster than the attack considered in [1], and it is practical for two of the three proposed parameters.

1 Introduction

We describe a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. The hash function is based on xoring the columns of a random binary matrix H, and is defined as follows:

Initialization: Let $s = \omega \cdot a$ be the length of the input message, split into ω blocks of a bits. Let r be the output size in bits. Let $u = 2^a$. Generate a random matrix H of r lines and n columns where $n = \omega \cdot u$. The matrix H is split into ω sub-matrix H_i of size $r \times u$.

Input: a message m of s bits.
1. Split the s input bits in ω parts s_1, \ldots, s_ω of a bits.
2. Convert each s_i into an integer between 1 and $u = 2^a$.
3. Choose the corresponding column in each sub-matrix H_i.
4. Xor the w chosen columns to obtain a r-bit string h.
5. Output the r-bit string h.

It is shown in [1] that the security of the hash function is reduced to the average case hardness of two NP-complete problems, namely the Regular Syndrome Decoding problem and the 2-Regular Null Syndrome Decoding problem.

The authors of [1] also describe an attack, called Information Set Decoding, and propose three set of parameters in order to make this attack unpractical.

The first set of parameters takes $r = 160$, $\omega = 64$, $u = 256$, $n = 2^{14}$ and has a conjectured security level of $2^{62.3}$. The second set of parameters takes $r = 224$, $\omega = 96$, $u = 256$, $n = 3 \cdot 2^{13}$ with a security level $2^{82.3}$ and the third set of parameters takes $r = 288$, $\omega = 128$, $u = 64$ and $n = 2^{13}$.

However, we describe in this paper a much faster attack, which is practical for the two first set of parameters.
2 Our Attack

2.1 Wagner’s generalized birthday attack

Our attack is based on Wagner’s generalized birthday attack [2], which is the following. Let \(L_1, \ldots, L_4 \) be four lists of \(n \)-bit random integers. The task is to find \(x_i \in L_i \) such that \(x_1 \oplus x_2 \oplus x_3 \oplus x_4 = 0 \). A solution exists with good probability if each list contains at least \(2^{n/4} \) integer. The obvious approach consists in generating all possible values of \(x_1 \oplus x_2 \) and \(x_3 \oplus x_4 \) and then look for a collision; this requires \(O(2^{n/2}) \) time.

Wagner’s generalized birthday attack solves this problem in time \(O(2^{n/3}) \) for lists of size at least \(2^{n/3} \). First one generates a list of roughly \(2^{n/3} \) values \(y = x_1 \oplus x_2 \) such that the \(n/3 \) low-order bits of \(y \) are zero. This can be done in time \(O(2^{n/3}) \). The same is done for values \(z = x_3 \oplus x_4 \). One obtains two lists of roughly \(2^{n/3} \) integers with the \(n/3 \) low-order bits set to zero. Then one looks for a collision between the two lists, and a solution is found in time \(O(2^{n/3}) \).

This technique can be generalized to find a zero sum between \(2^a \) lists, and requires \(O(2^a \cdot 2^{n/(a+1)}) \) time with lists of size \(O(2^{n/(a+1)}) \).

2.2 Our attack

Our attack against the previous hash function is then as follows. Our goal is to produce a collision, that is to produce two messages \(m \neq m' \) such that \(H(m) = H(m') \). Therefore, for each of the \(\omega \) matrices \(H_i \) of \(u \) columns, we must select two columns, so that the xor of the 2\(\omega \) columns gives 0.

For each sub-matrix \(H_i \), we can generate a list \(L_i \) of roughly \(u^2/2 \) values \(x_i \) which are the xor of 2 columns of \(H_i \). Then we apply Wagner’s algorithm to find a generalized birthday attack among the \(\omega \) lists:

\[
 x_1 \oplus x_2 \oplus \ldots \oplus x_\omega = 0
\]

More precisely, let \(\ell \) such that \(2^\ell = u^2/2 \). There are \(2^{2\ell} \) elements \(x_1 \oplus x_2 \), where \(x_1 \in L_1 \) and \(x_2 \in L_2 \), among which \(2^\ell \) are such that the rightmost \(\ell \) bits are 0. This gives a list \(L_1' \), which can be generated in time \(O(2^\ell) \). We can do the same with the lists \((L_3, L_4) \) and obtain \(L_2' \).

Then, by the birthday paradox, we can find an element in \(L_1' \oplus L_2' \) with the 3\(\ell \) rightmost bits equal to zero, in time \(O(2^\ell) \). Therefore, if \(\omega = 4 \) and the hash size is \(r = 3\ell \), we can find a collision in time \(O(2^\ell) \). We can generalize this to higher values of \(\omega \) by building the corresponding tree and we obtain that we can find a collision in time \(O(\omega \cdot 2^\ell) \) if:

\[
 r \leq (\log_2(\omega) + 1) \cdot \ell
\]

where \(\ell = 2 \log_2(u) - 1 \).

Unfortunately, this is not enough for breaking the hash function for the recommended parameters, so we can generalize this by first taking all the \(2^{2\ell} \) elements
$x_1 \oplus x_2$, and working with a tree with the same depth minus one. It is easy to see that one can find a collision in time $O(\omega \cdot 2^{2\ell})$ if:

$$r \leq 2(\log_2 \omega) \cdot \ell$$

This breaks the first instance with $r = 160, \omega = 64, u = 256$ and $\ell = 15$, in time 2^{36} (instead of 2^{62} for the attack considered in the paper).

For the second instance ($r = 224, \omega = 96, u = 256, \ell = 15$), we can first group the lists L_i by three, which gives 32 lists of 2^{45} elements, from which we take only 2^{38}. If $\omega = 6$, we can zero $2 \cdot 38 = 76$ bits, if $\omega = 12$, we can zero $3 \cdot 38 = 114$ bits, and with $\omega = 96$, we can zero $6 \cdot 38 = 228$ bits, which breaks the hash function in time $32 \cdot 2^{38} = 2^{43}$ (instead of 2^{82} operations for the attack considered in the paper).

For the third instance ($r = 288, w = 128, u = 64, \ell = 11$), we can group the lists L_i by six, and take 2^{58} elements instead of 2^{66}. With $\omega = 12$, we can zero $2 \cdot 58 = 116$ bits, and with $\omega = 96 < 128$, we can zero $5 \cdot 58 = 290$ bits, which breaks the hash function in time $16 \cdot 2^{58} = 2^{62}$ (but this is probably not optimal).

3 Conclusion

We have described a cryptanalysis of a provably secure cryptographic hash function proposed by Augot, Finiasz and Sendrier in [1]. Our attack is a variant of Wagner’s generalized birthday attack, and it is significantly faster than the attack considered in [1]. We have shown that it is practical for two of the three proposed parameters.

References
