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Abstract. Acquiring a representative labelled dataset is a hurdle that
has to be overcome to learn a supervised detection model. Labelling a
dataset is particularly expensive in computer security as expert knowl-
edge is required to perform the annotations. In this paper, we introduce
ILAB, a novel interactive labelling strategy that helps experts label large
datasets for intrusion detection with a reduced workload. First, we com-
pare ILAB with two state-of-the-art labelling strategies on public la-
belled datasets and demonstrate it is both an effective and a scalable
solution. Second, we show ILAB is workable with a real-world annota-
tion project carried out on a large unlabelled NetFlow dataset originating
from a production environment. We provide an open source implementa-
tion (https://github.com/ANSSI-FR/SecuML/) to allow security experts
to label their own datasets and researchers to compare labelling strate-
gies.
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1 Introduction

Supervised learning is adapted to intrusion detection and has been successfully
applied to various detection problems: Android applications [11], PDF files [7,35],
botnets [2,5], Windows audit logs [4], portable executable files [19]. However, su-
pervised detection models must be trained on representative labelled datasets
which are particularly expensive to build in computer security. Expert knowl-
edge is required to annotate and data are often confidential. As a result, crowd-
sourcing [37] cannot be applied as in computer vision or natural language pro-
cessing to acquire labelled datasets at low cost. Some labelled datasets related to
computer security are public (Malicia project [22], KDD99 [41], kyoto2006 [39],
etc.) but they are quickly outdated and they often do not account for the id-
iosyncrasies of each deployment context.

Experts are essential for annotating but they are an expensive resource, that
is why the labelling process must use expert time efficiently. Active learning
methods have been proposed to reduce the labelling cost by asking the expert



to annotate only the most informative examples [32]. However, classical active
learning methods often suffer from sampling bias [29, 34]: a family (a group
of similar malicious or benign examples) may be completely overlooked by the
annotation queries as the expert is asked to annotate only the most informative
examples. Sampling bias is a significant issue in intrusion detection: it may lead
to missing a malicious family during the labelling process, and being unable to
detect it thereafter. Moreover, the labelling strategy must scale to large datasets
to be workable on real-world annotation projects.

Finally, active learning is an interactive process which must ensure a good
expert-model interaction, i.e. a good interaction between the expert who anno-
tates and the detection model [33,43]. The expert annotations improve not only
the detection model but also the relevance of the following annotation queries.
A low execution time is thus required to allow frequent updates of the detec-
tion model with the expert feedback. A labelling strategy with a high execution
time would alter the expert-model interaction and is unlikely to be accepted by
experts.

In this paper, we introduce ILAB, a novel interactive labelling strategy that
helps an expert acquire a representative labelled dataset with a reduced work-
load. ILAB relies on a new hierarchical active learning method with binary labels
(malicious vs. benign) and user-defined malicious and benign families. It avoids
the sampling bias issue encountered by classical active learning as it is designed
to discover the different malicious and benign families. Moreover, the scalable
algorithms used in ILAB make it workable on large datasets and guarantee a
low expert waiting time for a good expert-model interaction.

Our paper makes the following contributions:

– We present a novel active learning method called ILAB designed to avoid
sampling bias. It has a low computation cost to ensure a good expert-model
interaction, and it is scalable to large datasets.

– We compare ILAB with two state-of-the-art active learning methods for in-
trusion detection [14, 40] on two detection problems. We demonstrate that
ILAB improves the scalability without reducing the effectiveness. Up to our
knowledge, [14, 40] have never been compared. We provide an open source
implementation of ILAB and of these two labelling strategies to foster com-
parison in future research works.

– We show that ILAB is a workable labelling strategy that scales to large
real-world datasets with an annotation project on NetFlow data originating
from a production environment. We provide an open source implementation
of the graphical user interface deployed during the annotation project to
allow security experts to label their own datasets.

The rest of the paper is organized as follows. Section 2 presents the sampling
bias issue in active learning and related works. The problem being addressed and
the notations are detailed in Section 3. Section 4 explains ILAB labelling strat-
egy. Finally, Section 5 compares ILAB with state-of-the-art labelling strategies
through simulations run on public fully labelled datasets, and Section 6 presents



a real-world annotation project carried out with ILAB on a large unlabelled
NetFlow dataset.

2 Background and Related Work
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Fig. 1: Active Learning: An Interactive Process

Active Learning. Active learning [32] methods have been developed in the ma-
chine learning community to reduce the labelling cost. A labelling strategy asks
the expert to annotate only the most informative instances, i.e. the ones that
lead to the best detection model. Active learning methods rely on an interactive
process where the expert is asked to annotate some instances from a large un-
labelled pool to improve the current detection model and the relevance of the
future annotation queries (see Figure 1). However, annotating only the most in-
formative instances may cause a family of observations to be completely missed
by the labelling process (see [8,29] for theoretical examples) and, therefore, may
have a negative impact on the performance of the detection model.
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Fig. 2: Sampling Bias Example

Sampling Bias. Figure 2 provides an example
of sampling bias in one dimension with uncer-
tainty sampling [20] which queries the clos-
est instances to the decision boundary. Each
block represents a malicious or a benign fam-
ily. With this data distribution, instances from
the family M1 are unlikely to be part of the
initial training dataset, and so the initial deci-
sion boundary is likely to lie between the fam-
ilies B2 and M3. As active learning proceeds,
the classifier will gradually converge to the de-
cision boundary between the families B2 and M2 and will only ask the expert to



annotate instances from these two families to refine the decision boundary. The
malicious family M1 on the left is completely overlooked by the query algorithm
as the classifier is mistakenly confident that the entire family is benign. As the
malicious family M1 is on the wrong side of the decision boundary, the classifier
will not be able to detect this malicious family thereafter.

Sampling bias is a significant problem for intrusion detection that may lead to
malicious families remaining completely undetected. Besides, the risk of sampling
bias is even higher for intrusion detection than for other application domains be-
cause the initial labels are not uniformly distributed. Uniform random sampling
cannot be used to acquire the initial labelled instances as the malicious class is
too under-represented. The signatures widely deployed in detection systems can
provide initial labels but they likely all belong to the same family or to a small
number of families.

Related Work. Online active learning [21,30,31,44,45] is well-suited to follow the
evolution of the threats: experts perform annotations over time to update the
detection model that is already deployed. In this setting, the detection model in
production has been initially trained on a labelled dataset representative of the
deployment environment. In our case, such a representative labelled dataset is
unavailable and the objective is to acquire it offline to train the initial detection
model.

Some works focus on offline active learning to build a labelled dataset for
intrusion detection. First, Almgren et al. [1] have applied plain uncertainty sam-
pling [20] to intrusion detection before the sampling bias issue has been dis-
covered. Then, Aladin [40] and Görnitz et al. [14] have proposed new labelling
strategies for intrusion detection that intend to discover the different malicious
families. Aladin applies rare category detection [26] on top of active learning to
foster the discovery of the different families, and Görnitz et al. use a k-nearest
neighbour approach to detect yet unknown malicious families. However, both [40]
and [14] deal with sampling bias at the expense of the expert-model interaction.
These labelling strategies require heavy computations to generate the annotation
queries that cause long waiting-periods that cannot be exploited by the expert.
ILAB relies on rare category detection to avoid sampling bias, as Aladin, but
with a divide and conquer approach to ensure a good expert-model interaction.
Aladin [40] and Görnitz et al. [14] labelling strategies have never been compared
to our knowledge. We compare ILAB with these two labelling strategies in the
simulations presented in Section 5 and we provide open source implementations
in order to foster comparison in future research works.

Finally, active learning is an interactive process where a user interface is
required for the expert to annotate. Almgren et al. and Görnitz et al. have
only run simulations on fully labelled datasets with an oracle answering the
annotation queries and they have not mentioned any user interface. Aladin has
a corresponding graphical user interface, but [40] provides no detail about it.
As an ergonomic user interface can definitely reduce the expert effort [9, 33],
ILAB comes up with an open source graphical user interface briefly described in
Section 6.



3 Problem Statement

Our goal is to acquire a representative labelled dataset from a pool of unlabelled
instances with a reduced human effort. Both the number of annotations asked
from the expert and the computation time for generating the annotation queries
must be minimized to reduce the workload and ensure a good expert-model
interaction. We assume that there is no adversary attempting to mislead the
labelling strategy as it is performed offline before the detection model is deployed
in production.

Notations. Let D = {xi ∈ Rm}1≤i≤N be the dataset we want to label partially
to learn a supervised detection model M. It contains N instances described by
m real-valued features. For example, each instance xi could represent a PDF file,
an Android application, the traffic of an IP address, or the activity of a user.
Such unlabelled data are usually easy to acquire from the environment where the
detection system is deployed (files, network traffic captures, or logs for example).

To represent an instance with real-valued features the expert must extract
discriminating features and transform them into real values. Many research
works focus on feature extraction for given detection problems: Android applica-
tions [11], PDF files [7,35], Windows audit logs [4], portable executable files [19].
In this paper, we do not address feature extraction and we focus on reducing
the cost of building a representative labelled dataset with an effective labelling
strategy. Instances are represented by real-valued features regardless of the de-
tection problem thanks to feature extraction. As a result, labelling strategies are
generic regarding the detection problems.

Let L = {Malicious, Benign} be the set of labels and Fy be the set contain-
ing the user-defined families of the label y ∈ L. For example, malicious instances
belonging to the same family may exploit the same vulnerability, they may be
polymorphic variants of the same malware, or they may be emails coming from
the same spam campaign.

Our aim is to create a labelled dataset

DL ⊆ {(x, y, z) | x ∈ D, y ∈ L, z ∈ Fy}

maximizing the accuracy of the detection modelM trained on DL. DL associates
a label y ∈ L and a family z ∈ Fy to each instance x ∈ D. The labelled
dataset DL is built with an iterative active learning strategy. At each iteration,
a security expert is asked to annotate, with a label and a family, b ∈ N instances
selected from the pool of remaining unlabelled instances denoted by DU . During
the annotation process, the expert cannot annotate more instances than the
annotation budget B ∈ N.

Objective. The objective of the labelling strategy is to build DL maximizing the
accuracy of the detection modelM while asking the expert to annotate at most
B instances. In other words, the labelling strategy aims to ask the expert to
annotate the B instances that maximize the performance of the detection model
M. Besides, the labelling strategy must be scalable to work on large datasets
while keeping a low expert waiting time.



4 ILAB Labelling Strategy

ILAB is an iterative annotation process based on active learning [32] and rare
category detection [26]. At each iteration, the expert is asked to annotate b
instances to improve the current detection model and to discover yet unknown
families. Active learning improves the binary classification model raising the
alerts while rare category detection fosters the discovery of new families to avoid
sampling bias. First, we describe how we initialize the active learning process
and then we explain the labelling strategy, i.e. which instances are selected from
the unlabelled pool to be annotated by the expert.
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Fig. 3: ILAB Labelling Strategy

Initial Supervision. The active learning process needs some initial labelled ex-
amples to learn the first supervised detection model. This initial supervision can
be difficult to acquire for detection problems. The Malicious class is usually
too under-represented for uniform random sampling to be effective at collecting
a representative labelled dataset.

If a public labelled dataset is available for the detection problem considered, it
can be used for the initial supervision. Otherwise, the signatures widely deployed
in detection systems can provide Malicious examples at low cost, and random
sampling can provide Benign examples. In both cases, the initial labelled dataset
does not contain all the malicious families we want to detect, and it is not
representative of the data in the deployment environment. ILAB enriches the
initial labelled dataset across the iterations to make it representative of the
environment where the detection system is deployed.



The iterations are performed until the annotation budget B has been spent.
At each iteration, buncertain annotation queries are generated with uncertainty
sampling to improve the detection model and bfamilies = b− buncertain instances
are queried for annotation with rare category detection to avoid sampling bias
(see Figure 3).

4.1 Uncertainty Sampling

A binary probabilistic detection model M is learned from the annotated in-
stances in DL. We use a discriminant linear model, i.e. logistic regression [10].
Linear models are highly valued by computer security experts who do not trust
black box detection models [27]. These detection models can be interpreted be-
cause the coefficients associated with each feature represent their contribution
to the detection model. Besides, discriminant models are known to be better
than generative ones in active learning settings [47]. Finally, learning a logistic
regression model and applying it to predict the label of new instances is fast
so the expert does not wait a long time between iterations. Our approach is
generic, the expert can choose to use another model class particularly suited for
her application.

The rare malicious families are often the most interesting in intrusion detec-
tion, hence the impact of the training instances from rare families is increased.
The logistic regression model is learned with sample weights inverse to the pro-
portion of the family in the training dataset:

β(x, y, z) =
|DL|

| {(x′, y′, z′) ∈ DL | y′ = y ∧ z′ = z} |
.

The weights are capped, β̂ = min(β, 100), to avoid giving too much weight to
very rare families. Learning the logistic regression detection model with these
weights is crucial to ensure a good detection of the rare malicious families.

The model M is used to compute the probability p(x) that an unlabelled
instance x ∈ DU is Malicious according to M:

∀x ∈ DU , p(x) = PM(y = Malicious | x).

Annotation Queries. The buncertain unlabelled instances which are the closest to
the decision boundary of M are annotated by the expert:

arg min
x∈DU

|p(x)− 1/2|. (1)

The detection model is uncertain about the label of these instances, that is why
their annotations allow to improve the detection model. This step corresponds
to uncertainty sampling [20], a classical active learning method applied in [1].
Uncertainty sampling suffers, however, from sampling bias [29]. We also perform
rare category detection to foster the discovery of yet unknown families.



4.2 Rare Category Detection

Rare category detection is applied on the instances that are more likely to be
Malicious and Benign (according to the detection modelM) separately. Not all
families are present in the initial labelled dataset and rare category detection [26]
fosters the discovery of yet unknown families to avoid sampling bias. One might
think that we could run rare category detection only on the malicious instances
since it is the class of interest in intrusion detection. However, a whole malicious
family may be on the wrong side of the decision boundary (see the family M1

in Figure 2), and thus, running rare category detection on the predicted benign
instances is necessary. Hereafter, we only detail the rare category detection run
on the Malicious predictions since the analysis of the Benign ones is performed
similarly.

LetDMalicious
U be the set of instances whose predicted label byM is Malicious

and DMalicious
L be the set of malicious instances already annotated by the expert.

First, a multi-class logistic regression model is learned from the families specified
in DMalicious

L to predict the family of the instances in DMalicious
U . Let Cf be the set

of instances from DMalicious
L ∪DMalicious

U whose family (annotated or predicted) is
f . Each family f is modelled with a Gaussian distribution N (µf , Σf ) depicted
by an ellipsoid is Figure 3. The mean µf and the diagonal covariance matrix
Σf are learned with Gaussian Naive Bayes [10]. We denote by pN (µf ,Σf )(x) the
probability that x follows the Gaussian distribution N (µf , Σf ).

Annotation Queries. The family annotation budget bfamilies is evenly distributed
among the different families. We now explain which unlabelled instances are
queried for annotation from each family.

First, ILAB asks the expert to annotate instances that are likely to belong
to a yet unknown family to avoid sampling bias. These instances are located at
the edge of the ellipsoid, they have a low likelihood of belonging to the family
f [26, 40]:

arg min
x∈Cf\DMalicious

L

pN (µf ,Σf )(x). (2)

Then, ILAB queries representative examples of each family for annotation.
These instances are close to the centre of the ellipsoid, they have a high likelihood
of belonging to the family f :

arg max
x∈Cf\DMalicious

L

pN (µf ,Σf )(x). (3)

Half the budget is allocated to low likelihood instances, and the other half
to high likelihood instances. Low likelihood instances are likely to belong to yet
unknown families that is why these annotation queries foster the discovery of
new families. They are, however, more likely to be outliers that may impair
the detection model performance. ILAB also asks the expert to annotate high
likelihood instances to get more representative examples of the families in the
labelled dataset for a better generalization of the detection model.



5 Comparison with State of the Art Labelling Strategies

5.1 Datasets

Labelling strategies are generic methods that can be applied to any detection
problem once the features have been extracted. We consider a system and a
network detection problem: 1) detection of malicious PDF files with the dataset
Contagio3, and 2) network intrusion detection with the dataset NSL-KDD4.
These datasets cannot be used to train a model intended for production as they
are non-representative of real-world data. However, our comparisons are relevant
as we are not comparing attack detection models but labelling strategies in order
to train attack detection models on new problems.

Contagio is a public dataset composed of 11,101 malicious and 9,000 benign
PDF files. We transform each PDF file into 113 numerical features similar to the
ones proposed by Smutz and Stavrou [35,36].

NSL-KDD contains 58,630 malicious and 67,343 benign instances. Each in-
stance represents a connection on a network and is described by 7 categorical fea-
tures and 34 numerical features. The 7 categorical features (e.g. protocol type

with the possible values tcp, udp or icmp) are encoded into several binary fea-
tures corresponding to each value (e.g. tcp → [1, 0, 0], udp → [0, 1, 0], icmp →
[0, 0, 1]). We end up with 122 features.

Dataset #instances #features #malicious families #benign families

Contagio 10% 10, 000 113 16 30
NSL-KDD 10% 74, 826 122 19 15

Table 1: Description of the Public Datasets

The malicious instances in NSL-KDD are annotated with a family but the
benign ones are not, and Contagio does not provide any family information. The
families are, however, required to run simulations with Aladin and ILAB, and to
assess the sampling bias of the different labelling strategies. We have assigned
families to the remaining instances with a k-means clustering and the number
of families k has been selected visually with the silhouette coefficient [28].

Neither dataset has a proportion of malicious instances representative of a
typical network (55% for Contagio and 47% for NSL-KDD). We have uniformly
sub-sampled the malicious class to get 10% of malicious instances. Table 1 de-
scribes the resulting datasets: Contagio 10% and NSL-KDD 10%.

3 http://contagiodump.blogspot.fr/
4 http://www.unb.ca/cic/research/datasets/nsl.html



5.2 Labelling Strategies

We compare ILAB with uncertainty sampling [20], Aladin [40], and Görnitz et
al. labelling method [14]. Since there is no open source implementation of these
labelling strategies, we have implemented them in Python with the machine
learning library scikit-learn [25]. All the implementations are released to ease
comparison in future research works. We briefly present each labelling strat-
egy, we provide some details about our implementations and how we set the
additional parameters if relevant.

Uncertainty Sampling [20]. At each iteration, a binary logistic regression model
is trained on the labelled instances, and the expert is asked to annotate the b
most uncertain predictions, i.e. the closest to the decision boundary. Uncertainty
sampling has no additional parameter.

Görnitz et al. labelling strategy [14]. At each iteration, a semi-supervised anomaly
detection model is trained on both the labelled and the unlabelled instances.
The model relies on an adaptation of an unsupervised anomaly detection model,
Support Vector Data Description (SVDD) [42], that takes into account labelled
instances. It consists in a sphere defined by a centre c ∈ Rm and a radius r ∈ R:
the instances inside are considered benign, and the ones outside malicious. The
labelling strategy queries instances that are both close to the decision boundary
and have few malicious neighbours to foster the discovery of new malicious fam-
ilies. The nearest neighbours are computed with the Euclidean distance with the
scikit-learn ball tree implementation [23] that is effective with a large number of
instances in high dimension.

Semi-supervised SVDD has no open source implementation, so we have im-
plemented it for our experiments with the information provided in [12–14]. The
parameters c, r, and the margin γ ∈ R are determined with the quasi-Newton
optimization method BFGS [46] available in scipy [17]. The optimization algo-
rithm requires initial values for c, r, and γ that are not specified in the papers.
We initialize c with the mean of the unlabelled and benign instances, r with the
average distance of the unlabelled and benign instances to the centre c, and γ
with the default value 1. Moreover, the detection model has three parameters:
ηU ∈ R and ηL ∈ R, the weights of the unlabelled and labelled instances, and
κ the weight of the margin γ. The authors provide no information about how
to set these parameters. When we set them to the default value 1, numerical
instabilities prevent the optimization algorithm from converging properly, and
lead to an extremely high execution time and very poor performance (more than
2 hours for training the model on Contagio 10% to get an AUC below 93%). We
have thus worked on the setting of these parameters. We have set ηU and ηL
to the inverse of the number of unlabelled and labelled instances, to give as
much weight to unlabelled and labelled instances, and to ensure numerical sta-
bility. The detection model is trained without any kernel as in the experiments
presented in [12–14].



Finally, the labelling strategy requires to set two additional parameters:
k ∈ N the number of neighbours considered, and δ ∈ [0, 1] the trade-off be-
tween querying instances close to the decision boundary and instances with few
malicious neighbours. We use k = 10 as in [14] and the default value δ = 0.5.

Aladin [40]. Aladin runs rare category detection on all the data. It asks the expert
to annotate uncertain instances lying between two families to refine the decision
boundaries, and low likelihood instances to discover yet unknown families. Aladin
does not have additional parameters.

This labelling strategy relies on a multi-class logistic regression model and a
multi-class Gaussian Naive Bayes model. The logistic regression parameters are
selected automatically with a grid search 4-fold cross validation optimizing the
AUC [16]. The penalty norm is either `1 or `2 and the regularization strength
is selected among the values {0.01, 0.1, 1, 10, 100}. The Gaussian Naive Bayes
model is trained without any prior.

ILAB. ILAB labelling strategy has only an additional parameter: buncertain. It
is set to 10% of the number of annotations performed at each iteration, i.e.
buncertain = 10 in our case. Some instances near the decision boundary are an-
notated to help the detection model make a decision about these instances,
but not too many since these instances are often harder to annotate for the
expert [3, 15,33] and they may lead to a sampling bias [29].

The logistic regression and Gaussian Naive Bayes models are trained the
same way as for Aladin.

5.3 Results

The datasets Contagio 10% and NSL-KDD 10% are split uniformly into two
datasets: (1) an active learning dataset (90%) used as a pool to build the la-
belled dataset DL, and (2) a validation dataset (10%) to assess the performance
of the detection model trained on DL. The different labelling strategies are com-
pared with simulations where the annotation queries are answered by an oracle
providing the ground truth labels and families.

All the strategies are run with b = 100 annotations at each iteration. The
annotation budget is set to B = 1000 for Contagio 10%, and to B = 2000
for NSL-KDD 10% as this dataset contains more instances. The initial labelled
datasets are composed of instances belonging to the most represented families:
7 malicious instances and 13 benign instances.

All the experiments are run on Linux 3.16 on a dual-socket computer with
64Go RAM. Processors are Intel Xeon E5-5620 CPUs clocked at 2.40 GHz with
4 cores each and 2 threads per core. Each labelling strategy is run 15 times and
we report the average performance with the 95% confidence interval.

First, we compare the number of known families across the iterations to
assess sampling bias (see Figure 4a). Then, we compare the performance of the
detection models on the validation dataset (see Figure 4b). Finally, we monitor
the execution time of the query generation algorithms to evaluate the expert
waiting time between iterations (see Figure 4c).
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Fig. 4: Comparison of the labelling strategies

Contagio 10% (on the left) and NSL-KDD 10% (on the right)



Families Detection. Figure 4a shows that uncertainty sampling and Görnitz et
al. labelling strategy miss many families during the annotation process. Both
labelling strategies suffer from sampling bias. Görnitz et al. labelling strategy
relies on k-nearest neighbours to detect yet unknown malicious families but
only close to the decision boundary, that is why many families further from the
decision boundary are not discovered. Their strategy to foster the discovery of
yet unknown families is not effective on both datasets.

ILAB dedicates only a part of its annotation budget to the detection of yet
unknown families, that is why Aladin detects slightly more families than ILAB.
ILAB queries some high likelihood instances which are unlikely to belong to new
families, but they allow to keep the detection performance increasing across the
iterations (see Figure 4b).

ILAB and Aladin discover about as many families across the iterations on
both datasets. These labelling strategies are effective at avoiding sampling bias.
They are designed to detect rare categories, and they are able to discover almost
all the families on both datasets.

Detection Performance. Figure 4b represents the evolution of the Area Under
the Curve (AUC) [16] on the validation dataset. It shows that ILAB performs
better than the other labelling strategies on both datasets.

Görnitz et al. labelling strategy performs very poorly on Contagio 10%. The
detection performance increases at the first iteration, but then it keeps on de-
creasing when new instances are added to the labelled dataset. This peculiar
behaviour can be explained by the simplicity of the SVDD detection model
which cannot discriminate the benign from the malicious instances properly.
The geometry of the data prevents SVDD from isolating the benign instances
from the malicious instances in a sphere. We notice the same behaviour less pro-
nounced on NSL-KDD 10%. A solution to address this issue is to train SVDD
with a kernel to increase the complexity of the model. However, this solution
will considerably increase the execution time which is already too high to ensure
a good expert-model interaction (see Figure 4c).

Görnitz et al. labelling strategy performs much better initially on NSL-
KDD 10% than the other labelling strategies. Indeed, thanks to semi-supervision,
Görnitz et al. use not only the 20 initial labelled instances to train their detec-
tion model, but also all the instances from the unlabelled pool. Görnitz et al.
semi-supervised detection model is, however, not as effective as logistic regression
initially on Contagio 10%. SVDD makes the assumption that the unlabelled in-
stances are mostly benign, and so the malicious instances in the unlabelled pool
may damage the detection model performance.

Uncertainty sampling has a better detection performance than ILAB during
the first iterations on NSL-KDD 10% because it allocates all its annotation bud-
get to refining the decision boundary. On the contrary, ILAB dedicates 90% of
its annotation budget to rare category detection to avoid sampling bias. In the
end, uncertainty sampling suffers from sampling bias and converges to a poorer
performance.



The detection performance of uncertainty sampling and Aladin decreases dur-
ing the first iterations on Contagio 10%. This undesirable behaviour is caused by
sampling bias: non-representative instances are queried for annotation, added to
the training dataset and prevent the detection model from generalizing properly.
Uncertainty sampling queries instances close to the decision boundary that are
hard to classify for the detection model, but not representative of the malicious
or benign behaviours. Aladin queries only uncertain and low likelihood instances
which are not necessarily representative of the malicious and benign behaviours
either. ILAB addresses this problem by dedicating a part of its annotation bud-
get to high likelihood instances to get representative examples of each family.
Therefore, the detection performance keeps on increasing across the iterations.

Scalability. Figure 4c depicts the query generation execution time (in seconds)
across the iterations. Görnitz et al. query generation algorithm is very slow. For
NSL-KDD 10%, the expert waits more than 10 minutes between each iteration
while the labelling strategy computes the annotation queries. A third of the
execution time corresponds to the computation of the semi-supervised SVDD
model, and the remaining two thirds corresponds to the k-nearest neighbour
algorithm. The execution time of Görnitz et al. labelling strategy is thus too
high to ensure a good expert-model interaction even on a dataset containing
fewer than 100,000 instances.

ILAB has an execution time comparable to uncertainty sampling. For NSL-
KDD 10%, the expert waits less than 1 minute between each iteration. On the
contrary, Aladin execution time increases drastically when new instances are
added to the labelled dataset and new families are discovered. Aladin runs rare
category detection on all the instances, while ILAB runs it on the malicious and
the benign instances separately. ILAB divide and conquer approach reduces the
execution time as running rare category detection twice on smaller datasets with
fewer families is faster than running it on the whole dataset. Aladin’s authors
were aware of this high execution time. During their experiments, the expert
was asked to annotate 1000 instances each day, and the new annotation queries
were computed every night. Their solution reduces the expert waiting time, but
it significantly damages the expert-model interaction since the expert feedback
is integrated only once a day.

In conclusion, uncertainty sampling and Görnitz et al. labelling strategy suffer
from sampling bias. Aladin and ILAB are the only labelling strategies able to
avoid sampling bias thanks to rare category detection performed at the family
level (see Figure 4a). ILAB main advantage over Aladin is its divide and conquer
approach that significantly reduces the execution time (see Figure 4c) and thus
improves the expert-model interaction. Our comparisons show that ILAB is both
an effective and a scalable labelling strategy that can be set up on real-world
annotation projects.



6 Real-World Annotation Project on NetFlow Data

In this section, we deploy ILAB on a large unlabelled NetFlow dataset originating
from a production environment.

NetFlow. As stated in [5]: “NetFlow is a network protocol proposed and imple-
mented by Cisco [6] for summarizing network traffic as a collection of network
flows. A flow is defined as a unidirectional sequence of packets that share spe-
cific network properties (e.g. IP source/destination addresses, and TCP or UDP
source/destination ports).” Each flow is described by attributes and summary
statistics: source and destination IP addresses, source and destination ports,
protocol (TCP, UDP, ICMP, ESP, etc.), start and end time stamps, number of
bytes, number of packets, and aggregation of the TCP flags for TCP flows.

Num. flows 1.2 · 108

Num. IP addresses 463, 913
Num. features 134
Num. TRW alerts 70

Table 2: NetFlow Dataset

Dataset and Features. The flows are recorded
at the border of a defended network. We com-
pute features describing each external IP ad-
dress communicating with the defended net-
work. from its flows during a given time win-
dow. We compute the mean and the variance
of the number of bytes and packets sent and
received at different levels: globally, for some
specific port numbers (80, 443, 53 and 25), and
for some specific TCP flags aggregates (....S,
.A..S., .AP.SF, etc.). Besides, we compute
other aggregated values: number of contacted IP addresses and ports, number
of ports used, entropy according to the contacted IP addresses and according
to the contacted ports. In the end, each external IP address is described by 134
features computed from its list of flows.

The NetFlow data is recorded during a working day in 2016. The features
are computed for each external IP address with a 24-hour time window. The
NetFlow dataset is large: it is composed of 463,913 IP addresses represented by
134 real-valued features (see Table 2). A second dataset has been recorded the
following day for the validation of the resulting detection model. The results
are, however, not reported due to space constraints since the main focus is the
deployment of the labelling strategy in an annotation project.

ILAB Graphical User Interface. A security expert answers ILAB annotation
queries from the graphical user interface depicted in Figure 5. The top but-
tons allow the expert to select a type of annotation queries: Uncertain for the
instances near the decision boundary, Malicious and Benign for the annota-
tion queries generated by rare category detection. The panel below allows to go
through the annotation queries corresponding to each family.

By default, each instance is described only by its features which may be hard
to interpret, especially when they are in high dimension. A custom visualization
which may point to external tools or information can be displayed to ease the



Fig. 5: ILAB Graphical User Interface for Annotating

annotations. Figure 5 depicts the custom visualization we have implemented for
NetFlow data5.

Finally, the expert can annotate the selected instance with the Annotation
panel. For each label, it displays the list of the families already discovered. The
expert can pick a family among a list or add a new family. The interface sug-
gests a family for high likelihood queries and pre-selects it. It helps the expert
since the model is confident about these predictions. On the contrary, there is
no suggestion for the uncertainty sampling and the low likelihood queries. The
model is indeed uncertain about the family of these instances and unreliable
suggestions may mislead the expert [3].

ILAB in Practice. First, we need some labelled instances to initialize the active
learning process. The alerts raised by the Threshold Random Walk (TRW) [18]
module of Bro [24] provide the initial anomalous examples and the normal exam-
ples are drawn randomly. The initial labelled dataset is composed of 70 obvious
scans detected by TRW, and of 70 normal examples belonging to the Web, SMTP
and DNS families. Malicious activities in well-established connections cannot be
detected without the payload, which is not available in NetFlow data, that is
why we consider the families Web, SMTP and DNS to be normal. All the initial
labels are checked individually by the expert to avoid poisoning the model.

This initial labelled dataset is not representative of all the anomalous be-
haviours we want to detect. We run ILAB with the parameters B = 1000, b = 100

5 The IP addresses have been hidden for privacy reasons.



and buncertain = 10 to acquire a representative labelled dataset. Across the it-
erations, ILAB has discovered stealthier scans: ICMP scans, slow scans (only
one flow with a single defended IP address contacted on a single port), furtive
scans (a slow scan in parallel with a well-established connection). Besides, it
has detected TCP Syn flooding activities designed to exhaust the resources of
the defended network. Finally, ILAB has asked the expert to annotate IP ad-
dresses with anomalous behaviours which are not malicious: misconfigurations
and backscatters.
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Fig. 6: ILAB Execution Time

Low Expert Waiting Time. ILAB divide and conquer approach allows the expert
to annotate some instances while the labelling strategy is still computing anno-
tation queries. First, the binary detection model is trained and the uncertainty
sampling queries are computed. The binary detection model is indeed required
to predict the label of the unlabelled instances to run rare category detection
afterwards. Then, rare category detection is performed on the malicious predic-
tions while the expert annotates the uncertain instances. Finally, rare category
detection is computed on the benign predictions while the expert annotates the
malicious annotation queries. The malicious predictions are analysed before the
benign ones, because their number is smaller, so the analysis is faster (see Fig-
ure 6).

In practice, running rare category detection takes less time than the anno-
tations. As a result, the expert must only wait while the uncertain queries are
computed (see the orange curve Uncertainty Sampling in Figure 6). During the
NetFlow annotation project the expert has waited less than 40 seconds at each
iteration. ILAB low computation cost ensures a good expert-model interaction:
the detection model is updated frequently with expert feedback without inducing
long waiting-periods.

Families Benefits. ILAB and Aladin deal with the sampling bias problem thanks
to rare category detection performed at the family level. At first glance, this so-
lution may seem to increase the annotation cost as it requires experts to provide



a more precise information than a binary label. However, asking experts to pro-
vide a family does not increase the annotation cost in practice: experts place
instances in “mental bins” corresponding to families to provide a label [26]. Ex-
perts must understand the type of the instance to provide a label, and, therefore,
assigning a family does not require an additional effort.

Besides, the clustering of the annotation queries according to families (see
Figure 5) decreases the average annotation cost. Families provide a context that
helps the expert answer the queries. Annotation queries related to the same
family are likely to share the same label and family, and thus, it reduces the
amount of context switching during the annotation process. On the contrary,
uncertainty sampling and Görnitz et al. labelling strategy ask the expert to
annotate a list of unrelated instances without any context.

Finally, an alert raised by a supervised detection model can be hard to inter-
pret for the security expert. This issue called semantic gap by Sommer et al. [38]
is due to the binary output (Malicious or Benign) of the detection model. The
families acquired with ILAB can bridge the semantic gap by enriching the alerts
with a malicious family to help the expert supervising the detection system take
the necessary actions.

7 Conclusion

We introduce ILAB a novel interactive labelling strategy that streamlines anno-
tation projects. It relies on active learning and rare category detection to avoid
sampling bias. We demonstrate that ILAB offers a better scalability than two
state-of-the-art labelling strategies [14, 40] without damaging the effectiveness.
Up to our knowledge, [40] and [14] had never been compared. We provide open
source implementations to foster comparison in future research works.

ILAB divide and conquer approach reduces the computation cost, and al-
lows the expert to annotate some instances while the labelling strategy is still
computing annotation queries. Thus, ILAB provides a good expert-model inter-
action: the detection model is updated frequently with expert feedback without
inducing long waiting-periods.

The NetFlow annotation project shows that ILAB is a workable labelling
strategy that can be applied to a large dataset originating from a production
environment. ILAB is a generic labelling strategy that can be applied to other
detection problems once the feature extraction task has been performed. It is
designed for security experts who deploy intrusion detection systems, and we
provide an open source implementation of the graphical user interface to allow
them to label their own datasets. For future work, we plan to run broader ex-
periments with independent computer security experts to assess ILAB from an
end-user’s point of view and to improve its usability from their feedback.
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