

J-SAFE3_ST_Lite_C

J-SAFE3 on ST31G480

Security Target -
Public Version

Common Criteria for IT security evaluation

J-SAFE3_ST_Lite_C February 2019

J-SAFE3_ST_Lite_C

J-SAFE3_ST_Lite_C

BLANK

INDEX

Page
1. PURPOSE .. 6

2. SCOPE ... 6

3. REFERENCE DOCUMENTS ... 6

4. DEFINITIONS ... 9

5. GENERAL .. 12

6. SAFETY REQUIREMENTS ... 12

7. J-SAFE3 Security Target.. 12

7.1 ST Introduction .. 12

7.1.1 Document Reference ... 12

7.1.2 Security Target Reference ... 13

7.1.3 TOE Reference .. 13

7.1.4 Purpose .. 13

7.1.5 TOE overview .. 13

7.1.6 TOE description ... 15

7.1.7 TOE Life-Cycle ... 18

7.1.8 TOE Intended usage .. 26

7.2 Conformance Claims (ASE_CCL) ... 27

7.2.1 Protection Profile Claim ... 27

7.2.2 CC Conformance Claim ... 27

7.2.3 Conformance Claim Rationale ... 27

7.2.4 Statement of Compatibility concerning Composite Security Target .. 30

7.3 Security Problem Definition (ASE_SPD) ... 34

7.3.1 Security Aspects .. 34

7.3.2 Assets .. 37

7.3.3 Threats ... 39

7.3.4 Organizational Security Policies .. 41

7.3.5 Assumptions .. 42

7.4 Security objectives (ASE_OBJ) .. 42

7.4.1 Security objectives for the TOE ... 42

7.4.2 Security objectives for the environment ... 44

7.4.3 Security objectives rationale .. 45

7.5 Extended Components Definition (ASE_ECD) ... 54

7.5.1 Definition of Family FCS_RNG .. 54

7.5.2 Definition of Family FMT_LIM .. 55

7.5.3 Definition of the Family FDP_SDC .. 56

7.5.4 Definition of Family FPT_EMSEC .. 57

7.6 Security requirements (ASE_REQ) ... 59

7.6.1 Security functional requirements for the TOE (SFRS)... 59

7.6.2 TOE Security assurance requirements .. 82

7.6.3 Security requirements rationale ... 84

7.7 TOE summary specification (ASE_TSS) .. 95

7.7.1 Statement of the TOE security functionality .. 95

7.7.2 TOE summary specification rationale .. 98

8. QUALITY REQUIREMENTS .. 100

9. ENVIRONMENTAL/ECOLOGICAL REQUIREMENTS .. 100

List of tables
Table 1 - Platform SFRs VS Composite TOE SFRs ... 31

Table 2 - Platform OSPs VS Composite TOE OSPs... 31

Table 3 - Platform Assumptions VS Composite TOE Assumptions .. 31

Table 4 - Platform Objectives VS Composite TOE Objectives .. 32

Table 5 - Platform OEs VS Composite TOE OEs ... 33

Table 6 – SPD vs. Objectives Rationale ... 52

Table 7 - Objectives vs. SPD Rationale .. 53

Table 8 - Subjects of the TOE ... 60

Table 9 - Objects of the TOE ... 60

Table 10 - Security Attributes and related description .. 62

Table 11 - Operations and related description .. 63

Table 12 - Security Functional Requirements (SFR) vs. Objectives ... 91

Table 13 - Security Functional Requirements (SFRs) dependencies ... 93

Table 14 - Security Assurance Requirements (SARs) dependencies... 94

Table 15 - Mapping of Security Functional Requirements (SFRs) on Security Functions (SFs) 99

List of figures
Figure 1 - J-SAFE3 product with TOE and JCS PP boundaries ... 15

Figure 2 - JCS TOE life cycle .. 19

Figure 3 – Typical product life cycle with TOE delivery performed at the end of phase 5 23

Figure 4 – Product life cycle with TOE delivery performed at the end of phase 3 .. 26

6

TITLE: J-SAFE3 on ST31G480 Security Target Lite

1. PURPOSE

This document describes the Security Target of the STMicroelectronics’ J-SAFE3 Java Card Platform
designed on the ST31G480 platform (ST31G480 Security Integrated Cir cuit with dedicated software
and embedded cryptographic library) .

2. SCOPE

This document is public.

3. REFERENCE DOCUMENTS

[CC1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction and
general model. Version 3.1. Revision 5. April 2017. CCMB-2017-04-001.

[CC2] Common Criteria for Information Technology Security Evaluation, Part 2: Security
functional requirements. Version 3.1. Revision 5. April 2017. CCMB-2017-04-002.

[CC3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
assurance requirements. Version 3.1. Revision 5. April 2017. CCMB-2017-04-003.

[CEM] Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology. Version 3.1. Revision 4. September 2012. CEM-2012-09-004.

[CSRS] GlobalPlatform Card Security Requirements Specification, Version 1.0,May 2003.

[GPSCSTG] GlobalPlatform Smart Card Security Target Guidelines, V1.0 October 2005.

[JCVM22] Java Card Platform, version 2.2 Virtual Machine (Java Card VM) Specification. June 2002.
Published by Sun Microsystems, Inc.

[JCAPI22] Java Card Platform, version 2.2 Application Programming Interface. June 2002. Published
by Sun Microsystems, Inc.

[JCRE22] Java Card Platform, version 2.2 Runtime Environment (Java Card RE) Specification. June
2002. Published by Sun Microsystems, Inc.

[JCAPI222] Application Programming Interface, Java Card™ Platform, Version 2.2.2, March 2006, Sun
Microsystems, Inc.

[JCRE222] Runtime Environment Specification, Java Card™ Platform, Version 2.2.2, March 2006, Sun
Microsystems, Inc.

[JCVM222] Virtual Machine Specification, Java Card™ Platform, Version 2.2.2, March 2006, Sun
Microsystems, Inc.

[JCVM3] Java Card Platform, versions 3.0 (March 2008), 3.0.1 (April 2009) and 3.0.4 (September
2011), Classic Edition, Virtual Machine (Java Card VM) Specification. Published by Sun
Microsystems, Inc.

[JCAPI3] Java Card Platform, versions 3.0 (March 2008), 3.0.1 (April 2009) and 3.0.4 (September
2011), Classic Edition, Application Programming Interface, March 2008. Published by Sun
Microsystems, Inc.

7

[JCRE3] Java Card Platform, versions 3.0 (March 2008), 3.0.1 (April 2009) and 3.0.4 (September
2011), Classic Edition, Runtime Environment (Java Card RE) Specification. March 2008.
Published by Sun Microsystems, Inc.

[JCBV] Java Card Platform, version 2.2 Off-Card Verifier. June 2002. Whitepaper. Published by
Sun Microsystems, Inc.

[JAVASPEC] The Java Language Specification. Third Edition, May 2005. Gosling, Joy, Steele and
Bracha. ISBN 0-321-24678-0.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.

[GP221] GlobalPlatform Card Specification, Version 2.2.1, January 2011.

[GP_SCP03_AmdD] GlobalPlatform Card Technology Secure Channel Protocol 03 – Card Specification v. 2.2.
Amendment D - Version 1.1.1

[GP_CIC] GlobalPlatform Common Implementation Configuration, Version 1.0, February 2014.

[GP_IDCONF] GlobalPlatform ID Configuration, Version 1.0, December 2011.

[PP-JCS-1.0] Java Card Protection Profile Collection, Version 1.0b, August 2003, registered and certified
by the French certification body (ANSSI) under the following references: [PP/0303]
“Minimal Configuration”, [PP/0304] “Standard 2.1.1 Configuration”, [PP/0305] “Standard 2.2
Configuration” and [PP/0306] “Defensive Configuration”.

[PP_JC_Closed] Java Card System – Closed Configuration Protection Profile, Version 3.0, December 2012
[ANSSI-CC-PP-2010/07-M01]

[PP_ESforSSD] Embedded Software for Smart Secure Devices Protection Profile, v1.0, November 27th
2009, ANSSI.

[PP_0035] Security IC Platform Protection Profile, Version 1.0, 15 July 2007.

[BSI_ PP_0084] BSI-CC-PP-0084-2014 – Eurosmart – Security IC Platform Protection Profile with
Augmentation Packages.

[STLite_ST31G480] ST31G480 A04 including optional cryptographic library NESLIB, and optional technologies
MIFARE DESFire EV1 and MIFARE Plus X – Security Target for composition, Rev A04.1
April 2017.

[MntRep_ST31G480] ST31G480 A04 including optional cryptographic library NESLIB, and optional
technologies MIFARE DESFire EV1 and MIFARE Plus X – Rapport de manteinance
ANSSI-CC-2016/58-M02, June 2017.

[BSI_AIS31] A proposal for Functionality classes and evaluation methodology for true (physical)
random number generators, W. Killmann & W. Schindler. BSI, Version 3.1, 25-09-2001

[BSI_AIS20] Functionality classes and evaluation methodology for deterministic random number
generators, BSI, Version 1, 02-12-1999

[BSI_AIS20/AIS31] [BSI_AIS20/AIS31] A proposal for: Functionality classes for random number generators,
W. Killmann & W. Schindler, BSI, Version 2.0, 18 September 2011

[BSI_TR03110] Technical Guideline TR-03110: Advanced Security Mechanisms for Machine Readable
Travel Documents, Version 2.02, 2009

[PP_ICAO_BAC] Protection Profile Machine Readable travel Document with “ICAO Application”, Basic
Access Control, Version 1.10, 25th March 2009 (BSI-CC-PP-0055)

8

[FIPS_197] FIPS Publication 197, ADVANCED ENCRYPTION STANDARD (AES), U.S.
DEPARTMENT OF COMMERCE/National Institute of Standards and Technology,
November 26, 2001

[FIPS_46-3] FIPS Publication 46-3, DATA ENCRYPTION STANDARD (DES), Reaffirmed 1999 October
25, U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology

[ANSI_X9.62] ANSI X9.62-2005: The Elliptic Curve Digital Signature Algorithm (ECDSA), approved
November 16, 2005

[RSA-PKCS1] PKCS #1: RSA Encryption Standard - An RSA Laboratories Technical Note, Version 1.5,
Revised November 1, 1993

[RSA-PKCS3] PKCS #3: Diffie-Hellman key agreement standard - RSA Laboratories Technical Note,
1993

[FIPS_180-2] FIPS Publication 180-2: SECURE HASH STANDARD, U.S. DEPARTMENT OF
COMMERCE/National Institute of Standards and Technology, 2002 August 1

[ISO_9797-1] ISO/IEC 9797-1:1999: Information technology - Security techniques – Message
Authentication Codes (MACs) - Part 1: Mechanisms using a block cipher

[ISO_9796-2] ISO/IEC 9797-2:2002: Information technology - Security techniques – Digital Signature
Scheme - Part 2: Integer factorization based mechanisms

[RSA_PSS] RSA Laboratories. PKCS#1 v2.1: RSA cryptography standard, RSA Laboratories Technical
Note, 2002

[NIST_800-38B] Recommendation for Block Cipher Modes of Operation: The CMAC Mode for
Authentication, May 2005

[NIST_800-56Ar2] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography, May, 2013

[NIST_800-90A] National Institute of Standards and Technology, Recommendation for Random Number
Generation Using Deterministic Random Bit Generators Special Publication 800-90A Rev.1
April 2014

[NIST_800-22] National Institute of Standards and Technology, A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applications Special Publication
800-22 Rev.1a April 2010

[J-SAFE3_AGD] J-SAFE3– Guidance Document (AGD) Rev. 4

[SEC_GUIDELINE] Security Guidelines for application development on the J-SAFE3 secure solution –
Application note – Rev. 5

[J-SAFE3_RM] J-SAFE3 Release Manifest Rev. 3

[USRMAN] J-SAFE3 Java Card Platform – User Manual – Rev. 3

9

4. DEFINITIONS

Term Meaning
0x C-fashion hexadecimal prefix
A.XXX Assumption
AID Application identifier, an ISO-7816 data format used for unique

identification of Java Card applets (and certain kinds of files in
card file systems). The Java Card platform uses the AID data
format to identify applets and packages. AIDs are administered
by the International Opens Organization (ISO), so they can be
used as unique identifiers.
AIDs are also used in the security policies (see “Context”
below): applets’ AIDs are related to the selection mechanisms,
packages’ AIDs are used in the enforcement of the firewall.
Note: although they serve different purposes, they share the
same namespace.

APDU Application Protocol Data Unit, an ISO 7816-4 defined
communication format between the card and the off-card
applications. Cards receive requests for service from the CAD
in the form of APDUs. These are encapsulated in Java Card
System by the javacard.framework.APDU class ([JCAPI22]).
APDUs manage both the selection-cycle of the applets (through
Java Card RE mediation) and the communication with the
Currently selected applet.

APDU buffer The APDU buffer is the buffer where the messages sent
(received) by the card depart from (arrive to). The Java Card
RE owns an APDU object (which is a Java Card RE Entry Point
and an instance if the javacard.framework.APDU class) that
encapsulates APDU messages in an internal byte array, called
the APDU buffer. This object is made accessible to the
currently selected applet when needed, but any permanent
access (out-of selection-scope) is strictly prohibited for security
reasons.

Applet The name given to any Java Card technology-based
application. An applet is the basic piece of code that can be
selected for execution from outside the card. Each applet on
the card is uniquely identified by its AID.

Applet deletion ager

The on-card component that embodies the mechanisms
necessary to delete an applet or library and its associated data
on smart cards using Java Card technology.

BCV The bytecode verifier is the software component performing a
static analysis of the code to be loaded on the card. It checks
several kinds of properties, like the correct format of CAP files
and the enforcement of the typing rules associated to
bytecodes. If the component is placed outside the card, in a
secure environment, then it is called an off-card verifier. If the
component is part of the embedded software of the card it is
called an on-card verifier.

CAD Card Acceptance Device or card reader. The device where the
card is inserted, and which is used to communicate with the
card. Unless explicitly said otherwise, in this document, CAD
covers PCD.

CAP file A file in the Converted applet format. A CAP file contains a
binary representation of a package of classes that can be
installed on a device and used to execute the package’s
classes on a Java Card virtual machine. A CAP file can contain
a user library, or the code of one or more applets.

CC Common Criteria
Class In object-oriented programming languages, a class is a

prototype for an object. A class may also be considered as a
set of objects that share a common structure and behavior.
Each class declares a collection of fields and methods

10

associated to its instances. The contents of the fields determine
the internal state of a class instance, and the methods the
operations that can be applied to it.
Classes are ordered within a class hierarchy. A class declared
as a specialization (a subclass) of another class (its super
class) inherits all the fields and methods of the latter.
Java platform classes should not be confused with the classes
of the functional requirements (FIA) defined in the CC.

CM Card Manager
Context A context is an object-space partition associated to a package.

Applets within the same Java technology-based package
belong to the same context. The firewall is the boundary
between contexts (see “Current context”).

Current Context The Java Card RE keeps track of the current Java Card System
context (also called “the active context”). When a virtual method
is invoked on an object, and a context switch is required and
permitted, the current context is changed to correspond to the
context of the applet that owns the object. When that method
returns, the previous context is restored. Invocations of static
methods have no effect on the current context. The current
context and sharing status of an object together determine if
access to an object is permissible.

Currently Selected
Applet

The applet has been selected for execution in the current
session. The Java Card RE keeps track of the currently
selected Java Card applet. Upon receiving a SELECT
command from the CAD or PCD with this applet’s AID, the Java
Card RE makes this applet the currently selected applet over
the I/O interface that received the command. The Java Card RE
sends all further APDU commands received over each interface
to the currently selected applet on this interface ([JCRE22],
Glossary).

Default Applet The applet that is selected after a card reset or upon
completion of the PICC activation sequence on the contactless
interface ([JCRE22], §4.1)

DPA Differential Power Analysis is a form of side channel attack in
which an attacker studies the power consumption of a
cryptographic hardware device such as a smart card.

EAL Evaluation Assurance Level
Embedded Software Pre-issuance loaded software.
ES Embedded Software
Firewall The mechanism in the Java Card technology for ensuring

applet isolation and object sharing. The firewall prevents an
applet in one context from unauthorized access to objects
owned by the Java Card RE or by an applet in another context.

HAL Hardware Abstraction Layer
IC Integrated Circuit
Installer The installer is the on-card application responsible for the

installation of applets on the card. It may perform (or delegate)
mandatory security checks according to the card issuer policy
(for bytecode-verification, for instance), loads and link packages
(CAP file(s)) on the card to a suitable form for the Java Card
VM to execute the code they contain. It is a subsystem of what
is usually called “card manager”; as such, it can be seen as the
portion of the card manager that belongs to the TOE.
The installer has an AID that uniquely identifies him, and may
be implemented as a Java Card applet. However, it is granted
specific privileges on an implementation-specific manner
([JCRE22],§10). The installer is the on-card application
responsible for the installation of applets on the card. It may
perform (or delegate) mandatory security checks according to
the card issuer policy (for bytecode-verification, for instance),
loads and link packages (CAP file(s)) on the card to a suitable

11

form for the Java Card VM to execute the code they contain. It
is a subsystem of what is usually called “card manager”; as
such, it can be seen as the portion of the card manager that
belongs to the TOE.
The installer has an AID that uniquely identifies him, and may
be implemented as a Java Card applet. However, it is granted
specific privileges on an implementation-specific manner
([JCRE22],§10).

Interface A special kind of Java programming language class, which
declares methods, but provides no implementation for them. A
class may be declared as being the implementation of an
interface, and in this case must contain an implementation for
each of the methods declared by the interface (See also
shareable interface).

Java Card RE The runtime environment under which Java programs in a
smart card are executed. It is in charge of all the management
features such as applet lifetime, applet isolation, object sharing,
applet loading, applet initializing, transient objects, the
transaction mechanism and so on.

Java Card RE Entry
Point

An object owned by the Java Card RE context but accessible
by any application. These methods are the gateways through
which applets request privileged Java Card RE services: the
instance methods associated to those objects may be invoked
from any context, and when that occurs, a context switch to the
Java Card RE context is performed.
There are two categories of Java Card RE Entry Point Objects:
Temporary ones and Permanent ones. As part of the firewall
functionality, the Java Card RE detects and restricts attempts to
store references to these objects.

Java Card RMI Java Card Remote Method Invocation is the Java Card System
version 2.2 and 3 Classic Edition mechanism enabling a client
application running on the CAD platform to invoke a method on
a remote object on the card. Notice that in Java Card System,
version 2.1.1, the only method that may be invoked from the
CAD is the process method of the applet class.

Java Card System Java Card System includes the Java Card RE, the Java Card
VM, the Java Card API and the installer.

Java Card VM The embedded interpreter of bytecodes. The Java Card VM is
the component that enforces separation between applications
(firewall) and enables secure data sharing.

Logical Channel A logical link to an application on the card. A new feature of the
Java Card System, version 2.2 and 3 Classic Edition, that
enables the opening of simultaneous sessions with the card,
one per logical channel. Commands issued to a specific logical
channel are forwarded to the active applet on that logical
channel. Java Card platform, version 2.2.2 and 3 Classic
Edition, enables opening up to twenty logical channels over
each I/O interface (contacted or contactless).

NVRAM Non-Volatile Random Access Memory, a type of memory that
retains its contents when power is turned off.

O.xxx Security objectives for the TOE.
Object Deletion The Java Card System version 2.2 and 3 Classic Edition

mechanism ensures that any unreferenced persistent
(transient) object owned by the current context is deleted. The
associated memory space is recovered for reuse prior to the
next card reset.

OE.xxx Security objectives for the environment.
OSP.xxx Organizational security policies.
Package A package is a namespace within the Java programming

language that may contain classes and interfaces. A package
defines either a user library, or one or more applet definitions. A
package is divided in two sets of files: export files (which

12

exclusively contain the public interface information for an entire
package of classes, for external linking purposes; export files
are not used directly in a Java Card virtual machine) and CAP
files.

PCD Proximity Coupling Device. The PCD is a contactless card
reader device.

PICC Proximity Card. The PICC is a card with contactless
capabilities.

PP Protection Profile.
RAM Random Access Memory, is a type of computer memory that

can be accessed randomly.
ROM Read Only Memory.
SC Smart Card
SCP Smart Card Platform.It is comprised of the integrated circuit, the

operating system and the dedicated software of the smart card.
SF.xxx Security Functionality
Shareable Interface An interface declaring a collection of methods that an applet

accepts to share with other applets. These interface methods
can be invoked from an applet in a context different from the
context of the object implementing the methods, thus
“traversing” the firewall.

SIO An object of a class implementing a shareable interface.
ST Security Target
Subject An active entity within the TOE that causes information to flow

among objects or change the system’s status. It usually acts on
behalf of a user. Objects can be active and thus are also
subjects of the TOE.

SWP The Single Wire Protocol is a specification for a single-wire
connection between the SIM card and a Near Field
Communication (NFC) chip in a mobile handset

TOE Target Of Evaluation
Transient Object An object whose contents are not preserved across CAD

sessions. The contents of these objects are cleared at the end
of the current CAD session or when a card reset is performed.
Writes to the fields of a transient object are not affected by
transactions.

User Any application interpretable by the Java Card RE. That also
covers the packages. The associated subject(s), if applicable, is
(are) an object(s) belonging to the javacard.framework.applet
class.

VM Virtual Machine

5. GENERAL

NA

6. SAFETY REQUIREMENTS

NA

7. J-SAFE3 Security Target

7.1 ST Introduction

7.1.1 Document Reference

Document identification: J-SAFE3 on ST31G480 Security Target - Public Versio n
Revision: C
Registration: J-SAFE3_ST_Lite_C

13

7.1.2 Security Target Reference

Document identification: J-SAFE3 on ST31G480 Security Target
Revision: 4
Registration: J-SAFE3_ ST31G480_SecurityTarget

7.1.3 TOE Reference

TOE Name and Version: J-SAFE3 on ST31G480 v.1.2.5
TOE short Name: J-SAFE3
The TOE comprises the following items:

• Hardware: ST31G480 A04 (available formats are listed in 7.1.6.1).
• Document: [J-SAFE3_AGD], J-SAFE3 – Guidance Document (AGD)
• Document: [SEC_GUIDELINE] Security Guidelines for application development on the

J-SAFE3 secure solution – Application note
• Document: [USRMAN] J-SAFE3 Java Card Platform – User Manual

7.1.4 Purpose

This document details the Security Target of J-SAFE3 Java Card Platform: a EAL5+ certified
smart card platform targeting the Financial and ID market segments and defined to be used as
a contact and contactless card, allowing pre-issuance application downloading, designed on the
ST31G480 platform (ST31G480 A04 including optional cryptographic library NESLIB, and
optional technologies MIFARE DESFire EV1 and MIFARE Plus X) (see [STLite_ST31G480],
[MntRep_ST31G480]).
The precise description of the Target of Evaluation (TOE) and the related features are given in
next sections.
A glossary of terms and abbreviations used in this document is given in chapter 4.

7.1.5 TOE overview

7.1.5.1 TOE TYPE

The Target of Evaluation detailed in this Security Target is J-SAFE3 on ST31G480 (from now
on also referenced as J-SAFE3 or, simply, the TOE).

The TOE is constituted by the following blocks:

• The Java Card System according to [PP_JC_Closed], which manages and executes
application called applets. It also provides API [JCAPI3] to develop applets on top of it
in accordance with Java CardTM specifications;

• Additional proprietary API to support ID-specific requirements
• A native Operating system providing to the Java Card System a low-level support of

hardware functionalities and implementing I/O communication;
• The hardware IC and its associated crypto library (already certified as ST31G480 A04

including optional cryptolibrary NESLIB) (see [STLite_ST31G480] and
[MntRep_ST31G480]).

The TOE does not include the Global Platform layer, the Card Manager Applet, or any software
on the application layer (Java Card Applets).
This is shown schematically in Figure 1.

The Security Target (ST) is based on the following protection profile:
• Java Card System – Closed Configuration Protection Profile, Version 3.0, December

2012 ([PP_JC_Closed])

The TOE fulfils all the requirements of [PP_JC_Closed] and adds some proprietary extensions
due to product-specific needs. Extension will be detailed later on in the document.

14

This Security Target selects a hierarchically highe r assurance level (EAL) with respect to
the one defined by the PP (EAL4+) :
• Assurance Level: EAL5+
• Augmentations: ALC_DVS.2 and AVA_VAN.5 .

J-SAFE3 is based on Java Card 3.0.4 Classic Edition ([JCRE3], [JCAPI3], [JCVM3]) and
GlobalPlatform 2.2.1 ([GP221]) industry standards and related GlobalPlatform configurations
([GP_CIC], [GP_IDCONF]).

J-SAFE3 provides the following main features:
• Communication protocols:

o ISO 7816 T=0 and T=1
o ISO14443 Type A / B (T=CL , contactless)

• Cryptographic algorithms and services:

o DES / 3-DES
o AES (up to 256 bits)
o RSA Standard and CRT with key generation (up to 2048 bits)
o SHA-1, SHA-224, SHA-256, SHA-512
o EC over GF(p) in the range between 160 and 521 bits
o Secure random number generation mechanisms:

• AIS20/AIS31 class PTG.2 compliant True Random Generator (TRNG)
• AIS20/AIS31 class DRG.3 compliant Deterministic Random Generator (DRBG)

o Key Agreement based on DH, ECDH
o Primitives for Elliptic Curve Generic Mapping and DH Generic Mapping

• Card and Card Content Administration:

o User authentication and Secure Communication using Secure Channel Protocols:
• 02 (SCP02 i.o. ‘15’ or ‘55’)
• 03 (SCP03 i.o. ‘10’, ‘30’ or ‘70’, ‘00’, ‘20’, ‘60’)

o Card Life Cycle management;
o Downloading, installation and deletion of applications (Java Card applets) operations;

are limited to pre-issuance phase

NOTE: the TOE does not support Multiple Logical Channels and JCRMI.

15

7.1.6 TOE description

7.1.6.1 TOE Boundaries

The Target of Evaluation (TOE) is the Java Card-enabled smart card platform embedded in J-
SAFE3 product.

Physical Boundaries

The TOE is constituted by hardware and software parts and is available in several formats
depending on the product end usage:

• Contact-only card (IC packaged as micro-module and embedded in a plastic card body)
• IC packaged in several module formats (e.g. DFN-8, QFN, etc..) for integration on

PCBs or plastic cards)
• Wafers or sawn wafers (e.g.: to be embedded by third parties)
• Dual-interface plastic card (IC packaged as micro-module and embedded in a plastic

card body integrating an antenna)
• Contactless inlay
• Pure contactless plastic card

The carrier, being it made in paper or plastic is out of the scope of current evaluation.

The card reader and associated firmware are not part of the TOE.

Logical Boundaries

The Target of Evaluation (TOE) is the Java Card-enabled smart card platform embedded in J-
SAFE3 product according to Figure 1.

Figure 1 - J-SAFE3 product with TOE and JCS PP boundaries

16

According to the terminology of [PP_JC_Closed], the Secure IC hardware (from now on simply
called IC), its associated crypto-library, and the native operating system are ideally combined in
the so called Smart Card Platform (SCP).

J-SAFE3 platform includes the GlobalPlatform Card Manager applet, which provides, according
to [GP221] specifications and associated [GP_IDCONF] [GP_CIC] configurations, a common
and widely used administrative interface for the secure management of applications on the
smart card. The Card Manager is out of scope of current evaluation and its administrative
interface is permanently disabled before TOE delivery.

Any application being loaded pre-issuance is out of scope of current evaluation.

7.1.6.2 Java Card Platform

The Java technology, embedded on the TOE, combines a subset of the Java programming
language with a runtime environment optimized for smart cards and similar small-memory
embedded devices [JCVM3]. The Java Card platform is a smart card platform enabled with
Java Card technology (also called, for short, a “Java Card”). This technology allows for multiple
applications to run on a single card and provides facilities for secure interoperability of
applications. Applications running on the Java Card platform (“Java Card applications”) are
called applets.

The Java Card VM is the bytecode interpreter as specified in [JCRE3], [JCAPI3], [JCVM3].
The Java Card RE is responsible for card resource management, communication, applet
execution, on-card system and applet security. The Java Card API provides classes and
interfaces to the Java Card applets. It defines the calling conventions by which an applet may
access the Java Card RE and native services such as, I/O management functions, PIN and
cryptographic specific management and the exceptions mechanism.

While the Java Card VM is responsible for ensuring language-level security, the Java Card RE
provides additional security features for Java Card technology-enabled devices. Applets from
different vendors can coexist in a single card, and they can even share information. In the Java
Card platform, applet isolation is achieved through the applet firewall mechanism (JCRE3 §6.1).
That mechanism confines an applet to its own designated memory area, thus each applet is
prevented from accessing fields and operations of objects owned by other applets, unless a
“shareable interface” is explicitly provided (by the applet who owns it) for allowing access to that
information.

The Java Card RE allows sharing using the concept of “shareable interface objects” (SIO) and
static public variables. Java Card VM dynamically enforces the firewall, that is, at runtime.
However applet isolation cannot be entirely granted by the firewall mechanism if certain integrity
conditions are not satisfied by the applications loaded on the card. Those conditions can be
statically verified to hold by a bytecode verifier (JCRE3).

The Java Card VM ensures that the only way for applets to access any resources are either
through the Java Card RE or through the Java Card API (or other vendor-specific APIs). This
objective can only be guaranteed if applets are correctly typed (all the “must clauses” imposed
in chapter 7 of JCRE3 on the bytecodes and the correctness of the CAP file format are
satisfied).Such CAP file correctness is verified off card, before the cap file loading, by an off-
card verifier and therefore is not part of the TOE.

On current TOE the Java Card Platform also includes a set of proprietary API providing
optimized services for handling integrity of application-specific sensitive data.

7.1.6.3 GlobalPlatform

The TOE is compliant with the GlobalPlatform 2.2.1 (GP) standard [GP221] which provides a
set of APIs and technologies to perform in a secure way, the operations involved in the
management of the applications hosted by the card.
Using GP maximizes the compatibility and the opportunities of communication as it has become
the current card management standard.

17

The main features addressed by GP are:
• card content management operations (i.e. the downloading, installation, removal) of

Java Card applications;
• authentication of users through secure channels;
• life-cycle management of both the card and the application;
• sharing of a global common PIN among all the applications installed on the card.

Card Content Management operations are only available through a privileged application (the
Card Manager) after a successful authentication and are permanently disabled before card
issuance. Other features are addressed by a set of APIs that can be used by the applications
hosted on the card.

The implementation of API and Card Manager available in the TOE is also compliant with
GlobalPlatform Common Implementation Configuration v.1.0 [GP_CIC].

NOTE: Being J-SAFE3 a closed product, only the API subset related to life-cycle management
of card and applications are considered as part of the TOE, while all other GP API and the Card
Manager application belongs to the TOE environment and are not in the scope of current
evaluation.

7.1.6.4 Operating System

The Operating System provides memory management functions, I/O functions that are
compliant with ISO standards, transaction facilities and secure (shielded, native)
implementation of cryptographic functions.

7.1.6.5 Hardware IC and dedicated crypto library

The basis of this composite evaluation is the STMicroelectronics’ ST31G480 certified product
which is, on his turn, a composite evaluation of the ST31G480 Secured Microcontroller plus the
NesLib v.4.2.10 crypto-library.

The ST31G480 Secure Microcontroller with Cryptographic Library has been certified by ANSSI
(cert. report ANSSI-CC-2016/58) with assurance level EAL5+: its associated Security Target
Lite is [STLite_ST31G480], the applicable Maintenance Report is [MntRep_ST31G480].

NOTE: Even though the TOE includes the IC and the crypto-library, not all the functionalities of
the IC and crypto-library are used and, as a consequence, such unused portions of
functionalities are not part of the TOE for current evaluation.

7.1.6.6 TOE FUNCTIONALITIES

J-SAFE3 provides the following functionalities:
• communication protocols:

o ISO 7816 T=0 (direct and inverse convention)

o ISO 7816 T=1 (direct and inverse convention)

o ISO 14443 T=CL (contact-less)

o Extended Length APDUs

• Cryptographic functionalities:
o 3-DES (112 and 168 bit keys) for encryption/decryption in ECB and CBC mode,

MAC generation and verification (CBC-MAC, Retail-MAC)

o AES (key length 128, 192, 256) for encryption/decryption in ECB and CBC mode,
MAC generation and verification (CBC-MAC, CMAC)

o RSA (with keys up to 2048 bits) for encryption/decryption, signature verification, key
generation in both Standard and CRT mode.

o Message Digest with SHA-1, SHA-224, SHA-256, SHA384, SHA-512 algorithms

o Elliptic Curve cryptography over GF(p) for key length between 112 and 521 bits

o Diffie-Hellman and EC Diffie-Hellman key agreement algorithms

18

o Secure random number generation mechanisms compliant to PTG.2 Class and
DRG.3 Class defined in [BSI_AIS20/AIS31].

• JC functionalities compliant with [PP_JC_Closed]:
o Logical Channel awareness (only Basic Logical Channel is supported)

o Object Deletion (garbage collection) with memory reclamation

o Application loading, linking and installation operations limited to pre-issuance phase
in a controlled environment

• GlobalPlatform 2.2.1 [GP221] functionalities:
o Secure Channel Protocol SCP02, implementation options: i=’15’ and i=’55’

o GlobalPlafrom 2.2 Amendment D ([GP_SCP03_AmdD]) Secure Channel Protocol
SCP03, implementation options: i=’10’, i=’30, i=’70’, i=’00’, i=’20’, i=’60’

• Proprietary functionalities:
o Key Agreement based on Discrete Logarithm (Diffie-Hellmann)

o Stateless (one-shot) ECDSA, RSA and Digest operations

o Optimized handling of EC Curve parameters among EC Keys

o Secure Storage API (integrity-protected arrays)

o Secure comparison of byte arrays

o Generation of random primes

The TOE does not include JCRMI functionality.

7.1.7 TOE Life-Cycle

The TOE life cycle is part of the product life cycle, i.e. the Java Card platform with applications,
which goes from product development to its usage by the final user. The JCS TOE life cycle is
fully conform to the claimed PP. The JCS TOE life cycle phases are those detailed in Figure 2,
while the product life cycle phases are detailed in Figure 2. We refer to IC Protection Profile
PP_0035 and BSI_ PP_0084 for a thorough description of Phases 1 to 7:
• Phases 1 and 2 compose the product development: Embedded Software (IC Dedicated

Software, Native OS, Java Card System, other platform components such as Card
Manager, Applets) and IC development.

• Phase 3 and Phase 4 correspond to IC manufacturing and packaging, respectively.
• Some IC pre-personalization steps may occur in Phase 3.
• Phase 5 concerns the embedding of software components within the IC.
• Phase 6 is dedicated to the product personalization prior final use.
• Phase 7 is the product operational phase.

The TOE life cycle is composed of four stages:
• Development,
• Storage, pre-personalization and testing
• Personalization and testing
• Final usage.

TOE storage is not necessarily a single step in the life cycle since it can be stored in parts.
TOE delivery occurs before storage and may take place more than once if the TOE is delivered
in parts.
These stages map to the typical smartcard life cycle phases as shown in Figure 2.

19

Figure 2 - JCS TOE life cycle

TOE development is performed during Phase 1. This includes Native OS and JCS conception,
design, implementation, testing and documentation. The TOE development fulfils requirements
of the final product, including conformance to product specifications (e.g. Java Card,
GlobalPlatform, etc…), and recommendations of the guidelines of IC and crypto-library. The
TOE development occurs in a controlled environment that avoids disclosure of source code,
data and any critical documentation and that guarantees the integrity of these elements. TOE
Development is performed by STMicroelectronics S.r.l in the site of MARCIANISE (ITALY), from
now on referenced as “STM, Marcianise ”.

TOE Developer also act as Composite Product Integrator: it shall initialize the TOE by
configuring it according to product needs, then it shall download customer applications on top of
the JCS and finally it shall permanently disable card content management features, thus making
the TOE fully operational and ready for the delivery.

The delivery of the TOE may occur either during Security IC Manufacturing (Phase 3) or during
Composite Product Integration (Phase 5). Delivery and acceptance procedures shall guarantee
the authenticity, the confidentiality and integrity of the exchanged pieces. TOE delivery shall
involve encrypted signed sending and it supposes the previous exchange of public keys.

In Phase 3, the Security IC Manufacturer may store, pre-personalize the TOE and potentially
conduct tests on behalf of the TOE developer. This support by IC Manufacturer is specifically
used when the TOE delivery shall occur at the end of phase 3: in this case the TOE Developer
may deliver in a secure way to Security IC Manufacturer a NVM image of final product
configuration. On its turn, the IC Manufacturer can perform complete TOE pre-personalization

20

on behalf of TOE Developer using the NVM image in order to obtain a fully operational TOE.
The Security IC Manufacturing environment shall protect the integrity and confidentiality of the
TOE and of any related material, for instance test suites.

In Phase 5, if the expected TOE delivery is at the end of this phase, the TOE Developer shall
perform TOE storage, pre-personalization and product configuration steps required as
Composite Product Integrator. Being the Composite Product Integrator’s environment the same
as the TOE Developer’s, integrity and confidentiality of the TOE and of any related material are
also guaranteed.

According to this life-cycle, at the stage TOE delivery occurs (end of phase 3 or end of phase
5), all the applets of the final product have been installed on top of the JCS (which is part of the
TOE), card content management features have been permanently disabled and the TOE has
been put in its fully operational state.

In Phase 6, applets of the final product which have been installed on the TOE can be further
personalized with end user data, if necessary.

The TOE final usage environment coincides with the environment of the product where the TOE
is embedded in. It covers a wide spectrum of situations that cannot be covered by evaluations
and, therefore, the TOE and the product shall provide the full set of security functionalities to
avoid abuse of the product by un-trusted entities.

Notes on current evaluation:
• Current evaluation process covers phases from 1 to 5

• Applet development is not within the scope of this evaluation

• Depending on the product format, delivery of the TOE can be performed by the following
entities:
o at the end of phase 3 by qualified ST production sites (see [STLite_ST31G480]) on

behalf of STMicroelectronics S.r.l. , Marcianise
o at the end of phase 5 by STMicroelectronics S.r.l., M ARCIANISE (ITALY)

• TOE delivery comprises the following items:
o Hardware: ST31G480 A04 (available formats are listed in 7.1.6.1)

• Mask ID and OS Code Ref can be found in [J-SAFE3_RM]
o Document: [J-SAFE3_AGD], J-SAFE3 – Guidance Document (AGD)
o Document: [SEC_GUIDELINE] Security Guidelines for application development on the

J-SAFE3 secure solution – Application note
o Document: [USRMAN] J-SAFE3 Java Card Platform – User Manual

The delivery is protected by secured transport and tracking measures. TOE identification
procedures are described in the guidance documents.

7.1.7.1 Product Life cycle

Here follows the description of the whole product life cycle: it includes all the actual phases and
deliveries required during the physical product construction, the pre-issuance administration phase,
and the final operational usage (see Figure 3 and Figure 4). Phases 2 and 3 are in charge of the IC
Manufacturer and are entirely described in [STLite_ST31G480]; phase 4 is either in charge of the
IC Manufacturer or is performed by STMicroelectronics S.r.l., Marcianise by subcontracting it to
qualified packaging manufacturers.

For complete details on IC development, production and packaging centres (generically indicated
as STM in Figure 3 and Figure 4), please refer to [STLite_ST31G480].

Typical product life cycle is depicted in Figure 3. This lifecycle applies when customers expect to
receive JSAFE3 TOE volumes in form of modules or plastic cards:

1. IC Manufacturer sends the already packaged ICs to TOE Developer;
2. TOE Developer, within its secure premises, initializes the TOE and, acting as Composite

Product Integrator, performs product pre-personalization and, following appropriate
validation procedures, it integrates the composite product applets;

21

3. Once the product configuration is completed (all the applets have been put on top of the
JCS), the TOE Developer permanently disables card content management features;

4. TOE Developer also acts as Product Finisher to put the product in its final physical format
according to product needs (e.g. plastic card, plastic card with mag-stripe, etc.);

5. TOE Developer performs TOE delivery (end of phase 5).

A variant of the typical life-cycle has been defined to address scenarios where customers expect to
receive JSAFE3 TOE volumes in form of wafers/sawn wafers or when final product format shall be
built by external product finishers (see Figure 4). In this case:

1. TOE Developer goes through all necessary steps to obtain the final product configuration
(including sensitive operations such as the loading of final card OS image, applets, and
permanent disabling of card content management features), generates a product NVRAM
image and delivers it to the IC Manufacturer following appropriate delivery procedures;

2. IC Manufacturer, within its premises, performs product initialization and pre-personalization
on TOE Developer’s behalf, during “IC pre-personalization and testing” step of phase 3. At
the end of this step (end of phase 3), the TOE becomes fully operational and can be safely
delivered to package manufacturers, product finishers or customers;

The limits of the evaluation process include the TOE under development until delivery from the
party responsible of the construction of the TOE to the parties responsible of the following usage
phases. Application development is out of scope of current evaluation.

TOE Construction phase includes:

• Product Development

• Product Manufacturing

TOE usage phase includes:
• Product Personalization

• Product Usage

The different smart card product life cycle phases involve the following different authorities:

TOE Developer Is responsible for:

• Designing the TOE Embedded Software;
• Integrating any portion of IC dedicated software required

by the TOE delivered by the IC Manufacturer;
• Validating and integrating any application (applet) to be

loaded in NVM together with the TOE Embedded
Software;

• Initializing the TOE according to product needs;
• Acts as Composite Product Integrator by creating the final

product configuration:
- Validating additional applications (e.g. customer

applets) required for the final product, and, on behalf
of the customer, downloading and installing them in
NVRAM;

- Permanent disabling of Card Content Management
services (i.e. Application loading, installation, deletion);

• Optionally, if the chosen TOE Delivery format is
wafers/sawn wafers, the TOE Developer delivers the final
product configuration in form of NVM image to the IC
Manufacturer;

IC Manufacturer The IC Manufacturer is in charge of designing the IC and

developing the IC Dedicated Software (including the crypto library),
producing the HW IC.

The IC manufacturer may deliver to the TOE Developer some IC
Dedicated Software (e.g. the crypto library) that needs to be
integrated in the TOE Embedded Software.

22

When the selected format for TOE delivery is “cards”, the IC
Manufacturer is also in charge of IC packaging phase.

When the selected format for TOE delivery is “wafers/sawn
wafers”, the IC Manufacturer, is also in charge of making the TOE
fully operational before delivering it to an external Packaging
Manufacturer: in this case, the IC Manufacturer performs TOE
initialization and full product configuration by using the product
image provided by TOE Developer.

Packaging Manufacturer When the selected format for TOE delivery is “cards” or “modules”,
the IC Manufacturer also acts as Packaging Manufacturer.

Other Packaging Manufacturers act when the TOE (already in its
operational state) has been delivered in form of wafers/sawn
wafers due to product specific needs.

Product Finisher The Product Finisher may be the TOE Developer itself or a 3rd-
party integrator.

The Product Finisher is in charge of product finishing: it completes
product manufacturing by putting the product into its required
physical format according to customer needs.

It only acts after the TOE has already been put in its operational
state.

Personalizer The Personalizer may be the TOE Developer itself, a 3rd-party
Personalizer, or product customer itself and is responsible for:

• Optionally, personalizing applications and/or the card with
the customer’ secret data on behalf of the card Issuer.

End User The End User is the holder for whom the product has been
personalized.

The TOE life cycle is part of the product life cycle, the link between the two life cycles, together with
the responsible party in each phase is described in the following table:

Product Phase TOE Life Cycle Phase Responsible
Development Phase 1

TOE Developer

Manufacturing Phase 2,

Phase 3,

IC Manufacturer

IC Manufacturer

Phase 4, IC Manufacturer or Packaging Manufacturer

Phase 5 TOE Developer or Product Finisher

Personalization Phase 6 Personalizer
(could be the TOE Developer itself)

Usage Phase 7 End User

23

 Phase 1
STM
Marcianise

Smart Card embedded
software development

STM

 Phase 2

 Phase 4
STM

STM
Marcianise

 Phase 5

 Phase 3

STM

IC manufacturing

IC testing and prepersonalisation

security IC packaging
(and testing)

Pre-personalization

STM Marcianise
or a different
Personalizer

 Phase 6

Personalization

 Phase 7

End User
Smart Card Product end-usage

End of Life

Product Pre-Personalization
& Application Integration

Testing

P
ro

du
ct

 C
on

st
ru

ct
io

n
P

ro
du

ct
 U

sa
ge

Applet Development

Applet Development

Delivery done within secure environment

Trusted delivery and verification procedures

Testing

IC design
IC dedicated software

development

Integration and photomask
fabrication

Product Finishing

Figure 3 – Typical product life cycle with TOE delivery performed at the end of phase 5

24

25

 Phase 1
STM Marcianise

 Phase 4
Packaging Manufacturer

STM Marcianise
or a different
Product Finisher

 Phase 5

STM Phase 3

STM Marcianise

STM
IC testing and prepersonalisation

IC Packaging

Testing

STM Marcianise
or a different
Personalizer

 Phase 6

Personalization

 Phase 7

End User
Smart Card Product end-usage

End of Life

Product Finishing

Testing

P
ro

du
ct

 C
on

st
ru

ct
io

n
P

ro
du

ct
 U

sa
ge

Applet Development

Testing

Product Pre-personalization
and Application Integration

Applet Development

Smart Card embedded
software development

STM

 Phase 2

IC design
IC dedicated software

development

Integration and photomask
fabrication

IC manufacturing

Delivery done within secure environment

Trusted delivery and verification procedures

26

Figure 4 – Product life cycle with TOE delivery performed at the end of phase 3

7.1.8 TOE Intended usage

Smart cards are used as data carriers that are secure against forgery and tampering as well as
personal, highly reliable, small size devices capable of replacing paper transactions by
electronic data processing. Data processing is performed by a piece of software embedded in
the smart card chip, called an application.
The intended use of a Java Card platform is to provide a framework for implementing IC
independent applications conceived to safely coexist and interact with other applications into a
single smart card.
Applications installed on a Java Card platform can be selected for execution when the card
communicates with a card reader.
Notice that these applications may contain other confidentiality (or integrity) sensitive data than
usual cryptographic keys and PINs; for instance, passwords or pass-phrases are as confidential
as the PIN, or the balance of an electronic purse.
So far, the most typical applications are:

- Financial applications, like Credit/Debit ones, stored value purse, or electronic
commerce, among others.

- Transport and ticketing, granting pre-paid access to a transport system like the metro
and bus lines of a city.

- Telephony, through the subscriber identification module (SIM) or the NFC chip for
mobile phones.

- Personal identification, for granting access to secured sites or providing identification
credentials to participants of an event.

- Electronic passports and identity cards.
- Secure information storage, like health records, or health insurance cards.
- Loyalty programs, like the “Frequent Flyer” points awarded by airlines. Points are

added and deleted from the card memory in accordance with program rules. The total
value of these points may be quite high and they must be protected against improper
alteration in the same way that currency value is protected.

- Authentication applications (e.g. smart grid, smart metering, brand protection, etc.),
where the TOE acts as security module to support application or device-specific
security features.

27

7.2 Conformance Claims (ASE_CCL)

7.2.1 Protection Profile Claim

This Security Target claims the following conformance:
- Demonstrable conformance with Java Card System – Closed Configuration Protection

Profile, Version 3.0, December 2012 ([PP_JC_Closed])

7.2.2 CC Conformance Claim

This Security Target and the composite TOE claim conformance to CC version 3.1r5 to:

- Common Criteria for Information Technology Security Evaluation Version 3.1r5, Part 2 -

“Security functional requirements”, extended with FCS_RNG.1, FMT_LIM.1,

FMT_LIM.2, FDP_SDC.1 and FPT_EMSEC.1 components drawn from Security IC

Platform Protection Profile ([BSI_ PP_0084]);

- Common Criteria for Information Technology Security Evaluation Version 3.1r5, Part 3 -

Security assurance requirements. The chosen Evaluation Assurance Level is EAL5

augmented with ALC_DVS.2 and AVA_VAN.5.

7.2.3 Conformance Claim Rationale

The TOE type consistency is assumed because the TOE of the Security Target (ST) is the

Smart Card Platform (IC and OS) and the Java Card System, as expressed in [PP_JC_Closed].

Pre-issuance applets embedded in JSAFE3 (Card Manager, as well as any other application

loaded pre-issuance) are considered as part of TOE environment.

All threats, organizational security policies and assumptions defined in [PP_JC_Closed] apply to

the TOE. Moreover, this Security Target defines:

- additional threats to the security problem definition, which are compatible with threats of

the protection profile but they are more focused to generic attacks on the complete

TOE, including the smartcard platform and Global Platform software. In particular, a

new threat (T.LIFE_CYCLE) has been defined, while the threat T.PHYSICAL defined in

the protection profile, has been refined. These threats do not introduce any

contradiction with existing ones.

- additional organizational security policies (OSPs) to the security problem definition,

which are compatible with organizational security policies of the protection profile and

applicable to this TOE configuration. The new OSPs are:

OSP.CARD_ADMINISTRATION_DISABLED, OSP.MANAGEMENT_OF_SECRETS

and OSP.ROLES. These OSPs are not in contradiction with the [PP_JC_Closed] SPD.

28

All objectives defined in [PP_JC_Closed] have been included in this ST, thus guaranteeing the

consistency of the statement of security objectives with the statement of security objectives in

the PP for which conformance is being claimed.

Moreover, some objectives for environment in [PP_JC_Closed] have become objectives for

JSAFE3 TOE due to inclusion of IC and OS in the ST scope. In particular, OE.SCP.IC,

OE.SCP.RECOVERY, and OE.SCP.SUPPORT have been redefined respectively as O.SCP.IC,

O.SCP.RECOVERY, and O.SCP.SUPPORT in the ST.

This ST also defines new objectives: O.SIDE_CHANNEL, O.LIFE_CYCLE. These objectives
are not in contradiction with existing ones.

The list of SFRs used in the security target includes all the SFR described in [PP_JC_Closed].

In the SFR description, this typeface is used to highlight SFR assignments where they are
expected by the Protection Profile.

This typeface is used to distinguish refinements that have been performed in this Security
Target with respect to the ones already contained in [PP_JC_Closed].

This typeface is used to distinguish application notes, remarks, editorial changes and additional
refinements added in this Security Target with respect to the ones already contained in
[PP_JC_Closed].

Besides, with respect to [PP_JC_Closed], the following requirements have been refined:

PP SFR Operation ST SFR

fcs_ckm.1

Iteration fcs_ckm.1/RSA

fcs_ckm.1/EC

fcs_ckm.1/DSA

fcs_ckm.2

Iteration fcs_ckm.2/DES

fcs_ckm.2/AES

fcs_ckm.2/RSA_STD

fcs_ckm.2/RSA_CRT

fcs_ckm.2/EC

fcs_ckm.2/DSA

fcs_ckm.3 Iteration fcs_ckm.3/DES

fcs_ckm.3/AES

fcs_ckm.3/RSA_STD

fcs_ckm.3/RSA_CRT

fcs_ckm.3/EC

fcs_ckm.3/DSA

fcs_cop.1 Iteration fcs_cop.1/DES-TDES_Cipher

fcs_cop.1/DES_MAC

fcs_cop.1/AES_Cipher

fcs_cop.1/AES_MAC

fcs_cop.1/AES_CMAC

fcs_cop.1/RSA_Cipher

fcs_cop.1/RSA_Signature

29

fcs_cop.1/EC Signature

fcs_cop.1/SHA

fcs_cop.1/ECDH_KeyExchange

fcs_cop.1/ECDHGMap

fcs_cop.1/DHGMap

fau_arp.1 Refinement fau_arp.1/JCS

frp_uno.1 Iteration frp_uno.1/PIN

frp_uno.1/Key

In order to fulfil the objective O.SIDE_CHANNEL and the 3 objectives related to SCP which is

part of the TOE (O.SCP.SUPPORT, O.SCP.IC, O.SCP.RECOVERY), this ST adds several

SFRs:

o some SFRs of the IC listed in the [STLite_ST31G480] have been included:

� fru_flt.2

� fpt_fls.1 (renamed in fpt_fls.1/SCP)

� fmt_lim.1/Test

� fmt_lim.2/Test

� fdp_sdc.1

� fdp_sdi.2 (renamed in fdp_sdi.2/SCP)

� fpt_php.3

� fdp_itt.1

� fpt_itt.1

� fdp_ifc.1

� fcs_rng.1 (renamed in fcs_rng.1/IC)

o additional SFRs (partially taken from [PP_ESforSSD] and [BSI_AIS20/AIS31]) have been

explicitly added in:

� fdp_acc.1/Atomicity

� fdp_rol.1/Atomicity

� fpt_fls.1/Operate

� fpt_tst.1

� fcs_rng.1/DRBG

In order to fulfil the objective O.SIDE_CHANNEL included in the TOE, the ST adds the following

requirement:

� fpt_emsec.1

In order to fulfil the objective O.LIFE_CYCLE of the GP framework included in the TOE, the ST

adds the following requirements:

� fdp_acc.1/GP_API

� fdp_acf.1/GP_API

30

� fmt_msa.1/GP_API

� fmt_msa.3/GP_API

� fmt_smr.1/GP_API

� fia_uid.1/GP_API

7.2.4 Statement of Compatibility concerning Composi te Security Target

This is a Statement of Compatibility between this Composite ST and the Platform ST of the
hardware and associated crypto-library [STLite_ST31G480].
The following mappings regarding SFRs, threats, assumptions, organizational security policies
and objectives demonstrate the compatibility between the Composite Security Target and the
Platform ST.

NOTE: IC Platform Security Functionalities not defined in IC Platform’s Security Target.

The table below shows the mapping between the Platform SFRs and the Composite ST SFRs.
Both the relevant and the irrelevant SFRs are listed.

Platform SFRs Composite ST SFRs
FRU_FLT.2 FRU_FLT.2
FPT_FLS.1 FPT_FLS.1/SCP
FMT_LIM.1/Test FMT_LIM.1/Test
FMT_LIM.2/Test FMT_LIM.2/Test
FMT_LIM.1/Loader Not relevant / Not used
FMT_LIM.2/Loader Not relevant / Not used
FAU_SAS.1 Not relevant / Not used
FDP_SDC.1 FDP_SDC.1
FDP_SDI.2 FDP_SDI.2/SCP
FPT_PHP.3 FPT_PHP.3
FDP_ITT.1 FDP_ITT.1
FPT_ITT.1 FPT_ITT.1
FDP_IFC.1 FDP_IFC.1

FCS_RNG.1 FCS_RNG.1/IC

FCS_COP.1/DRBG
Contributes to implementation of:
FCS_RNG.1/DRBG

FCS_COP.1

Contributes to implementation of FCS_COP.1 of JCS:
FCS_COP.1/DES-TDES_Cipher
FCS_COP.1/DES_MAC
FCS_COP.1/AES_Cipher
FCS_COP.1/AES_MAC
FCS_COP.1/AES_CMAC
FCS_COP.1/RSA_Cipher
FCS_COP.1/RSA_Signature
FCS_COP.1/EC_Signature
FCS_COP.1/SHA
FCS_COP.1/ECDH_KeyExchange
FCS_COP.1/ECDHGMap
FCS_COP.1/DHGMap

FCS_CKM.1

Contributes to implementation of FCS_CKM.1 of JCS:
FCS_CKM.1/RSA
FCS_CKM.1/EC
FCS_CKM.1/DSA

FDP_ACC.2/Memories Not relevant / Not used
FDP_ACF.1/Memories Not relevant / Not used
FMT_MSA.3/Memories Not relevant / Not used
FMT_MSA.1/Memories Not relevant / Not used

31

FMT_SMF.1/Memories Not relevant / Not used
FDP_ITC.1/Loader Not relevant / Not used
FDP_ACC.2/Loader Not relevant / Not used
FDP_ACF.1/Loader Not relevant / Not used
FMT_MSA.3/Loader Not relevant / Not used
FMT_MSA.1/Loader Not relevant / Not used
FMT_SMR.1/Loader Not relevant / Not used
FIA_UID.1/Loader Not relevant / Not used
FMT_SMF.1/Loader Not relevant / Not used

Table 1 - Platform SFRs VS Composite TOE SFRs

There is no conflict between policies of the Composite ST and the Platform ST:

Platform OSPs Platform Objective Composite ST Policies

BSI.P.Process-TOE BSI.O.Identification

BSI.P.Lim_Block_Lo
ader

BSI.O.Cap-Avail-Loader
BSI.OE.Lim-Block-Loader

AUG1.P.Add-
Functions

AUG1.O.Add-Functions

P.Controlled-ES-
Loading

O.Controlled-ES-Loading

P.Resp-Appl BSI.A.Resp-Appl
 Additional Policies
 OSP.MANAGEMENT_OF_SECRETS

 OSP.CARD_ADMINISTRATOR_DISABLE

D
 OSP.VERIFICATION
 OSP.ROLES

Table 2 - Platform OSPs VS Composite TOE OSPs

There is no conflict between assumptions of the Composite ST and the Platform ST:

Platform Assumptions Assumption
Classification Composite ST Assumptions

A.Resp -Appl CfPA
A.Process -Sec-IC IrPA
 Additional Assumptions

 A.VERIFICATION
A.NO-DELETION

 A.NO-INSTALL
 A.ACTORS

Table 3 - Platform Assumptions VS Composite TOE Assumptions

32

There is no conflict between security objectives of the Composite ST and the Platform ST:

Platform Objectives Composite ST Objectives Remarks

BSI.O.Identification Not relevant

BSI.O.Leak-Inherent
BSI.O.Leak-Forced

O.SCP.IC
O.SCP.SUPPORT
O.SIDE_CHANNEL

BSI.O.Phys -Probing
BSI.O.Phys-
Manipulation

O.SCP.IC

BSI.O.Malfunction
O.SCP.RECOVERY
O.SCP.IC
O.SCP.SUPPORT

BSI.O.Abuse-Func Not relevant

BSI.O.RND O.SCP.IC

BSI.O.Cap-Avail-
Loader Not relevant

AUG1.O.Add-
Functions

O.SCP.SUPPORT
O.CIPHER

AUG4.O.Mem Access Not relevant

O.Controlled-ES-
Loading Not relevant

 Additional Objectives
 O.SID
 O.FIREWALL
 O.GLOBAL_ARRAYS_CONFID
 O.GLOBAL_ARRAYS_INTEG
 O.NATIVE
 O.RESOURCES
 O.REALLOCATION
 O.ALARM Refined JCPP to include HW features
 O.CIPHER
 O.KEY_MNGT
 O.PIN_MNGT

 O.TRANSACTION
O.OBJ-DELETION

 O.OPERATE
Refined JCPP definition from
PP_ESforSSD

 O.LIFE_CYCLE
 O.ROLES

Table 4 - Platform Objectives VS Composite TOE Objectives

33

There is no conflict between security objectives for the environment of the Composite ST and
the Platform ST:

Platform OE Composite ST Objectives for the Environment
BSI.OE.Lim-Block-Loader Not relevant

BSI.OE.Resp-Appl Not relevant

BSI.OE.Process-Sec-IC OE. MANAGEMENT_OF_SECRETS

 Additional Objectives for the Environment

OE.NO-DELETION
OE.NO-INSTALL
OE.VERIFICATION
OE.CODE-EVIDENCE
OE.CARD_MANAGEMENT

Table 5 - Platform OEs VS Composite TOE OEs

34

7.3 Security Problem Definition (ASE_SPD)

7.3.1 Security Aspects

This chapter describes the main security issues of the Java Card System and its environment
addressed in this Protection Profile, called “security aspects”, in a CC-independent way. In
addition to this, they also give a semi-formal framework to express the CC security environment
and objectives of the TOE. They can be instantiated as assumptions, threats, objectives (for the
TOE and the environment) or organizational security policies. For instance, we will define
hereafter the following aspect:
 #.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2)
The TOE must also return to a well-defined valid state before a service request in case of failure
during its operation.
TSFs must be continuously active in one way or another; this is called “OPERATE”. The
Protection Profile may include an assumption, called “A.OPERATE”, stating that it is assumed
that the TOE ensures continued correct operation of its security functions, and so on. However,
it may also include a threat, called “T.OPERATE”, to be interpreted as the negation of the
statement .OPERATE. In this example, this amounts to stating that an attacker may try to
circumvent some specific TSF by temporarily shutting it down. The use of “OPERATE” is
intended to ease the understanding of this document.
This section presents security aspects that will be used in the remainder of this document.
Some being quite general, we give further details, which are numbered for easier cross-
reference within the document. For instance, the two parts of #.OPERATE, when instantiated
with an objective “O.OPERATE”, may be met by separate SFRs in the rationale. The numbering
then adds further details on the relationship between the objective and those SFRs.

7.3.1.1 CONFIDENTIALITY

#.CONFID-APPLI-DATA Application data must be protected against unauthorized disclosure.
This concerns logical attacks at runtime in order to gain read access to other application’s data.
#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized
disclosure. Knowledge of the Java Card System code may allow bypassing the TSF. This
concerns logical attacks at runtime in order to gain a read access to executable code, typically
by executing an application that tries to read the memory area where a piece of Java Card
System code is stored.
#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized
disclosure. This concerns logical attacks at runtime in order to gain a read access to Java Card
System data. Java Card System data includes the data managed by the Java Card RE, the
Java Card VM and the internal data of Java Card platform API classes as well.

7.3.1.2 INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to the memory zone where
executable code is stored.
#.INTEG-APPLI-DATA Application data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain unauthorized write access to application
data.
#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write access to executable
code.
#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized
modification. This concerns logical attacks at runtime in order to gain write access to Java Card

35

System data. Java Card System data includes the data managed by the Java Card RE, the
Java Card VM and the internal data of Java Card API classes as well.

7.3.1.3 UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte)code must be protected against unauthorized execution.
This concerns (1) invoking a method outside the scope of the accessibility rules provided by the
access modifiers of the Java programming language (JAVASPEC §6.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory area as if it was executable
code; (3) unauthorized execution of a remote method from the CAD.
#.EXE-JCS-CODE Java Card System bytecode must be protected against unauthorized
execution. Java Card System bytecode includes any code of the Java Card RE or API. This
concerns (1) invoking a method outside the scope of the accessibility rules provided by the
access modifiers of the Java programming language (JAVASPEC §6.6); (2) jumping inside a
method fragment or interpreting the contents of a data memory area as if it was executable
code. Note that execute access to native code of the Java Card System and applications is the
concern of #.NATIVE.
#.FIREWALL The Firewall shall ensure controlled sharing of class instances1, and isolation of
their data and code between packages (that is, controlled execution contexts) as well as
between packages and the JCRE context. An applet shall not read, write or compare a piece of
data belonging to an applet that is not in the same context, or execute one of the methods of an
applet in another context without its authorization.
#.NATIVE Because the execution of native code is outside of the JCS TSF scope, it must be
secured so as to not provide ways to bypass the TSFs of the JCS. Loading of native code,
which is as well outside those TSFs, is submitted to the same requirements. Should native
software be privileged in this respect, exceptions to the policies must include a rationale for the
new security framework they introduce.

7.3.1.4 BYTECODE VERIFICATION

#.VERIFICATION Bytecode must be verified prior to being executed. Bytecode verification
includes (1) how well-formed CAP file is and the verification of the typing constraints on the
bytecode, (2) binary compatibility with installed CAP files and the assurance that the export files
used to check the CAP file correspond to those that will be present on the card when loading
occurs.

CAP FILE VERIFICATION

Bytecode verification includes checking at least the following properties: (3) bytecode
instructions represent a legal set of instructions used on the Java Card platform; (4) adequacy
of bytecode operands to bytecode semantics; (5) absence of operand stack overflow/underflow;
(6) control flow confinement to the current method (that is, no control jumps to outside the
method); (7) absence of illegal data conversion and reference forging; (8) enforcement of the
private/public access modifiers for class and class members; (9) validity of any kind of reference
used in the bytecodes (that is, any pointer to a bytecode, class, method, object, local variable,
etc actually points to the beginning of piece of data of the expected kind); (10) enforcement of
rules for binary compatibility (full details are given in JCVM22, JVM, JCBV). The actual set of
checks performed by the verifier is implementation-dependent, but shall at least enforce all the
“must clauses” imposed in [JCVM22] on the bytecodes and the correctness of the CAP files’
format.
As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly
because smart cards lack memory and CPU resources, CAP file verification prior to execution is
mandatory. On the other hand, there is no requirement on the precise moment when the
verification shall actually take place, as far as it can be ensured that the verified file is not
modified thereafter. Therefore, the bytecodes can be verified either before the loading of the file
on to the card or before the installation of the file in the card or before the execution, depending

1 This concerns in particular the arrays, which are considered as instances of the Object class in the

Java programming language.

36

on the card capabilities, in order to ensure that each bytecode is valid at execution time. This
Protection Profile assumes bytecode verification is performed off-card.
Another important aspect to be considered about bytecode verification and application
downloading is, first, the assurance that every package required by the loaded applet is indeed
on the card, in a binary-compatible version (binary compatibility is explained in JCVM22 §4.4),
second, that the export files used to check and link the loaded applet have the corresponding
correct counterpart on the card.

INTEGRITY AND AUTHENTICATION

Verification off-card is useless if the application package is modified afterwards. The usage of
cryptographic certifications coupled with the verifier in a secure module is a simple means to
prevent any attempt of modification between package verification and package installation.
Once a verification authority has verified the package, it signs it and sends it to the card.
Prior to the installation of the package, the card verifies the signature of the package, which
authenticates the fact that it has been successfully verified. In addition to this, a secured
communication channel is used to communicate it to the card, ensuring that no modification has
been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective
installation of the applet or provide means for the bytecodes to be verified dynamically. On-card
bytecode verifier is out of the scope of this Protection Profile.

LINKING AND VERIFICATION

Beyond functional issues, the installer ensures at least a property that matters for security: the
loading order shall guarantee that each newly loaded package references only packages that
have been already loaded on the card. The linker can ensure this property because the Java
Card platform does not support dynamic downloading of classes.

7.3.1.5 CARD MANAGEMENT

#.CARD-MANAGEMENT The card manager shall implement the card issuer’s policy on the
card.
#.INSTALL (1) The TOE must be able to return to a safe and consistent state when the
installation of a package or an applet fails or be cancelled (whatever the reasons). (2) Installing
an applet must have no effect on the code and data of already installed applets. The installation
procedure should not be used to bypass the TSFs. In short, it is an atomic operation, free of
harmful effects on the state of the other applets. (3) The procedure of loading and installing a
package shall ensure its integrity and authenticity.
#.SID (1) Users and subjects of the TOE must be identified. (2) The identity of sensitive users
and subjects associated with administrative and privileged roles must be particularly protected;
this concerns the Java Card RE, the applets registered on the card, and especially the default
applet and the currently selected applet (and all other active applets in Java Card System
2.2.x). A change of identity, especially standing for an administrative role (like an applet
impersonating the Java Card RE), is a severe violation of the Security Functional Requirements
(SFR). Selection controls the access to any data exchange between the TOE and the CAD and
therefore, must be protected as well. Any exchange of data through the APDU buffer (which can
be accessed by any applet) can lead to disclosure of keys, application code or data, and so on.

7.3.1.6 SERVICES

#.ALARM The TOE shall provide appropriate feedback upon detection of a potential security
violation. This particularly concerns the type errors detected by the bytecode verifier, the
security exceptions thrown by the Java Card VM, or any other security-related event occurring
during the execution of a TSF.
#.OPERATE (1) The TOE must ensure continued correct operation of its security functions. (2)
In case of failure during its operation, the TOE must also return to a well-defined valid state
before the next service request.

37

#.RESOURCES The TOE controls the availability of resources for the applications and enforces
quotas and limitations in order to prevent unauthorized denial of service or malfunction of the
TSFs. This concerns both execution (dynamic memory allocation) and installation (static
memory allocation) of applications and packages.
#.CIPHER The TOE shall provide a means to the applications for ciphering sensitive data, for
instance, through a programming interface to low-level, highly secure cryptographic services. In
particular, those services must support cryptographic algorithms consistent with cryptographic
usage policies and standards.
#.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys. This
includes: (1) Keys shall be generated in accordance with specified cryptographic key generation
algorithms and specified cryptographic key sizes, (2) Keys must be distributed in accordance
with specified cryptographic key distribution methods, (3) Keys must be initialized before being
used, (4) keys shall be destroyed in accordance with specified cryptographic key destruction
methods.
#.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. This includes:
(1) Atomic update of PIN value and try counter, (2) No rollback on the PIN-checking function, (3)
Keeping the PIN value (once initialized) secret (for instance, no clear-PIN-reading function), (4)
Enhanced protection of PIN’s security attributes (state, try counter…) in confidentiality and
integrity.
#.SCP The smart card platform must be secure with respect to the SFRs. Then: (1) After a
power loss, RF signal loss or sudden card removal prior to completion of some communication
protocol, the SCP will allow the TOE on the next power up to either complete the interrupted
operation or revert to a secure state. (2) It does not allow the SFRs to be bypassed or altered
and does not allow access to other low-level functions than those made available by the
packages of the Java Card API. That includes the protection of its private data and code
(against disclosure or modification) from the Java Card System. (3) It provides secure low-level
cryptographic processing to the Java Card System. (4) It supports the needs for any update to a
single persistent object or class field to be atomic, and possibly a low-level transaction
mechanism. (5) It allows the Java Card System to store data in “persistent technology memory”
or in volatile memory, depending on its needs (for instance, transient objects must not be stored
in non-volatile memory). The memory model is structured and allows for low–level control
accesses (segmentation fault detection). (6) It safely transmits low–level exceptions to the TOE
(arithmetic exceptions, checksum errors), when applicable. Finally, it is required that (7) the IC
is designed in accordance with a well-defined set of policies and standards (for instance, those
specified in PP_0035), and will be tamper resistant to actually prevent an attacker from
extracting or altering security data (like cryptographic keys) by using commonly employed
techniques (physical probing and sophisticated analysis of the chip). This especially matters to
the management (storage and operation) of cryptographic keys.
Note: In the present case a certified hardware platform is used (see chapter 2).
#.TRANSACTION The TOE must provide a means to execute a set of operations atomically.
This mechanism must not jeopardize the execution of the user applications. The transaction
status at the beginning of an applet session must be closed (no pending updates).

7.3.2 Assets

This chapter introduces the assets to be protected, the users of the TOE and their software
counterparts.
Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of
assets is always intended with respect to un-trusted people or software, as various parties are
involved during the first stages of the smart card product life-cycle; details are given in threats
hereafter.
Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same
piece of information or data. For example, a piece of software may be either a piece of source
code (one asset) or a piece of compiled code (another asset), and may exist in various formats
at different stages of its development (digital supports, printed paper). This separation is
motivated by the fact that a threat may concern one form at one stage, but be meaningless for
another form at another stage.
The assets to be protected by the TOE are listed below. They are grouped according to whether
it is data created by and for the user (User data) or data created by and for the TOE (TSF data).
For each asset it is specified the kind of dangers that weigh on it.

38

7.3.2.1 User Data

D.APP_CODE
The code of the applets and libraries loaded on the card.
To be protected from unauthorized modification.

D.APP_C_DATA
Confidential sensitive data of the applications, like the data contained in an object, a static field
of a package, a local variable of the currently executed method, or a position of the operand
stack.
To be protected from unauthorized disclosure.

D.APP_I_DATA
Integrity sensitive data of the applications, like the data contained in an object, a static field of a
package, a local variable of the currently executed method, or a position of the operand stack.
To be protected from unauthorized modification.

D.APP_KEYs
Cryptographic keys owned by the applets.
To be protected from unauthorized disclosure and modification.

D.PIN
Any end-user’s PIN.
To be protected from unauthorized disclosure and modification.

7.3.2.2 TSF Data

D.API_DATA
Private data of the API, like the contents of its private fields.
To be protected from unauthorized disclosure and modification.

D.CRYPTO
Cryptographic data used in runtime cryptographic computations, like a seed used to generate a
key.
To be protected from unauthorized disclosure and modification.

D.JCS_CODE
The code of the Java Card System.
To be protected from unauthorized disclosure and modification.

D.JCS_DATA
The internal runtime data areas necessary for the execution of the Java Card VM, such as, for
instance, the frame stack, the program counter, the class of an object, the length allocated for
an array, any pointer used to chain data-structures.
To be protected from unauthorized disclosure or modification.

D.SEC_DATA
The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify the
installed applets, the currently selected applet, the current context of execution and the owner of
each object.
To be protected from unauthorized disclosure and modification.

D.EMBEDDED_SW_CODE
The code of the software embedded in the product. The asset stands for the native OS code.
Note: This asset is related to native OS code only. The JCS code is not included in this asset
because it is covered by D.JCS_CODE
To be protected from unauthorized disclosure and modification.

39

D.EMBEDDED_SW_DATA
The sensitive TSF data processed or stored by the product. The asset stands for the data of the
native OS.
Note: This asset is related to native OS data only. The JCS data is not included in this asset
because it is covered by D.JCS_DATA
To be protected from unauthorized disclosure and modification.

D.GP_CODE
The code of the GlobalPlatform framework.
To be protected from unauthorized disclosure and modification.

D.GP_SENSITIVE_DATA
Application Privilege, Application Life Cycle State, Card Life Cycle State.
To be protected from unauthorized modification.

7.3.3 Threats

This section introduces the threats to the assets against which specific protection within the
TOE or its environment is required. Several groups of threats are distinguished according to the
configuration chosen for the TOE and the means used in the attack. The classification is also
inspired by the components of the TOE that are supposed to counter each threat.

7.3.3.1 Confidentiality

T.CONFID-APPLI-DATA
The attacker executes an application to disclose data belonging to another application. See
#.CONFID-APPLI-DATA for details.
Directly threatened asset(s): D.APP_C_DATA, D.PIN and D.APP_KEYs.

T.CONFID-JCS-CODE
The attacker executes an application to disclose the Java Card System code. See #.CONFID-
JCS-CODE for details.
Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA
The attacker executes an application to disclose data belonging to the Java Card System. See
#.CONFID-JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA and D.CRYPTO.

7.3.3.2 Integrity

T.INTEG-APPLI-CODE
The attacker executes an application to alter (part of) its own code or another application’s
code. See #.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-CODE.LOAD
The attacker modifies (part of) its own or another application code when an application package
is transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA
The attacker executes an application to alter (part of) another application’s data. See #.INTEG-
APPLI-DATA for details.
Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD
The attacker modifies (part of) the initialization data contained in an application package when
the package is transmitted to the card for installation. See #.INTEG-APPLI-DATA for details.

40

Directly threatened asset(s): D.APP_I_DATA, D.PIN and D.APP_KEYs.

T.INTEG-JCS-CODE
The attacker executes an application to alter (part of) the Java Card System code or the SCP
code. See #.INTEG-JCS-CODE for details.
Directly threatened asset(s): D.JCS_CODE, D.EMBEDDED_SW_CODE.

T.INTEG-JCS-DATA
The attacker executes an application to alter (part of) Java Card System or API data or the SCP
data. See #.INTEG-JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA,
D.EMBEDDED_SW_DATA and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying
on-card information. Nevertheless, they vary greatly on the employed means and threatened
assets, and are thus covered by quite different objectives in the sequel. That is why a more
detailed list is given hereafter.

7.3.3.3 Identity usurpation

T.SID.1
An applet impersonates another application, or even the Java Card RE, in order to gain illegal
access to some resources of the card or with respect to the end user or the terminal. See #.SID
for details.
Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this attack
succeed, for instance, if the identity of the JCRE is usurped), D.PIN and D.APP_KEYs.

T.SID.2
The attacker modifies the TOE’s attribution of a privileged role (e.g. default applet and currently
selected applet), which allows illegal impersonation of this role. See #.SID for further details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this
attack succeed, depending on whose identity was forged).

7.3.3.4 Unauthorized execution

T.EXE-CODE.1
An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and #.EXE-
APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2
An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCSCODE
and #.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.NATIVE
An applet executes a native method to bypass a TOE Security Function such as the firewall.
See #.NATIVE for details.
Directly threatened asset(s): D.JCS_DATA.

Refinement:
This threat also addresses several attack methods to modify the product behaviour:

� unauthorized use of commands (one or many incorrect commands, undefined
commands, hidden commands)

� buffer overflow attacks (overwriting buffer content to modify execution contexts or
gaining system privileges).

Additional threatened asset(s): D.EMBEDDED_SW_CODE, D.GP_CODE, since TOE defined
in this ST includes also SCP platform and GP framework.

41

7.3.3.5 Denial of service

T.RESOURCES
An attacker prevents correct operation of the Java Card System through consumption of some
resources of the card: RAM or NVRAM. See #.RESOURCES for details.
Directly threatened asset(s): D.JCS_DATA, D.EMBEDDED_SW_DATA.

7.3.3.1 Services

T.OBJ-DELETION
The attacker keeps a reference to a garbage collected object in order to force the TOE to
execute an unavailable method, to make it to crash, or to gain access to a memory containing
data that is now being used by another application. See #.OBJ-DELETION for further details.
Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

7.3.3.2 Miscellaneous

T.PHYSICAL
The attacker discloses or modifies the design of the TOE, its sensitive data or application code
by physical (opposed to logical) tampering means. This threat includes IC failure analysis,
electrical probing, unexpected tearing, and DPA. That also includes the modification of the
runtime execution of Java Card System or SCP software through alteration of the intended
execution order of (set of) instructions through physical tampering techniques.
This threatens all the identified assets.
This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to
confidentiality and integrity of code and data.

Refinement:
This threat also addresses leakage of information that may occur during TOE usage through:

� Emanations,
� Variations in power consumption,
� I/O characteristics,
� Clock frequency,
� Changes in processing time

T.LIFE_CYCLE
An attacker accesses to product functionalities outside of their expected availability range thus
violating irreversible life cycle phases of the product (for instance, an attacker downloads,
install, or delete applications available on the product at post-issuance).
Threatened asset(s): D.EMBEDDED_SW_CODE , D.EMBEDDED_SW_DATA,
D.GP_SENSITIVE_DATA, D.GP_CODE, D.APP_CODE.

7.3.4 Organizational Security Policies

OSP.VERIFICATION
This policy shall ensure the consistency between the export files used in the verification and
those used for installing the verified file. The policy must also ensure that no modification of the
file is performed in between its verification and the signing by the verification authority. See
#.VERIFICATION for details.

OSP.MANAGEMENT_OF_SECRETS
Management of secret data (e.g. generation, storage, distribution, destruction, loading into the
product of cryptographic private keys, symmetric keys, user authentication data) performed
outside the product on behalf of the TOE or Product Manufacturer shall comply with security
organisational policies that enforce integrity and confidentiality of these data.
Secret data shared with the user of the product shall be exchanged through trusted channels
that protect the data against unauthorised disclosure and modification and allow detecting
potential security violations.

42

OSP.ROLES
The TOE shall recognize the following roles associated with:
• Applications

OSP.CARD_ADMINISTRATION_DISABLED
Card Content Management Functions (CCMFs) shall not be available after TOE delivery.

7.3.5 Assumptions

This section introduces the assumptions made on the environment of the TOE.

A.VERIFICATION
All the bytecodes are verified at least once, before the loading, before the installation or before
the execution, depending on the card capabilities, in order to ensure that each bytecode is valid
at execution time.

A.NO-DELETION
No deletion of installed applets (or packages) is possible.
NOTE: Refers to TOE usage phases.

A.NO-INSTALL
There is no post-issuance installation of applets. Installation of applets is secure and occurs
only in a controlled environment in the pre-issuance phase. See #.INSTALL for details.
NOTE: Refers to TOE usage phases.

7.4 Security objectives (ASE_OBJ)

7.4.1 Security objectives for the TOE

This section defines the security objectives to be achieved by the TOE.

7.4.1.1 Identification

O.SID
The TOE shall uniquely identify every subject (applet, or package) before granting it access to
any service.

O.ROLES
The TOE shall recognize the following roles associated with:
• Applications

7.4.1.2 Execution

O.FIREWALL
The TOE shall ensure controlled sharing of data containers owned by applets of different
packages, or the JCRE and between applets and the TSFs. See #.FIREWALL for details.

O.GLOBAL_ARRAYS_CONFID
The TOE shall ensure that the APDU buffer that is shared by all applications is always cleaned
upon applet selection.
The TOE shall ensure that the global byte array used for the invocation of the install method of
the selected applet is always cleaned after the return from the install method.

43

O.GLOBAL_ARRAYS_INTEG
The TOE shall ensure that only the currently selected application may have a write access to
the APDU buffer and the global byte array used for the invocation of the install method of the
selected applet.

O.NATIVE
The only means that the Java Card VM shall provide for an application to execute native code is
the invocation of a method of the Java Card API, or any additional API. See #.NATIVE for
details.

O.OPERATE
The TOE shall ensure continued correct operation of its security functions and prevent the
unauthorised use of commands. See #.OPERATE for details.

O.RESOURCES
The TOE shall control the availability of resources for the applications. See #.RESOURCES for
details.

O.REALLOCATION
The TOE shall ensure that the re-allocation of a memory block for the runtime areas of the Java
Card VM does not disclose any information that was previously stored in that block.

O.SCP.RECOVERY
If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation is
in progress, the SCP must allow the TOE to eventually complete the interrupted operation
successfully, or recover to a consistent and secure state.
This security objective for the environment refers to the security aspect #.SCP.1: The smart
card platform must be secure with respect to the SFRs. Then after a power loss or sudden card
removal prior to completion of some communication protocol, the SCP will allow the TOE on the
next power up to either complete the interrupted operation or revert to a secure state.

O.SCP.IC
The SCP shall provide all IC security features against physical attacks.
This security objective refers to the point (7) of the security aspect #.SCP:
• It is required that the IC is designed in accordance with a well-defined set of policies

and standards (likely specified in another protection profile), and will be tamper
resistant to actually prevent an attacker from extracting or altering security data (like
cryptographic keys) by using commonly employed techniques (physical probing and
sophisticated analysis of the chip). This especially matters to the management (storage
and operation) of cryptographic keys.

O.SCP.SUPPORT
The SCP shall support the TSFs of the TOE.
This security objective refers to the security aspects 2, 3, 4 and 5 of #.SCP:
• It does not allow the TSFs to be bypassed or altered and does not allow access to

other low-level functions than those made available by the packages of the API. That
includes the protection of its private data and code (against disclosure or modification)
from the Java Card System.

• It provides secure low-level cryptographic processing to the Java Card System.
• It supports the needs for any update to a single persistent object or class field to be

atomic, and possibly a low-level transaction mechanism.
• It allows the Java Card System to store data in “persistent technology memory” or in

volatile memory, depending on its needs (for instance, transient objects must not be
stored in non-volatile memory). The memory model is structured and allows for low-
level control accesses (segmentation fault detection).

44

7.4.1.3 Services

O.ALARM
The TOE shall provide appropriate feedback information upon detection of a potential security
violation. See #.ALARM for details.

O.CIPHER
The TOE shall provide a means to cipher sensitive data for applications in a secure way. In
particular, the TOE must support cryptographic algorithms consistent with cryptographic usage
policies and standards. See #.CIPHER for details.

O.KEY-MNGT
The TOE shall provide a means to securely manage cryptographic keys. This concerns the
correct generation, distribution, access and destruction of cryptographic keys. See #.KEY-
MNGT.

O.PIN-MNGT
The TOE shall provide a means to securely manage PIN objects. See #.PIN-MNGT for details.
Application Note:
PIN objects may play key roles in the security architecture of client applications. The way they
are stored and managed in the memory of the smart card must be carefully considered, and this
applies to the whole object rather than the sole value of the PIN. For instance, the try counter’s
value is as sensitive as that of the PIN.

O.TRANSACTION
The TOE must provide a means to execute a set of operations atomically. See
#.TRANSACTION for details.

O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION and O.CIPHER are actually provided to
applets in the form of Java Card APIs. Vendor-specific libraries can also be present on the card
and made available to applets; those may be built on top of the Java Card API or independently.
These proprietary libraries will be evaluated together with the TOE.

7.4.1.1 Object Deletion

O.OBJ-DELETION
The TOE shall ensure the object deletion shall not break references to objects. See #.OBJ-
DELETION for further details.

Embedded Software

O.SIDE_CHANNEL
The TOE must provide protection against disclosure of primary assets including confidential
data (User Data or TSF data) stored and/or processed in the Smart Card IC:
• by measurement and analysis of the shape and amplitude
• by measurement and analysis of the time between events found by measuring signals

(for example on the power, clock, or I/O lines).

Especially, the software must be designed to avoid interpretations of signals extracted,
intentionally or not, from the hardware part of the TOE (for instance, Power Supply, Electro
Magnetic emissions).

O.LIFE_CYCLE
The TOE shall manage its own life cycle states and support user applications in the
management of their life cycle state, including reversible and irreversible transitions between
them. The TOE shall reject operations unexpected in its current life cycle.

7.4.2 Security objectives for the environment

This section introduces the security objectives to be achieved by the environment.

45

OE.CARD_MANAGEMENT
The card manager shall control the access to card management functions such as the
installation, update or deletion of applets. It shall also implement the card issuer’s policy on the
card.
The Card Manager (also called Issuer Security Domain, ISD) is an application with specific
rights, which is responsible for the administration of the smart card. This component will in
practice be tightly connected with the rest of the TOE, which in turn shall very likely rely on the
card manager for the effective enforcing of some of its security functions.
The Card Manager shall be in charge of the life cycle of the whole card, as well as that of the
installed applications (applets). The card manager shall prevent that card content management
(loading, installation, deletion) is carried out, for instance, at invalid states of the card or by non-
authorized actors. It shall also enforce security policies established by the card issuer.
The mechanism used to ensure authentication of the TOE issuer, that manages the TOE is a
secure channel.

OE.NO-DELETION
No installed applets (or packages) shall be deleted from the card.

OE.NO-INSTALL
There is no post-issuance installation of applets. Installation of applets is secure and shall occur
only in a controlled environment in the pre-issuance phase.

OE.VERIFICATION
All the bytecodes shall be verified at least once, before the loading, before the installation or
before the execution, depending on the card capabilities, in order to ensure that each bytecode
is valid at execution time. See #.VERIFICATION for details.
Additionally, the applet shall follow all the recommendations, if any, mandated in the platform
guidance for maintaining the isolation property of the platform.

Application Note: Constraints to maintain the isolation property of the platform are provided by
the platform developer in application development guidance. The constraints apply to all
application code loaded in the platform. On current TOE, package loading shall only occur in
pre-issuance phase and in such conditions, bytecode verification shall be performed before
loading the package.

OE.CODE-EVIDENCE
For application code loaded pre-issuance, evaluated technical measures implemented by the
TOE or audited organizational measures must ensure that loaded application has not been
changed since the code verifications required in OE.VERIFICATION.

NOTE: The objectives OE.NO-INSTALL and OE.NO-DELETION have been included so as to
describe procedures that shall contribute to ensure that the TOE will be used in a secure
manner. Moreover, they have been defined in accordance with the environmental assumptions
they uphold (actually, they are just a reformulation of the corresponding assumptions). The NO-
DELETION and NO-INSTALL (assumptions and objectives) constitute the explicit statement
that the Closed configuration corresponds to that of a closed card (no code can be loaded or
deleted once the card has been issued).

OE.MANAGEMENT_OF_SECRETS
The secret User or TSF data managed outside the TOE shall be protected against unauthorised
disclosure and modification.

7.4.3 Security objectives rationale

7.4.3.1 SPD and Security Objectives Relation

46

T.CONFID-APPLI-DATA
This threat is countered by the security objective for the operational environment regarding
bytecode verification (OE.VERIFICATION). It is also covered by the isolation commitments
stated in the (O.FIREWALL) objective. It relies in its turn on the correct identification of applets
stated in (O.SID). Moreover, as the firewall is dynamically enforced, it shall never stop
operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be
taken.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode
respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.
As applets may need to share some data or communicate with the CAD, cryptographic
functions are required to actually protect the exchanged information (O.CIPHER). Remark that
even if the TOE shall provide access to the appropriate TSFs, it is still the responsibility of the
applets to use them. Keys and PIN's are particular cases of an application's sensitive data
(the Java Card System may possess keys as well) that ask for appropriate management
(O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION). If the PIN class of the Java Card API is
used, the objective (O.FIREWALL) shall contribute in covering this threat by controlling the
sharing of the global PIN between the applets.
Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is
a resource shared by all applications. The disclosure of such data is prevented by the
(O.GLOBAL_ARRAYS_CONFID) security objective.
Finally, any attempt to read a piece of information that was previously used by an application
but has been logically deleted is countered by the O.REALLOCATION objective. That objective
states that any information that was formerly stored in a memory block shall be cleared before
the block is reused.

T.CONFID-JCS-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION) security
aspect. Bytecode verification ensures that each of the instructions used on the Java Card
platform is used for its intended purpose and in the intended scope of accessibility. As none of
those instructions enables reading a piece of code, no Java Card applet can therefore be
executed to disclose a piece of code. Native applications are also harmless because of the
objective (O.NATIVE), so no application can be run to disclose a piece of code.
The (#.VERIFICATION) security aspect is addressed in this PP by the objective for the
environment OE.VERIFICATION.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.

T.CONFID-JCS-DATA
This threat is covered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) security objective. This latter objective also relies in
its turn on the correct identification of applets stated in (O.SID). Moreover, as the firewall is
dynamically enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be
taken.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

T.INTEG-APPLI-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION) security
aspect. Bytecode verification ensures that each of the instructions used on the Java Card

47

platform is used for its intended purpose and in the intended scope of accessibility. As none of
these instructions enables modifying a piece of code, no Java Card applet can therefore be
executed to modify a piece of code. Native applications are also harmless because of the
objective (O.NATIVE), so no application can be run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for
the environment OE.VERIFICATION.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity
and authenticity evidences exist for the application code loaded into the platform.

T.INTEG-APPLI-CODE.LOAD
The objective OE.CODE-EVIDENCE covers this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity. By controlling the access to card management functions such as the
installation, update or deletion of applets the objective OE.CARD-MANAGEMENT contributes to
cover this threat.

T.INTEG-APPLI-DATA
This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn
on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be
taken.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the
bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity
and authenticity evidences exist for the application code loaded into the platform.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.
Concerning the confidentiality and integrity of application sensitive data, as applets may need to
share some data or communicate with the CAD, cryptographic functions are required to actually
protect the exchanged information (O.CIPHER). Remark that even if the TOE shall provide
access to the appropriate TSFs, it is still the responsibility of the applets to use them. Keys and
PIN's are particular cases of an application's sensitive data (the Java Card System may
possess keys as well) that ask for appropriate management (O.KEY-MNGT, O.PIN-MNGT,
O.TRANSACTION). If the PIN class of the Java Card API is used, the objective (O.FIREWALL)
is also concerned.
Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is
a resource shared by all applications. The integrity of the information stored in that buffer is
ensured by the (O.GLOBAL_ARRAYS_INTEG) objective.
Finally, any attempt to read a piece of information that was previously used by an application
but has been logically deleted is countered by the O.REALLOCATION objective. That objective
states that any information that was formerly stored in a memory block shall be cleared before
the block is reused.

T.INTEG-APPLI-DATA.LOAD
The objective OE.CODE-EVIDENCE covers this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code
integrity and authenticity. By controlling the access to card management functions such as the
installation, update or deletion of applets the objective OE.CARD-MANAGEMENT contributes
to cover this threat.

T.INTEG-JCS-CODE
This threat is countered by the list of properties described in the (#.VERIFICATION) security
aspect. Bytecode verification ensures that each of the instructions used on the Java Card

48

platform is used for its intended purpose and in the intended scope of accessibility. As none of
these instructions enables modifying a piece of code, no Java Card applet can therefore be
executed to modify a piece of code. Native applications are also harmless because of the
objective O.NATIVE, so no application can be run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for
the environment OE.VERIFICATION.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which
ensures code integrity and authenticity.

T.INTEG-JCS-DATA
This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation
commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn
on the correct identification of applets stated in (O.SID). Moreover, as the firewall is dynamically
enforced, it shall never stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it
to provide clear warning and error messages, so that the appropriate counter-measure can be
taken.
The objectives OE.CARD-MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode,
respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the
application code loaded into the platform has not been changed after code verification, which
ensures code integrity and authenticity.
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats
that these latter objectives contribute to counter.

T.SID.1
As impersonation is usually the result of successfully disclosing and modifying some assets, this
threat is mainly countered by the objectives concerning the isolation of application data (like
PINs), ensured by the (O.FIREWALL). Uniqueness of subject-identity (O.SID) also participates
to face this threat. It should be noticed that the AIDs, which are used for applet identification,
are TSF data.
The installation parameters of an applet (like its name) are loaded into a global array that is also
shared by all the applications. The disclosure of those parameters (which could be used to
impersonate the applet) is countered by the objective (O.GLOBAL_ARRAYS_CONFID) and
(O.GLOBAL_ARRAYS_INTEG).
The objective OE.CARD-MANAGEMENT contributes, by preventing usurpation of identity
resulting from a malicious installation of an applet on the card, to counter this threat.

T.SID.2
This is covered by integrity of TSF data, subject-identification (O.SID), the firewall
(O.FIREWALL) and its good working order (O.OPERATE).
The objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE objective of the TOE, so they are indirectly related to the threats that this latter
objective contributes to counter.

T.EXE-CODE.1
Unauthorized execution of a method is prevented by the objective OE.VERIFICATION. This
threat particularly concerns the point (8) of the security aspect #VERIFICATION (access
modifiers and scope of accessibility for classes, fields and methods). The O.FIREWALL
objective is also concerned, because it prevents the execution of non-shareable methods of a
class instance by any subject apart from the class instance owner.

49

T.EXE-CODE.2
Unauthorized execution of a method fragment or arbitrary data is prevented by the objective
OE.VERIFICATION. This threat particularly concerns those points of the security aspect related
to control flow confinement and the validity of the method references used in the bytecodes.

T.NATIVE
This threat is countered by O.NATIVE which ensures that a Java Card applet can only access
native methods indirectly that is, through a secure API. In addition to this, the bytecode verifier
also prevents the program counter of an applet to jump into a piece of native code by confining
the control flow to the currently executed method (OE.VERIFICATION).
Refinement:
In addition, O.OPERATE guarantees that only authorized use of commands is allowed thus
avoiding that normal product behaviour is modified.

T.RESOURCES
This threat is directly countered by objectives on resource-management (O.RESOURCES) for
runtime purposes and good working order (O.OPERATE) in a general manner.
It should be noticed that, for what relates to CPU usage, the Java Card platform is single-
threaded and it is possible for an ill-formed application (either native or not) to monopolize the
CPU. However, a smart card can be physically interrupted (card removal or hardware reset) and
most CADs implement a timeout policy that prevent them from being blocked should a card fails
to answer. That point is out of scope of this Protection Profile, though.
Finally, the objectives O.SCP.RECOVERY and O.SCP.SUPPORT are intended to support the
O.OPERATE and O.RESOURCES objectives of the TOE, so they are indirectly related to the
threats that these latter objectives contribute to counter.

T.OBJ-DELETION
This threat is covered by the O.OBJ-DELETION security objective which ensures that object
deletion shall not break references to objects.

T.PHYSICAL [Editorially Refined since SCP is part of the TOE]
Covered by O.SCP.IC,.that ensures protection against any kind of physical attack, and by
O.SIDE_CHANNEL that provides protection against disclosure of confidential data that could
happen by measurement and analysis of signals’ shape, amplitude and time.
O.ALARM gives feedback information when a potential security violation is detected.
Finally O.SCP.SUPPORT gives support to the other objectives ensuring low-level protection
against TSF alteration.

T.LIFE_CYCLE
O.SCP.SUPPORT prevents the TSFs from being bypassed or altered including violation of
irreversible life-cycle states, O.LIFE_CYCLE requires the control of the IC and TOE life cycles,
respectively, to prevent abuse of functionality by physical and logical means. The fulfilment of
these two objectives allows removing the threat.

OSP.VERIFICATION
This policy is upheld by the security objective of the environment OE.VERIFICATION which
guarantees that all the bytecodes shall be verified at least once, before the loading, before the
installation or before the execution in order to ensure that each bytecode is valid at execution
time.
This policy is also upheld by the security objective of the environment OE.CODE-EVIDENCE
which ensures that evidences exist that the application code has been verified and not changed
after verification.

OSP.MANAGEMENT_OF_SECRETS
OE.Management_of_Secrets directly covers the security policy.

OSP.ROLES
It is entirely addressed by O.ROLES.

50

OSP.CARD_ADMINISTRATION_DISABLED
It is entirely addressed by OE.CARD_MANAGEMENT.

A.VERIFICATION
This assumption is upheld by the security objective on the operational environment
OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once,
before the loading, before the installation or before the execution in order to ensure that each
bytecode is valid at execution time.
This assumption is also upheld by the security objective of the environment OE.CODE-
EVIDENCE which ensures that evidences exist that the application code has been verified and
not changed after verification.

A.NO-DELETION
The assumption A.NO-DELETION is upheld by the environmental objective OE.NO-DELETION
which guarantees that no installed applets (or packages) shall be deleted from the card. The
environmental objective OE.CARD-MANAGEMENT also upholds this assumption by controlling
the access to card management functions such as applets deletion.

A.NO-INSTALL
This assumption is upheld by the environmental objective OE.NO-INSTALL which imposes that
no post-issuance installation of applets is permitted. The objective OE.CARD-MANAGEMENT
contributes in upholding this assumption by controlling the access to card management
functions such as the installation of applets.

7.4.3.2 SPD and Security Objectives Rationale

Threat Objectives

T.CONFID-APPLI-DATA

O.SID, O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID,
O.OPERATE, O.REALLOCATION,
O.SCP.RECOVERY
O.SCP.SUPPORT, O.ALARM, O.CIPHER,
O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION
OE.CARD_MANAGEMENT, OE.VERIFICATION

T.CONFID-JCS-CODE O.NATIVE , OE.CARD_MANAGEMENT
OE.VERIFICATION

T.CONFID-JCS-DATA
O.SID, O.FIREWALL, O.OPERATE,
O.SCP.RECOVERY, O.SCP.SUPPORT, O.ALARM
OE.CARD_MANAGEMENT, OE.VERIFICATION

T.INTEG-APPLI-CODE
O.NATIVE, OE.CARD_MANAGEMENT
OE.VERIFICATION, OE.CODE-EVIDENCE

T.INTEG-APPLI-CODE.LOAD OE.CARD_MANAGEMENT, OE.CODE-EVIDENCE

T.INTEG-APPLI-DATA

O.SID , O.FIREWALL, O.GLOBAL_ARRAYS_INTEG
O.OPERATE, O.REALLOCATION,
O.SCP.RECOVERY
O.SCP.SUPPORT, O.ALARM, O.CIPHER
O.KEY-MNGT, O.PIN-MNGT, O.TRANSACTION
OE.CARD_MANAGEMENT, OE.VERIFICATION,
OE.CODE-EVIDENCE

51

T.INTEG-APPLI-DATA.LOAD
OE.CARD_MANAGEMENT, OE.CODE-EVIDENCE

T.INTEG-JCS-CODE
O.NATIVE, OE.CARD_MANAGEMENT,
OE.VERIFICATION, OE.CODE-EVIDENCE

T.INTEG-JCS-DATA

O.SID, O.FIREWALL, O.OPERATE,
O.SCP.RECOVERY, O.SCP.SUPPORT, O.ALARM,
OE.CARD_MANAGEMENT, OE.VERIFICATION,
OE.CODE-EVIDENCE

T.SID.1

O.SID, O.FIREWALL,
O.GLOBAL_ARRAYS_CONFID
O.GLOBAL_ARRAYS_INTEG,
OE.CARD_MANAGEMENT

T.SID.2 O.SID, O.FIREWALL, O.OPERATE,
O.SCP.RECOVERY, O.SCP.SUPPORT

T.EXE-CODE.1 O.FIREWALL, OE.VERIFICATION

T.EXE-CODE.2 OE.VERIFICATION

T.NATIVE O.NATIVE, OE.VERIFICATION, O.OPERATE

T.RESOURCES O.OPERATE, O.RESOURCES, O.SCP.RECOVERY
O.SCP.SUPPORT

T.OBJ-DELETION O.OBJ-DELETION

T.PHYSICAL O.SCP.IC, O.SCP.SUPPORT, O.ALARM,
O.SIDE_CHANNEL

T.LIFE_CYCLE O.SCP.SUPPORT, O.LIFE_CYCLE

OSP.MANAGEMENT_OF_SECRETS OE.MANAGEMENT_OF_SECRETS

OSP.ROLES O.ROLES

OSP.CARD_ADMINISTRATION_DISABLED OE.CARD_MANAGEMENT

OSP.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE

52

A.VERIFICATION OE.VERIFICATION, OE.CODE-EVIDENCE

A.NO-DELETION OE.NO-DELETION , OE.CARD_MANAGEMENT

A.NO-INSTALL OE.NO-INSTALL, OE.CARD_MANAGEMENT

Table 6 – SPD vs. Objectives Rationale

Objectives Threats

O.SID
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.1,
T.SID.2

O.ROLES OSP.ROLES

O.FIREWALL
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.1,
T.SID.2 T.EXE-CODE.1

O.GLOBAL_ARRAYS_CONFID T.CONFID-APPLI-DATA, T.SID.1

O.GLOBAL_ARRAYS_INTEG T.INTEG-APPLI-DATA, T.SID.1

O.NATIVE T.CONFID-JCS-CODE, T.INTEG-APPLI-CODE,
T.INTEG-JCS-CODE T.NATIVE

O.OPERATE
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.2
T.RESOURCES, T.PHYSICAL

O.RESOURCES T.RESOURCES

O.REALLOCATION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.SCP.RECOVERY
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.2,
T.RESOURCES, T.LEAKAGE, T.LIFE_CYCLE

O.SCP.IC T.PHYSICAL

O.SCP.SUPPORT
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA, T.SID.2,
T.RESOURCES, T.LIFE_CYCLE, T.PHYSICAL

53

O.ALARM
T.CONFID-APPLI-DATA, T.CONFID-JCS-DATA,
T.INTEG-APPLI-DATA, T.INTEG-JCS-DATA,
T.PHYSICAL

O.CIPHER T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.KEY-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.PIN-MNGT T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.TRANSACTION T.CONFID-APPLI-DATA, T.INTEG-APPLI-DATA

O.OBJ-DELETION T.OBJ-DELETION

O.SIDE_CHANNEL T.PHYSICAL

O.LIFE_CYCLE T.LIFE_CYCLE

OE.CARD_MANAGEMENT

T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-CODE.LOAD, T.INTEG-APPLI-DATA,
T.INTEG-APPLI-DATA.LOAD, T.INTEG-JCS-CODE,
T.INTEG-JCS-DATA, T.SID.1,
OSP.CARD_ADMINISTRATION_DISABLED

OE.NO-DELETION A.NO-DELETION

OE.NO-INSTALL A.NO-INSTALL

OE.VERIFICATION

T.CONFID-APPLI-DATA, T.CONFID-JCS-CODE,
T.CONFID-JCS-DATA, T.INTEG-APPLI-CODE,
T.INTEG-APPLI-DATA, T.INTEG-JCS-CODE, T.INTEG-
JCS-DATA, T.EXE-CODE.1, T.EXE-CODE.2, T.NATIVE,
OSP.VERIFICATION

OE.CODE-EVIDENCE

T.INTEG-APPLI-CODE, T.INTEG-APPLI-CODE.LOAD,
T.INTEG-APPLI-DATA, T.INTEG-APPLI-DATA.LOAD,
T.INTEG-JCS-CODE, T.INTEG-JCS-DATA

OE.MANAGEMENT_OF_SECRETS OSP.MANAGEMENT_OF_SECRETS

Table 7 - Objectives vs. SPD Rationale

54

7.5 Extended Components Definition (ASE_ECD)

7.5.1 Definition of Family FCS_RNG

Section extracted from Eurosmart – Security IC Platform Protection Profile with Augmentation
Packages [BSI_ PP_0084].

To define the IT security functional requirements of the TOE an additional family (FCS_RNG) of
the Class FCS (cryptographic support) is defined here. This family describes the functional
requirements for random number generation used for cryptographic purposes.

Family behavior:

This family defines quality requirements for the generation of random numbers which
are intended to be use for cryptographic purposes.

Component leveling:

FCS_RNG.1 Generation of random numbers requires that random numbers meet a defined
quality metric.

Management: FCS_RNG.1

 There are no management activities foreseen.

Audit: FCS_RNG.1
 There are no actions defined to be auditable.

FCS_RNG.1 Random number generation.

Hierarchical to: No other components.

Dependencies: No dependencies.

FCS_RNG.1.1 The TSF shall provide a [selection: physical, non-physical true, deterministic,

hybrid physical, hybrid deterministic] random number generator that
implements: [assignment: list of security capabilities].

FCS_RNG.1.2 The TSF shall provide [selection: bits, octets of bits, numbers [assignment:

format of the numbers]] that meet [assignment: a defined quality metric].

Application note: A physical random number generator (RNG) produces the random

number by a noise source based on physical random processes. A non-
physical true RNG uses a noise source based on non-physical random
processes like human interaction (key strokes, mouse movement). A
deterministic RNG uses an random seed to produce a pseudorandom output. A
hybrid RNG combines the principles of physical and deterministic RNGs where
a hybrid physical RNG produces at least the amount of entropy the RNG output
may contain and the internal state of a hybrid deterministic RNG output
contains fresh entropy but less than the output of RNG may contain.

55

7.5.2 Definition of Family FMT_LIM

Section extracted from from Eurosmart – Security IC Platform Protection Profile with
Augmentation Packages [BSI_ PP_0084]

To define the IT security functional requirements of the TOE an additional family (FMT_LIM) of
the Class FMT (Security Management) is defined here. The family describes the functional
requirements for the Test Features of the TOE. The new functional requirements were defined
in the class FMT because this class addresses the management of functions of the TSF. The
examples of the technical mechanism used in the TOE appropriate to address the specific
issues of preventing the abuse of functions by limiting the capabilities of the functions and by
limiting their availability.

The family “Limited capabilities and availability (FMT_LIM)” is specified as follows.

FMT_LIM Limited capabilities and availability

Family behavior:

This family defines requirements that limit the capabilities and availability of functions in
a combined manner. Note that FDP_ACF restricts the access to functions whereas the
component Limited Capability of this family requires the functions themselves to be
designed in a specific manner.

Component leveling:

FMT_LIM.1 Limited capabilities requires that the TSF is built to provide only the capabilities
(perform action, gather information) necessary for its genuine purpose.

FMT_LIM.2 Limited availability requires that the TSF restrict the use of functions (refer to

Limited capabilities (FMT_LIM.1)). This can be achieved, for instance, by
removing or by disabling functions in a specific phase of the TOE’s life-cycle.

Management: FMT_LIM.1, FMT_LIM.2

 There are no management activities foreseen.

Audit: FMT_LIM.1, FMT_LIM.2
 There are no actions defined to be auditable.

The TOE Functional Requirement “Limited capabilities (FMT_LIM.1)” is specified as follows.

FMT_LIM.1 Limited capabilities.

Hierarchical to: No other components.

Dependencies: No dependencies.

FMT_LIM.1.1 The TSF shall be designed and implemented in a manner that limits its

capabilities so that in conjunction with “Limited availability (FMT_LIM.2)” the
following policy is enforced [assignment: Limited capability policy].

Dependencies: FMT_LIM.2 Limited availability.

The TOE Functional Requirement “Limited availability (FMT_LIM.2)” is specified as follows.

56

FMT_LIM.2 Limited availability.

Hierarchical to: No other components.

Dependencies: No dependencies.

FMT_LIM.2.1 The TSF shall be designed in a manner that limits its availability so that in

conjunction with “Limited capabilities (FMT_LIM.1)” the following policy is
enforced [assignment: Limited availability policy].

Dependencies: FMT_LIM.1 Limited capabilities.

Application note: The functional requirements FMT_LIM.1 and FMT_LIM.2 assume that
there are two types of mechanisms (limitation of capabilities and limitation of availability) which
together shall provide protection in order to enforce the policy or two mutual supportive policies
related to the same functionality. This allows e.g. that

i. the TSF is provided without restrictions in the product in its user environment but its
capabilities are so limited that the policy is enforced

 or conversely

ii. the TSF is designed with high functionality but is removed or disabled in the
product in its user environment.

 The combination of both requirements shall enforce the policy.

7.5.3 Definition of the Family FDP_SDC

Section extracted from from Eurosmart – Security IC Platform Protection Profile with
Augmentation Packages [BSI_ PP_0084]

To define the security functional requirements of the TOE an additional family (FDP_SDC.1) of
the Class FDP (User data protection) is defined here.
The family “Stored data confidentiality (FDP_SDC)” is specified as follows.

FDP_SDC Stored data confidentiality
Family behaviour:

This family provides requirements that address protection of user data confidentiality
while these data are stored within memory areas protected by the TSF. The TSF
provides access to the data in the memory through the specified interfaces only and
prevents compromise of their information bypassing these interfaces. It complements
the family Stored data integrity (FDP_SDI) which protects the user data from integrity
errors while being stored in the memory.

Component levelling:

FDP_SDC.1 Requires the TOE to protect the confidentiality of information of the user data in
specified memory areas.

Management: FDP_SDC.1

There are no management activities foreseen.

Audit: FDP_SDC.1 There are no actions defined to be auditable.

57

FDP_SDC.1 Stored data confidentiality
Hierarchical to: No other components.

Dependencies: No dependencies.

FDP_SDC.1.1 The TSF shall ensure the confidentiality of the information of the user data

while it is stored in the [assignment: memory area].

7.5.4 Definition of Family FPT_EMSEC

Section extracted from the Protection Profile PP_ICAO_BAC (cert. BSI-CC-PP-0055).

The sensitive family FPT_EMSEC (TOE Emanation) of the Class FPT (Protection of the TSF) is
defined here to describe the IT security functional requirements of the TOE. The TOE shall
prevent attacks against the TOE and other secret data where the attack is based on external
observable physical phenomena of the TOE. Examples of such attacks are evaluation of TOE’s
electromagnetic radiation, simple power analysis (SPA), differential power analysis (DPA),
timing attacks, etc. This family describes the functional requirements for the limitation of
intelligible emanations which are not directly addressed by any other component of CC part 2
CC2.

The family “TOE Emanation (FPT_EMSEC)” is specified as follows.

FPT_EMSEC TOE Emanation

Family behavior: This family defines requirements to mitigate intelligible emanations.

Component leveling:

FPT_EMSEC.1 TOE emanation has two constituents:

FPT_EMSEC.1.1 TOE Limit of Emissions requires to not emit intelligible emissions enabling
access to TSF data or user data.

FPT_EMSEC.1.2 Interface Emanation requires to not emit interface emanation enabling access
to TSF data or user data.

Management: FPT_EMSEC.1

 There are no management activities foreseen.

Audit: FPT_EMSEC.1
 There are no actions defined to be auditable.

The TOE Functional Requirement “TOE emanation (FPT_EMSEC.1)” is specified as follows.

FPT_EMSEC.1 TOE emanation

Hierarchical to: No other components.

Dependencies: No dependencies.

FPT_EMSEC.1.1 The TOE shall not emit [assignment: types of emissions] in excess of
[assignment: specified limits] enabling access to [assignment: list of types of TSF data] and
[assignment: list of types of user data].

58

FPT_EMSEC.1.2 The TSF shall ensure [assignment: type of users] are unable to use the
following interface [assignment: type of connection] to gain access to [assignment: list of types
of TSF data] and [assignment: list of types of user data].

59

7.6 Security requirements (ASE_REQ)

7.6.1 Security functional requirements for the TOE (SFRS)

This section states the security functional requirements for the Java Card System - Closed
configuration. For readability and for compatibility with the original Java Card System Protection
Profile Collection - Standard 2.2 Configuration [PP/0305] ([PP-JCS-1.0]), requirements are
arranged into groups.

The SFRs refer to all potentially applicable subjects, objects, information, operations and
security attributes, including JCRMI related entities which are optional. Since the TOE does not
provide JCRMI functionality, the associated entities and their corresponding requirements have
been ignored in this ST.

Group Description

Core with
Logical Channels
(CoreG_LC)

The CoreG_LC contains the requirements concerning the
runtime environment of the Java Card System implementing
logical channels. This includes the firewall policy and the
requirements related to the Java Card API. Logical channels
are a Java Card specification version 2.2 feature. This group
is the union of requirements from the Core (CoreG) and the
Logical channels (LCG) groups defined in [PP/0305] (cf. Java
Card System Protection Profile Collection [PP-JCS-1.0]).

Remote Method
Invocation (RMI)

The RMIG contains the security requirements for the remote
method invocation feature, which provides a new protocol of
communication between the terminal and the applets. This
feature was introduced in Java Card specification version 2.2
and became optional in Java Card specification version 3
Classic Edition.
NOTE: This group of SFRs does not apply to current TOE
since it doesn’t provide JCRMI functionality.

Object Deletion
(ODELG)

The ODELG contains the security requirements for the object
deletion capability. This provides a safe memory recovering
mechanism. This is a Java Card specification version 2.2
feature.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The
users of the TOE include people or institutions (like the applet developer, the card issuer, the
verification authority), hardware (like the CAD where the card is inserted or the PCD) and
software components (like the application packages installed on the card). Some of the users
may just be aliases for other users. For instance, the verification authority in charge of the
bytecode verification of the applications may be just an alias for the card issuer.

Note : with respect to [PP_JC_Closed], additional subjects, objects, security attributes and
operations have been added, to take into account parts of the TOE that in [PP_JC_Closed]
were part of the TOE Environment. Subjects, objects, security attributes and operations are
described in the following tables. The last column in each table indicates whether they are
referred to COREG_LC, ODELG, or GP_API policy.

60

Subjects (prefixed with an "S") are described in the following table:

Subject Description Related
Policy

S.JCRE

The Java Card RE is responsible on behalf of the
card issuer of the bytecode execution and runtime
environment functionalities. It is the process that
manages applet selection and de-selection, along
with the delivery of APDUs from and to the smart
card device. This subject is unique.

COREG_LC

S.JCVM
The Java Card VM is the bytecode interpreter.
This subject dynamically enforces the firewall, that
is, at runtime.

COREG_LC

S.LOCAL
Operand stack of a JCVM frame, or local variable
of a JCVM frame containing an object or an array
of references.

COREG_LC

S.MEMBER
Any object's field, static field or array position.

COREG_LC

S.PACKAGE

A package is a namespace within the Java
programming language that may contain classes
and interfaces, and in the context of Java Card
technology, it defines either a user library, or one
or several applets

COREG_LC

S.APPLICATION A Java Card Application GP_API

Table 8 - Subjects of the TOE

Objects (prefixed with an "O") are described in the following table:

Object Description Related
Policy

O.APPLET
Any installed applet, its code and data.

COREG_LC

O.JAVAOBJECT

Java class instance or array. It should be noticed
that KEYS, PIN, arrays and applet instances are
specific objects in the Java programming
language.

COREG_LC

O.GP_REGISTRY Global Platform Registry GP_API

Table 9 - Objects of the TOE

Information (prefixed with an "I") is described in the following table:

Information Description
Related
Policy

I.DATA
JCVM Reference Data: objectref addresses of
APDU buffer, JCRE-owned instances of APDU class
and byte array for install method.

COREG_LC

Security attributes linked to these subjects, objects and information are described in the
following table with their values (used in enforcing the SFRs):

61

Security Attribute Description Related
Policy

Active Applets
The set of the active applets' AIDs. An active
applet is an applet that is selected on at
least one of the logical channels.

COREG_LC

Applet Selection
Status Selected" or "Deselected". COREG_LC

Applet's version
number

The version number of an applet (package)
indicated in the export file.

COREG_LC

Context Package AID or "Java Card RE". COREG_LC

Currently Active
Context Package AID or "Java Card RE". COREG_LC

LC Selection Status Multiselectable, Non-multiselectable or
"None".

COREG_LC

LifeTime CLEAR_ON_DESELECT or PERSISTENT
(*).

COREG_LC

Package AID The AID of each package indicated in the
export file.

COREG_LC

Registered
applet AID

The AID of the applet instance registered on
the card.

COREG_LC

Selected Applet
Context Package AID or "None". COREG_LC

Sharing Standards, SIO, Java Card RE entry point,
or global array.

COREG_LC

Card Life Cycle State Card life-cycle state as defined by
GlobalPlatform Card Specification ([GP221])

GPAPI

AID The Application AID GP_API

62

ApplicationPrivilege The Application Privilege GP_API

ApplicationLifeCycleState The Application Life Cycle State GP_API

ApplicationAID The Application AID stored in the GP
Registry

GP_API

Table 10 - Security Attributes and related description

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can
be accessed only when the Currently Active Context is the object's context.

Operations (prefixed with "OP") are described in the following table. Each operation has a
specific number of parameters given between brackets, among which there is the "accessed
object", the first one, when applicable. Parameters may be seen as security attributes that are
under the control of the subject performing the operation.

Operation Description Related
Policy

OP.ARRAY_ACCESS(O.JAVA
OBJECT, field) Read/Write an array component. COREG_LC

OP.CREATE(Sharing,
LifeTime) (*)

Creation of an object (new or
makeTransient call).

COREG_LC

OP.INSTANCE_FIELD(O.JAVA
OBJECT, field)

Read/Write a field of an instance of a
class in the Java programming
language.

COREG_LC

OP.INVK_VIRTUAL(O.JAVAOB
JECT, method, arg1,...)

Invoke a virtual method (either on a
class instance or an array object).

COREG_LC

OP.INVK_INTERFACE(O.JAVA
OBJECT, method, arg1,...) Invoke an interface method. COREG_LC

OP.JAVA(...)

Any access in the sense of JCRE3,
§6.2.8. It stands for one of the
operations:

OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD,
OP.INVK_VIRTUAL,
OP.INVK_INTERFACE,
OP.THROW, OP.TYPE_ACCESS.

COREG_LC

OP.PUT(S1,S2,I) Transfer a piece of information I from
S1 to S2.

COREG_LC

OP.THROW(O.JAVAOBJECT) Throwing of an object (athrow, see
JCRE3, §6.2.8.7).

COREG_LC

OP.TYPE_ACCESS(O.JAVAOB
JECT,
class)

Invoke checkcast or instanceof on an
object in order to access to classes
(standard or shareable interfaces

COREG_LC

63

objects).

OP.MANAGE_APP_LIFE_CYC
LE_STATE

Return or change the Application Life
Cycle state

GP_API

OP.GET_CARD_LIFE_CYCLE_
STATE Return the current Card Life Cycle state GP_API

OP.CARD_LOCK Lock the card GP_API

OP.CARD_TERMINATE Terminate the card GP_API

Table 11 - Operations and related description

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects are not
allowed. For instance, during the creation of an object, the JavaCardClass attribute's value is chosen by the
creator.

7.6.1.1 COREG_LC Security Functional Requirements

The CoreG_LC contains the requirements concerning the runtime environment of the Java Card
System implementing logical channels. This includes the firewall policy and the requirements
related to the Java Card API. Logical channels are a Java Card specification version 2.2
feature.

Note that this group is the union of the security functional requirements from the Core (CoreG)
and the Logical channels (LCG) groups defined in [PP_JC_Closed].

Firewall Policy

fdp_acc.2/FIREWALL - Complete access control

fdp_acc.2.1/FIREWALL : The TSF shall enforce the FIREWALL access control SFP on
S.PACKAGE, S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and
objects covered by the SFP. The operations involved in the policy are:
• OP.CREATE
• OP.INVK_INTERFACE
• OP.INVK_VIRTUAL
• OP.JAVA
• OP.THROW
• OP.TYPE_ACCESS

fdp_acc.2.2/FIREWALL : The TSF shall ensure that all operations between any subject
controlled by the TSF and any object controlled by the TSF are covered by an access control
SFP.
Application Note:
It should be noticed that accessing array's components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.

fdp_acf.1/FIREWALL - Security attribute based acces s control

fdp_acf.1.1/FIREWALL : The TSF shall enforce the FIREWALL access control SFP to objects

64

based on the following:
• S.PACKAGE : LC Selection Status
• S.JCVM: Active Applets, Currently Active Context
• S.JCRE: Selected Applet Context
• O.JAVAOBJECT : Sharing, Context, LifeTime.

fdp_acf.1.2/FIREWALL : The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:
• R.JAVA.1 (JCRE22, sect.6.2.8): S.PACKAGE may freely perform

OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL ,
OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS upon any O.JAVAOBJECT
whose Sharing attribute has value “JCRE entry point ” or “global array”.

• R.JAVA.2 (JCRE22, sect.6.2.8): S.PACKAGE may freely perform
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL ,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose Sharing
attribute has value “Standard” and whose Lifetime a ttribute has value
“PERSISTENT” only if O.JAVAOBJECT’s Context attribu te has the same value as the
active context.

• R.JAVA.3 (JCRE22, sect.6.2.8.10): S.PACKAGE may perform OP.TYPE_ACC ESS upon
an O.JAVAOBJECT whose Sharing attribute has value “ SIO” only if O.JAVAOBJECT
is being cast into (checkcast) or is being verified as being an instance of (instanceof)
an interface that extends the Shareable interface.

• R.JAVA.4 (JCRE22, sect.6.2.8.6): S.PACKAGE may perform OP.INVK_INTE RFACE
upon an O.JAVAOBJECT whose Sharing attribute has th e value “SIO”, and whose
Context attribute has the value “Package AID”, only if the invoked interface method
extends the Shareable interface and one of the foll owing conditions applies:

• The value of the attribute Selection Status of th e package whose AID is “Package
AID” is “Multiselectable”,

• The value of the attribute Selection Status of th e package whose AID is “Package
AID” is “Non-multiselectable”, and either “Package AID” is the value of the
currently selected applet or otherwise “Package AID ” does not occur in the
attribute Active Applets.

• R.JAVA.5: S.PACKAGE may perform OP.CREATE only if the value of the Sharing
parameter is “Standard”.

fdp_acf.1.3/FIREWALL : The TSF shall explicitly authorise access of subjects to objects
based on the following additional rules:
• The subject S.JCRE can freely perform OP.JAVA(”) and OP.CREATE, with the

exception given in FDP_ACF.1.4/FIREWALL, provided i t is the Currently Active
Context.

• The only means that the subject S.JCVM shall prov ide for an application to execute
native code is the invocation of a Java Card API me thod (through
OP.INVK_INTERFACE or OP.INVK_VIRTUAL).

fdp_acf.1.4/FIREWALL : The TSF shall explicitly deny access of subjects to objects based on
the following additional rules:
• Any subject with OP.JAVA upon an O.JAVAOBJECT who se LifeTime attribute has

value “CLEAR_ON_DESELECT” if O.JAVAOBJECT’s Context attribute is not the
same as the Selected Applet Context.

• Any subject attempting to create an object by the means of OP.CREATE and a
“CLEAR_ON_DESELECT” LifeTime parameter if the activ e context is not the same as
the Selected Applet Context.

Application Note:

65

In the case of an array type, fields are components of the array (JVM, §2.14, §2.7.7), as well as
the length; the only methods of an array object are those inherited from the Object class.

The Sharing attribute defines four categories of objects:
• Standard ones, whose both fields and methods are under the firewall policy,
• Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet

communication,
• JCRE entry points (Temporary or Permanent), who have freely accessible methods but

protected fields,
• Global arrays, having both unprotected fields (including components; refer to JavaCard

Class discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the object
is owned by the applet instance within the Currently Active Context when the object is
instantiated (JCRE22, §6.1.3). An object is owned by an applet instance, by the JCRE or by the
package library where it has been defined (these latter objects can only be arrays that initialize
static fields of packages).

(JCRE22, Glossary) Selected Applet Context. The Java Card RE keeps track of the currently
selected Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java
Card RE makes this applet the Selected Applet Context. The Java Card RE sends all APDU
commands to the Selected Applet Context.

While the expression "Selected Applet Context" refers to a specific installed applet, the relevant
aspect to the policy is the context (package AID) of the selected applet. In this policy, the
"Selected Applet Context" is the AID of the selected package.

(JCRE22, §6.1.2.1) At any point in time, there is only one active context within the Java Card
VM (this is called the Currently Active Context).

It should be noticed that the invocation of static methods (or access to a static field) is not
considered by this policy, as there are no firewall rules. They have no effect on the active
context as well and the "acting package" is not the one to which the static method belongs to in
this case.

It should be noticed that the Java Card platform, version 2.2.x and version 3 Classic Edition,
introduces the possibility for an applet instance to be selected on multiple logical channels at
the same time, or accepting other applets belonging to the same package being selected
simultaneously. These applets are referred to as multiselectable applets. Applets that belong to
a same package are either all multiselectable or not (JCVM22, §2.2.5). Therefore, the selection
mode can be regarded as an attribute of packages. No selection mode is defined for a library
package.

An applet instance will be considered an active applet instance if it is currently selected in at
least one logical channel. An applet instance is the currently selected applet instance only if it is
processing the current command. There can only be one currently selected applet instance at a
given time. (JCRE22, §4).

fdp_ifc.1/JCVM - Subset information flow control

fdp_ifc.1.1/JCVM : The TSF shall enforce the JCVM information flow control SFP on
S.JCVM, S.LOCAL, S.MEMBER, I.DATA and OP.PUT(S1, S2 , I).
Application Note:
It should be noticed that references of temporary Java Card RE entry points, which cannot be
stored in class variables, instance variables or array components, are transferred from the
internal memory of the Java Card RE (TSF data) to some stack through specific APIs (Java
Card RE owned exceptions) or Java Card RE invoked methods (such as the process(APDU
apdu)); these are causes of OP.PUT(S1,S2,I) operations as well.

66

fdp_iff.1/JCVM - Simple security attributes

fdp_iff.1.1/JCVM : The TSF shall enforce the JCVM information flow control SFP based on
the following types of subject and information security attributes:

• S.JCVM: Currently Active Context.

fdp_iff.1.2/JCVM : The TSF shall permit an information flow between a controlled subject and
controlled information via a controlled operation if the following rules hold:

• An operation OP.PUT(S1, S.MEMBER, I.DATA) is allo wed if and only if the
Currently Active Context is “Java Card RE”;

• other OP.PUT operations are allowed regardless of the Currently Active
Context’s value.

fdp_iff.1.3/JCVM : The TSF shall enforce the following additional information flow control
SFP rules: none .

fdp_iff.1.4/JCVM : The TSF shall explicitly authorise an information flow based on the following
rules: none .

fdp_iff.1.5/JCVM : The TSF shall explicitly deny an information flow based on the following
rules: none .
Application Note:
The storage of temporary Java Card RE-owned objects references is runtime-enforced
(JCRE22, §6.2.8.1-3). It should be noticed that this policy essentially applies to the execution of
bytecode. Native methods, the Java Card RE itself and possibly some API methods can be
granted specific rights or limitations through the FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM
elements. The way the Java Card virtual machine manages the transfer of values on the stack
and local variables (returned values, uncaught exceptions) from and to internal registers is
implementation-dependent. For instance, a returned reference, depending on the
implementation of the stack frame, may transit through an internal register prior to being pushed
on the stack of the invoker. The returned bytecode would cause more than one OP.PUT
operation under this scheme.

fdp_rip.1/OBJECTS - Subset residual information pro tection

fdp_rip.1.1/OBJECTS : The TSF shall ensure that any previous information content of a
resource is made unavailable upon the allocation of the resource to the following objects:
class instances and arrays.
Application Note:
The semantics of the Java programming language requires for any object field and array
position to be initialized with default values when the resource is allocated JVM, §2.5.1.

fmt_msa.1/JCRE - Management of security attributes

fmt_msa.1.1/JCRE : The TSF shall enforce the FIREWALL access control SFP to restrict
the ability to modify the security attributes Selected Applet Context to the Java
Card RE .
Application Note:
The modification of the Selected Applet Context should be performed in accordance with the
rules given in JCRE22, §4 and JCVM22, §3.4.

fmt_msa.1/JCVM - Management of security attributes

fmt_msa.1.1/JCVM : The TSF shall enforce the FIREWALL access control SFP and the
JCVM information flow control SFP to restrict the ability to modify the security
attributes Currently Active Context and Active Applets to the Java Card VM
(S.JCVM).

67

Application Note:
The modification of the Currently Active Context should be performed in accordance with the
rules given in JCRE22, §4 and JCVM22, §3.4.

fmt_msa.2/FIREWALL_JCVM - Secure security attribute s

fmt_msa.2.1/FIREWALL_JCVM : The TSF shall ensure that only secure values are accepted
for all the security attributes of subjects and objec ts defined in the FIREWALL access
control SFP and the JCVM information flow control S FP.
Application Note:
The following rules are given as examples only. For instance, the last two rules are motivated
by the fact that the Java Card API defines only transient arrays factory methods. Future
versions may allow the creation of transient objects belonging to arbitrary classes; such
evolution will naturally change the range of "secure values" for this component.
• The Context attribute of an O.JAVAOBJECT must correspond to that of an installed applet

or be "Java Card RE".
• An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global array

necessarily has "Java Card RE" as the value for its Context security attribute.
• An O.JAVAOBJECT whose Sharing attribute value is a global array necessarily has "array

of primitive type" as a JavaCardClass security attribute's value.
• Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a PERSISTENT-

LifeTime attribute's value.
• Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an array type

as JavaCardClass attribute's value.

fmt_msa.3/FIREWALL - Static attribute initialisatio n

fmt_msa.3.1/FIREWALL : The TSF shall enforce the FIREWALL access control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

fmt_msa.3.2/FIREWALL[Editorially Refined] : The TSF shall not allow any role to
specify alternative initial values to override the default values when an object or information is
created.
Application Note:
FMT_MSA.3.1/FIREWALL
• Objects' security attributes of the access control policy are created and initialized at the

creation of the object or the subject. Afterwards, these attributes are no longer mutable
(FMT_MSA.1/JCRE). At the creation of an object (OP.CREATE), the newly created object,
assuming that the FIREWALL access control SFP permits the operation, gets its Lifetime
and Sharing attributes from the parameters of the operation; on the contrary, its Context
attribute has a default value, which is its creator's Context attribute and AID respectively
(JCRE22, §6.1.3). There is one default value for the Selected Applet Context that is the
default applet identifier's Context, and one default value for the Currently Active Context
that is "Java Card RE".

• The knowledge of which reference corresponds to a temporary entry point object or a global
array and which does not is solely available to the Java Card RE (and the Java Card virtual
machine).

FMT_MSA.3.2/FIREWALL
• The intent is that none of the identified roles has privileges with regard to the default values

of the security attributes. It should be noticed that creation of objects is an operation
controlled by the FIREWALL access control SFP. The operation shall fail anyway if the
created object would have had security attributes whose value violates
FMT_MSA.2.1/FIREWALL_JCVM.

fmt_msa.3/JCVM - Static attribute initialisation

fmt_msa.3.1/JCVM : The TSF shall enforce the JCVM information flow control SFP to
provide restrictive default values for security attributes that are used to enforce the SFP.

68

fmt_msa.3.2/JCVM[Editorially Refined] : The TSF shall not allow any role to specify
alternative initial values to override the default values when an object or information is created.

fmt_smf.1 - Specification of Management Functions

fmt_smf.1.1 : The TSF shall be capable of performing the following management functions:
• modify the Currently Active Context, the Selected Applet Context and the Active

Applets.

fmt_smr.1 - Security roles

fmt_smr.1.1 : The TSF shall maintain the roles
• Java Card RE (JCRE),
• Java Card VM (JCVM).

fmt_smr.1.2 : The TSF shall be able to associate users with roles.

Application Programming Interface

The following SFRs are related to the Java Card API.

The whole set of cryptographic algorithms is generally not implemented because of limited
memory resources and/or limitations due to exportation. Therefore, the following requirements
only apply to the implemented subset.

It should be noticed that the execution of the additional native code is not within the TSF.
Nevertheless, access to API native methods from the Java Card System is controlled by TSF
because there is no difference between native and interpreted methods in their interface or
invocation mechanism.

fcs_ckm.1/RSA - Cryptographic key generation

fcs_ckm.1.1/RSA : The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm RSA Key Generation and specified cryptographic
key sizes: between 512 and the maximum length supported by the card (2048) and
multiple of 32 bits that meet the following: JCAPI3 extended to support the key lengths
specified in GP_CIC, GP_IDCONF.

fcs_ckm.1/EC - Cryptographic key generation

fcs_ckm.1.1/EC : The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm EC Key Generation and specified cryptographic
key sizes 160 - 521 bits (for EC operations over large prim e fields - GF(p)) that meet the
following: JCAPI3.

fcs_ckm.1/DSA - Cryptographic key generation

fcs_ckm.1.1/DSA : The TSF shall generate cryptographic keys in accordance with a specified
cryptographic key generation algorithm DSA Key Generation and specified cryptographic
key sizes 512 bits, 768 bits, 1024 bits that meet the following: JCAPI3.

69

fcs_ckm.2/DES - Cryptographic key distribution

fcs_ckm.2.1/DES : The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method setKey() of the interface javacard.security.DESKe y
that meets the following: JCAPI3 .

fcs_ckm.2/AES - Cryptographic key distribution

fcs_ckm.2.1/AES : The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method setKey() of the interface javacard.security.AESKe y
that meets the following: JCAPI3 .

fcs_ckm.2/RSA_STD - Cryptographic key distribution

fcs_ckm.2.1/RSA_STD : The TSF shall distribute cryptographic keys in accordance with a
specified cryptographic key distribution method setExponent() and setModulus() of the
interfaces javacard.security.RSAPublicKey and javac ard.security.RSAPrivateKey that
meets the following JCAPI3 .

fcs_ckm.2/RSA_CRT - Cryptographic key distribution

fcs_ckm.2.1/RSA_CRT : The TSF shall distribute cryptographic keys in accordance with a
specified cryptographic key distribution method setExponent() and setModulus() of the
interface javacard.security.RSAPublicKey, and setP(), setQ(), setPQ(), setDP1() ,
setDQ1() of the interface javacard.security.RSAPriv ateCrtKey that meets the following:
JCAPI3 .

fcs_ckm.2/EC - Cryptographic key distribution

fcs_ckm.2.1/EC : The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method setA(), setB(), setFieldFP, setG(), setK(), setR() of
the interface javacard.security.ECKey, setS() of th e interface
javacard.security.ECPrivateKey, setW of the javacar d.security.interface ECPublicKey
that meets the following: JCAPI3.

fcs_ckm.2/DSA - Cryptographic key distribution

fcs_ckm.2.1/DSA : The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method setG(), setP(), setQ() of the interface
javacard.security.DSAKey, setX() of the interface j avacard.security.DSAPrivateKey, setY
of the javacard.security.interface DSAPublicKey that meets the following: JCAPI3.

fcs_ckm.3/DES - Cryptographic key access

fcs_ckm.3.1/DES : The TSF shall perform access to DES Key in accordance with a
specified cryptographic key access method getKey() of the interface
javacard.security.DESKey that meets the following: JCAPI3 .

fcs_ckm.3/AES - Cryptographic key access

fcs_ckm.3.1/AES : The TSF shall perform access to AES Key in accordance with a
specified cryptographic key access method getKey() of the interface
javacard.security.AESKey that meets the following: JCAPI3 .

70

fcs_ckm.3/RSA_STD - Cryptographic key access

fcs_ckm.3.1/RSA_STD : The TSF shall perform access to RSA Key in accordance with a
specified cryptographic key access method getExponent() and getModulus() of the
interfaces javacard.security.RSAPrivateKey and java card.security.RSAPublicKey that
meets the following: JCAPI3 .

fcs_ckm.3/RSA_CRT - Cryptographic key access

fcs_ckm.3.1/RSA_CRT : The TSF shall perform access to RSA CRT Key in accordance
with a specified cryptographic key access method getExponent() and getModulus() of the
interface javacard.security.RSAPublicKey and getP() ,getQ(),getPQ(),getDP1(),getDQ1() of
the interfaces javacard.security.RSAPrivateCrtKey that meets the following: JCAPI3 .

fcs_ckm.3/EC - Cryptographic key access

fcs_ckm.3.1/EC : The TSF shall perform access to EC(FP) Key in accordance with a
specified cryptographic key access method getA(), getB(), getField(), getG(), getK(), getR()
of the interface javacard.security.ECKey, getS() of the interface
javacard.security.ECPrivateKey, getW() of the javac ard.security.interface ECPublicKey
that meets the following: JCAPI3.

fcs_ckm.3/DSA - Cryptographic key access

fcs_ckm.3.1/DSA : The TSF shall distribute cryptographic keys in accordance with a specified
cryptographic key distribution method getG(), getP(), getQ() of the interface
javacard.security.DSAKey, getX() of the interface j avacard.security.DSAPrivateKey, getY
of the javacard.security.interface DSAPublicKey that meets the following: JCAPI3.

fcs_ckm.4 - Cryptographic key destruction

fcs_ckm.4.1 : The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method clearKey() of the interface javacard.security.Key
that meets the following: JCAPI3 .

fcs_cop.1/DES-TDES_Cipher - Cryptographic operation

fcs_cop.1.1/DES-TDES_Cipher : The TSF shall perform data encryption and decryption
in accordance with a specified cryptographic algorithm Data Encryption Standard (DES,
TripleDES) in ECB/CBC Mode and cryptographic key sizes 64 bits, 128 bits and 192 bits
that meet the following: FIPS_46-3 .

fcs_cop.1/DES_MAC - Cryptographic operation

fcs_cop.1.1/DES_MAC : The TSF shall perform 4 byte and 8 byte MAC generation and
verification in accordance with a specified cryptographic algorithm DES in CBC Mode or
Triple-DES in outer CBC Mode or Retail MAC and cryptographic key sizes 64 bits, 128
bits and 192 bits that meet the following: ISO_9797-1 .

fcs_cop.1/AES_Cipher - Cryptographic operation

fcs_cop.1.1/AES_Cipher : The TSF shall perform data encryption and decryption in
accordance with a specified cryptographic algorithm AES in ECB/CBC Mode and
cryptographic key sizes 128 bits, 192 bits, 256 bits that meet the following: FIPS_197 .

71

fcs_cop.1/AES_MAC - Cryptographic operation

fcs_cop.1.1/AES_MAC : The TSF shall perform 16 byte MAC generation and verification
in accordance with a specified cryptographic algorithm AES in CBC mode and
cryptographic key sizes 128 bits, 192 bits, 256 bits that meet the following: ISO_9797-1.

fcs_cop.1/AES_CMAC - Cryptographic operation

fcs_cop.1.1/AES_CMAC : The TSF shall perform 16 byte MAC generation and
verification in accordance with a specified cryptographic algorithm AES CMAC
calculation and cryptographic key sizes 128 bits, 192 bits, 256 bits that meet the following:
NIST_800-38B.

fcs_cop.1/RSA_Cipher - Cryptographic operation

fcs_cop.1.1/RSA_Cipher : The TSF shall perform data encryption and decryption in
accordance with a specified cryptographic algorithm RSA and cryptographic key sizes
512 bits, 1024 bits, 2048 bits that meet the following: RSA-PKCS1 (scheme PKCS#1
v1.5).

fcs_cop.1/RSA_Signature - Cryptographic operation

fcs_cop.1.1/RSA_Signature : The TSF shall perform digital signature generation and
verification in accordance with a specified cryptographic algorithm RSA with SHA and
cryptographic key sizes 512 bits, 1024 bits, 2048 bits that meet the following: RSA-
PKCS1; ISO_9796-2; RSA_PSS.

fcs_cop.1/EC Signature - Cryptographic operation

fcs_cop.1.1/EC_Signature : The TSF shall perform digital signature generation and
verification in accordance with a specified cryptographic algorithm EC with SHA1,
SHA224, SHA256, SHA384, SHA512 and cryptographic key sizes 160, 192, 224, 256, 384,
521 bits that meet the following: ANSI_X9.62.

fcs_cop.1/SHA - Cryptographic operation

fcs_cop.1.1/SHA : The TSF shall perform secure hash computation in accordance with a
specified cryptographic algorithm SHA1, SHA224, SHA256, SHA384, SHA512 and
cryptographic key sizes none that meet the following: FIPS_180-2.

fcs_cop.1/ECDHKeyExchange - Cryptographic operation

fcs_cop.1.1/ECDHKeyExchange : The TSF shall perform Diffie-Hellman key agreement in
accordance with a specified cryptographic algorithm Elliptic Curve Diffie-Hellmann and
cryptographic key sizes 160, 192, 224, 256, 384, 521 bits that meet the following:
ANSI_X9.62.

fcs_cop.1/DHKeyExchange - Cryptographic operation

fcs_cop.1.1/DHKeyExchange : The TSF shall perform Diffie-Hellman key agreement in
accordance with a specified cryptographic algorithm Diffie-Hellman and cryptographic key
sizes 512, 1024, 1536, 2048 bit that meet the following: see [NIST_800-56Ar2].

72

fcs_cop.1/ECDHGMap - Cryptographic operation

fcs_cop.1.1/ECDHGMap : The TSF shall perform ECDH Generic Mapping key agreement in
accordance with a specified cryptographic algorithm Generic Mapping function and
cryptographic ECC key sizes: 256, 384, 512 and 521 bits that meet the following:
[BSI_TR03110].

fcs_cop.1/DHGMap - Cryptographic operation

fcs_cop.1.1/DHGMap : The TSF shall perform DH Generic Mapping key agreement in
accordance with a specified cryptographic algorithm Generic Mapping function and
cryptographic key sizes 1024, 1536, 2048 bits that meet the following: [BSI_TR03110], [RSA-
PKCS3].

fcs_rng.1/DRBG - Generation of random numbers

fcs_rng.1.1/DRBG : The TSF shall provide a deterministic random number generator which
implements: a list of security capabilities fulfilling requirem ents for Class DRG.3 defined
in [BSI_AIS20/AIS31] standard:

(DRG.3.1) if initialized with a random seed using a PTRNG of class PTG.2 as
random source, the internal state of the RNG shall have at least 100
bits of min-entropy.

(DRG.3.2) The RNG provides forward secrecy

(DRG.3.3) The RNG provides backward secrecy even if the current internal
state is known.

fcs_rng.1.2/DRBG : The TSF shall provide random numbers that meet Class DRG.3
deterministic random [BSI_AIS20/AIS31] based on Hash DRBG of [NIST_800-90A].

(DRG.3.4) The RNG initialized with a random seed du ring every startup and
after 2 32 requests, generates output for more than 2 34 strings of bit
length 128 that are mutually different with probabi lity of w>1-2-16.

(DRG.3.5) Statistical test suites cannot practicall y distinguish the random
numbers from output sequences of an ideal RNG. The random
numbers must pass test procedure A and the NIST statistical test
suite [NIST_800-22].

fdp_rip.1/ABORT - Subset residual information prote ction

fdp_rip.1.1/ABORT : The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects: any
reference to an object instance created during an a borted transaction .
Application Note:
The events that provoke the de-allocation of the previously mentioned references are described
in JCRE22, §7.6.3.

fdp_rip.1/APDU - Subset residual information protec tion

fdp_rip.1.1/APDU : The TSF shall ensure that any previous information content of a resource
is made unavailable upon the allocation of the resource to the following objects: the APDU
buffer .
Application Note:

73

The allocation of a resource to the APDU buffer is typically performed as the result of a call to
the process() method of an applet.

fdp_rip.1/bArray - Subset residual information prot ection

fdp_rip.1.1/bArray : The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects:
the bArray object .
Application Note:
A resource is allocated to the bArray object when a call to an applet's install() method is
performed. There is no conflict with FDP_ROL.1 here because of the bounds on the rollback
mechanism (FDP_ROL.1.2/FIREWALL): the scope of the rollback does not extend outside the
execution of the install() method, and the de-allocation occurs precisely right after the return of
it.

fdp_rip.1/KEYS - Subset residual information protec tion

fdp_rip.1.1/KEYS : The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects:
the cryptographic buffer (D.CRYPTO) .
Application Note:
The javacard.security & javacardx.crypto packages do provide secure interfaces to the
cryptographic buffer in a transparent way. See javacard.security.KeyBuilder and Key interface
of JCAPI22.

fdp_rip.1/TRANSIENT - Subset residual information p rotection

fdp_rip.1.1/TRANSIENT : The TSF shall ensure that any previous information content of a
resource is made unavailable upon the deallocation of the resource from the following
objects: any transient object .
Application Note:
The events that provoke the de-allocation of any transient object are described in JCRE22,
§5.1.

fdp_rol.1/FIREWALL - Basic rollback

fdp_rol.1.1/FIREWALL : The TSF shall enforce the FIREWALL access control SFP and
the JCVM information flow control SFP to permit the rollback of the operations
OP.JAVA and OP.CREATE on the object O.JAVAOBJECT .

fdp_rol.1.2/FIREWALL : The TSF shall permit operations to be rolled back within the scope
of a select(), deselect(), process(), install() or uninstall() call, notwithstanding the
restrictions given in [JCRE22], sect.7.7, within th e bounds of the Commit Capacity
([JCRE22], sect.7.8), and those described in JCAPI22 .
Application Note:
Transactions are a service offered by the APIs to applets. It is also used by some APIs to
guarantee the atomicity of some operation. This mechanism is either implemented in Java Card
platform or relies on the transaction mechanism offered by the underlying platform. Some
operations of the API are not conditionally updated, as documented in JCAPI22 (see for
instance, PIN-blocking, PIN-checking, update of Transient objects).

74

Card Security Management

fau_arp.1/JCS - Security alarms

fau_arp.1.1/JCS : The TSF shall take one of the following actions:
• throw an exception
• lock the card session
• reinitialize the Java Card System and its data
• no other actions

upon detection of a potential security violation.

Refinement:
The "potential security violation" stands for one of the following events:
• CAP file inconsistency,
• typing error in the operands of a bytecode,
• applet life cycle inconsistency,
• card tearing (unexpected removal of the Card out of the CAD) and power failure,
• abort of a transaction in an unexpected context, (see abortTransaction(), [JCAPI3] and

[JCRE3], §7.6.2),
• violation of the Firewall or JCVM SFPs,
• unavailability of resources,
• array overflow,
• other runtime errors related to applet failures (e. g. uncaught exceptions)

Application Note:
• The bytecode verification defines a large set of rules used to detect a "potential security

violation". The actual monitoring of these "events" within the TOE only makes sense when
the bytecode verification is performed on-card.

• Depending on the context of use and the required security level, there are cases where the
card manager and the TOE must work in cooperation to detect and appropriately react in
case of potential security violation. This behavior must be described in this component. It
shall detail the nature of the feedback information provided to the card manager (like the
identity of the offending application) and the conditions under which the feedback will occur
(any occurrence of the java.lang.SecurityException exception).

• The "locking of the card session" may not appear in the policy of the card manager. Such
measure should only be taken in case of severe violation detection; the same holds for the
re-initialization of the Java Card System. Moreover, the locking should occur when "clean"
re-initialization seems to be impossible.

• The locking may be implemented at the level of the Java Card System as a denial of
service (through some systematic "fatal error" message or return value) that lasts up to the
next "RESET" event, without affecting other components of the card (such as the card
manager). Finally, because the installation of applets is a sensitive process, security alerts
in this case should also be carefully considered herein.

fdp_sdi.2 - Stored data integrity monitoring and ac tion

fdp_sdi.2.1 : The TSF shall monitor user data stored in containers controlled by the TSF for
all integrity errors on all objects, based on the following attributes:
• D.PIN value, try counter and associated flags,
• D.APP_KEYs value and initialized flag,
• Elements contained in Secure Arrays (objects instan ces of class SecureArray)
• D.GP_SENSITIVE_DATA

fdp_sdi.2.2 : Upon detection of a data integrity error, the TSF shall maintain a secure state,
deny the use of the corrupted data and/or return an error message .

Application Note:
• Although no such requirement is mandatory in the Java Card specification, at least an

exception shall be raised upon integrity errors detection on cryptographic keys, PIN values

75

and their associated security attributes. Even if all the objects cannot be monitored,
cryptographic keys and PIN objects shall be considered with particular attention by ST
authors as they play a key role in the overall security.

fpr_uno.1/PIN - Unobservability

fpr_uno.1.1/PIN : The TSF shall ensure that all users and subjects are unable to observe the
operation all comparison operations on D.PIN by all users and subjects .

fpr_uno.1/KEY - Unobservability

fpr_uno.1.1/KEY : The TSF shall ensure that all users and subjects are unable to observe
the operation all cryptographic operations on D.APP_KEYs by all users and subjects .

fpt_fls.1 - Failure with preservation of secure sta te

fpt_fls.1.1 : The TSF shall preserve a secure state when the following types of failures occur:
those associated to the potential security violatio ns described in FAU_ARP.1 .

Application Note:
The Java Card RE Context is the Current context when the Java Card VM begins running after
a card reset (JCRE3, §6.2.3) or after a proximity card (PICC) activation sequence (JCRE3).
Behavior of the TOE on power loss and reset is described in JCRE3, §3.6 and §7.1. Behavior of
the TOE on RF signal loss is described in [JCRE3], §3.6.1.

fpt_tdc.1 - Inter-TSF basic TSF data consistency

fpt_tdc.1.1 : The TSF shall provide the capability to consistently interpret the CAP files, the
bytecode and its data arguments when shared between the TSF and another trusted IT
product.

fpt_tdc.1.2 : The TSF shall use
• the rules defined in [JCVM3] specification
• the API tokens defined in the export files of ref erence implementation,
• The ISO 7816-6 rules
• The rules defined in [GP221] Specification
when interpreting the TSF data from another trusted IT product.

Application Note:
Concerning the interpretation of data between the TOE and the underlying Java Card platform,
it is assumed that the TOE is developed consistently with the SCP functions, including memory
management, I/O functions and cryptographic functions.

AID Management

fia_atd.1/AID - User attribute definition

fia_atd.1.1/AID : The TSF shall maintain the following list of security attributes belonging to
individual users:
• Package AID,
• Applet’s version number,
• Registered applet AID,
• Applet Selection Status ([JCVM3], sect.6.5).

Refinement:

76

“Individual users” stand for applets.

fia_uid.2/AID - User identification before any acti on

fia_uid.2.1/AID : The TSF shall require each user to be successfully identified before allowing
any other TSF-mediated actions on behalf of that user.

Application Note:
• By users here it must be understood the ones associated to the packages (or applets) that

act as subjects of policies. In the Java Card System, every action is always performed by
an identified user interpreted here as the currently selected applet or the package that is
the subject's owner. Means of identification are provided during the loading procedure of
the package and the registration of applet instances.

• The role Java Card RE defined in FMT_SMR.1 is attached to an IT security function rather
than to a "user" of the CC terminology. The Java Card RE does not "identify" itself to the
TOE, but it is part of it.

fia_usb.1/AID - User-subject binding

fia_usb.1.1/AID : The TSF shall associate the following user security attributes with subjects
acting on the behalf of that user: Package AID .

fia_usb.1.2/AID : The TSF shall enforce the following rules on the initial association of user
security attributes with subjects acting on the behalf of users: rules defined in
FDP_ACF.1.1/FIREWALL, FMT_MSA.2.1/JCRE, and FMT_MSA .3.1/FIREWALL .

fia_usb.1.3/AID : The TSF shall enforce the following rules governing changes to the user
security attributes associated with subjects acting on the behalf of users: rules defined in
FMT_MSA.1.1/JCRE .
Application Note:
The user is the applet and the subject is the S.PACKAGE. The subject security attribute
"Context" shall hold the user security attribute "package AID".

fmt_mtd.1/JCRE - Management of TSF data

fmt_mtd.1.1/JCRE : The TSF shall restrict the ability to modify the list of registered applets’
AIDs to the JCRE .

Application Note:
The Java Card RE manages other TSF data such as the applet life cycle or CAP files, but this
management is implementation specific. Objects in the Java programming language may also
try to query AIDs of installed applets through the lookupAID(...) API method.

fmt_mtd.3/JCRE - Secure TSF data

fmt_mtd.3.1/JCRE : The TSF shall ensure that only secure values are accepted for the
registered applets’ AIDs .

7.6.1.2 ODELG Security Functional Requirements

The following requirements concern the object deletion mechanism. This mechanism is
triggered by the applet that owns the deleted objects by invoking a specific API method.

77

fdp_rip.1/ODEL - Subset residual information protec tion

fdp_rip.1.1/ODEL : The TSF shall ensure that any previous information content of a resource
is made unavailable upon the deallocation of the resource from the following objects:
the objects owned by the context of an applet insta nce which triggered the execution of
the method javacard.framework.JCSystem.requestObjectDeletion().

Application Note:
• Freed data resources resulting from the invocation of the method

javacard.framework.JCSystem.requestObjectDeletion() may be reused. Requirements on
de-allocation after the invocation of the method are described in [JCAPI3].

• There is no conflict with FDP_ROL.1/FIREWALL here because of the bounds on the
rollback mechanism: the execution of requestObjectDeletion() is not in the scope of the
rollback because it must be performed in between APDU command processing, and
therefore no transaction can be in progress.

Editorial Note:
In the second bullet of Application Note, the original reference as stated in the PP (FDP_ROL.1)
has been changed in FDP_ROL.1/FIREWALL (in order to be compliant with actual name of the
component in the PP and in order to distinguish it from additional requirement
fdp_rol.1/Atomicity).

fpt_fls.1/ODEL - Failure with preservation of secur e state

fpt_fls.1.1 : The TSF shall preserve a secure state when the following types of failures occur:
the object deletion functions fail to delete all th e unreferenced objects owned by the
applet that requested the execution of the method .

Application Note:
The TOE may provide additional feedback information to the card manager in case of potential
security violation (see FAU_ARP.1).

7.6.1.3 GP_API Security Functional Requirements

This group contains the security requirements for the Global Platform API, partially taken form
GlobalPlatform Card Security Requirements Specification 1.0.

fdp_acc.1/GP_API - Subset access control

fdp_acc.1.1/ GP_API : The TSF shall enforce the Global Platform API access control SFP on
S.APPLICATION , O.GP_REGISTRY and all operations among subjects and objects covered
by the SFP. The operations involved in the policy are:

• OP.MANAGE_APP_LIFE_CYCLE_STATE

• OP.GET_CARD_LIFE_CYCLE_STATE

• OP.CARD_LOCK

• OP.CARD_TERMINATE

fdp_acf.1/GP_API - Security attribute based access control

fdp_acf.1.1/GP_API : The TSF shall enforce the GP API access control SFP to objects based
on the following: subjects, objects and their security attributes described hereafter:
Subject/Object Attributes
S.APPLICATION AID

O.GP_REGISTRY ApplicationPrivilege, CardLifeCycleState,
ApplicationLifeCycleState, ApplicationAID

78

fdp_acf.1.2/GP_API : The TSF shall enforce the following rules to determine if an operation
among controlled subjects and controlled objects is allowed:

i. The following operations: OP.MANAGE_APP_LIFE_CYCLE_STATE,
OP.GET_CARD_LIFE_CYCLE_STATE, OP.CARD_LOCK and
OP.CARD_TERMINATE are not allowed to S.APPLICATION when
O.GP_REGISTRY[ApplicationLifeCycleState] is LOCKED ;

ii. OP.MANAGE_APP_LIFE_CYCLE_STATE is only allowed to S.APPLICATION if its
AID is equal to O.GP_REGISTRY[ApplicationAID] of the requested Application Life
Cycle State;

iii. OP.CARD_LOCK is only allowed to S.APPLICATION if
O.GP_REGISTRY[ApplicationPrivilege] includes the Card Lock Privilege;

iv. OP.CARD_TERMINATE is only allowed to S.APPLICATION if
O.GP_REGISTRY[ApplicationPrivilege] includes the Card Terminate Privilege;

fdp_acf.1.3/ GP_API : The TSF shall explicitly authorise access of subjects to objects based
on the following additional rules: none .

fdp_acf.1.4/ GP_API : The TSF shall explicitly deny access of subjects to objects based on the
following additional rules: no rule .

fmt_msa.1/GP_API - Management of security attribute s

fmt_msa.1.1/GP_API : The TSF shall enforce the GP API access control SFP to restrict the
ability to modify the security attributes

• S.APPLICATION[AID], O.GP_REGISTRY[ApplicationPrivil ege] to none

• O.GP_REGISTRY[ApplicationLifeCycleState],
O.GP_REGISTRY[CardLifeCycleState] to S.APPLICATION

fmt_msa.3/GP_API - Static attribute initialization

fmt_msa.3.1/GP_API : The TSF shall enforce the GP API access control SFP to provide
restrictive default values for security attributes that are used to enforce the SFP.

fmt_msa.3.2/GP_API : The TSF shall allow the no roles to specify alternative initial values to
override the default values when an object or information is created.

fmt_smr.1/GP_API - Security roles

fmt_smr.1.1/GP_API : The TSF shall maintain the roles: Applications .

fmt_smr.1.2/GP_API : The TSF shall be able to associate users with roles.

fia_uid.1/GP_API - Timing of identification

fia_uid.1.1/GP_API : The TSF shall allow no TSF-mediated actions on behalf of the user to be
performed before the user is identified.

fia_uid.1.2/GP_API : The TSF shall require each user to be successfully identified before
allowing any other TSF-mediated actions on behalf of that user.

7.6.1.4 SCP Platform Security Functional Requiremen ts

Since the Smart Card Platform belongs to the TOE the following functional requirements
(partially taken over from the ST of the certified hardware platform ([STLite_ST31G480]) that is

79

conformant to [BSI_ PP_0084] and partially taken from [PP_ESforSSD]) are functional
requirements for the TOE.

SCP support and recovery

fdp_acc.1/Atomicity - Subset access control

fdp_acc.1.1 : The TSF shall enforce the Access Control Policy for Atomicity on
Single or multiple WRITE access by S.JCVM and S.JCR E to elements or fields of
persistent O.JAVAOBJECT .

Application Note:
It should be noticed that accessing array’s components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.
Moreover, the conditions under which the operations can be rolled back are stated in
FDP_ROL.1/Atomicity.

fdp_rol.1/Atomicity - Basic rollback

fdp_rol.1.1 : The TSF shall enforce Access Control Policy for Atomicity to permit the
rollback of the Single or multiple WRITE operations on the elements or fields of
persistent O.JAVAOBJECT .

fdp_rol.1.2 : The TSF shall permit operations to be rolled back within the bounds of the
transaction buffer and, in case of multiple WRITE o perations, in the scope between a call
to JCSystem.beginTransaction() and one of the follo wing possible events: a call to
JCSystem.abortTransaction(), unexpected end of JCVM execution, power loss.

Application Note:
It should be noticed that accessing array’s components of a static array, and more generally
fields and methods of static objects, is an access to the corresponding O.JAVAOBJECT.
Moreover, the size of transaction buffer is configurable by the Card Administrator during TOE
initialization based on customer requests.

fpt_fls.1/Operate - Failure with preservation of se cure state

fpt_fls.1.1/Operate : The TSF shall preserve a secure state when the following types of
failures occur:
• loss of power or card tearing,
• failed checksum verification on sensitive data,
• card life cycle state integrity violation,
• NVRAM failure audited through exceptions in the r ead/write operations and

consistency/integrity checks,
• potential security violations and abnormal operatin g conditions detected and made

available by the IC and crypto-library.

IC Hardware

fru_flt.2 - Limited fault tolerance

fru_flt.2.1 : The TSF shall ensure the operation of all the TOE’s capabilities when the following
failures occur: exposure to operating conditions which are not de tected according to the
requirement Failure with preservation of secure sta te (FPT_FLS.1) .

fpt_fls.1/SCP - Failure with preservation of secure state

fpt_fls.1.1/SCP : The TSF shall preserve a secure state when the following types of failures
occur: exposure to operating conditions which may not be tolerated according to the

80

requirement Limited fault tolerance (FRU_FLT.2) and where therefore a malfunction
could occur .
Refinement:
The term “failure” above also covers “circumstances”. The TOE prevents failures for the
“circumstances” defined above.
Regarding application note 14 of [BSI_ PP_0084], the secure state is reached by an immediate
interrupt or by a reset, depending on the current context.
Regarding application note 15 of [BSI_ PP_0084], the TOE provides information on the
operating conditions monitored during Security IC Embedded Software execution and after a
warm reset. No audit requirement is however selected in this Security Target.

fmt_lim.1/Test - Limited capabilities

fmt_lim.1.1 : The TSF shall be designed and implemented in a manner that limits their
capabilities so that in conjunction with “Limited availability (FMT_LIM.2)” the following policy is
enforced: Limited capability and availability policy/Test .

fmt_lim.2/Test - Limited availability

fmt_lim.2.1 : The TSF shall be designed and implemented in a manner that limits their
availability so that in conjunction with “Limited capabilities (FMT_LIM.1/Test)” the following
policy is enforced: Limited capability and availability policy/Test .
Limited capability and availability policy/Test : Deploying Test Features after TOE Delivery
does not allow User Data of the Composite TOE to be disclosed or manipulated, TSF data to be
disclosed or manipulated, software to be reconstructed and no substantial information about
construction of TSF to be gathered which may enable other attacks.

fdp_sdc.1 – Stored Data Confidentiality
fdp_sdc.1.1 : The TSF shall ensure the confidentiality of the information of the user data while it
is stored in all the memory areas where it can be stored .

fdp_sdi.2/SCP – Stored Data integrity monitoring and action
fdp_sdi.2.1/SCP : The TSF shall monitor user data stored in containers controlled by the TSF
for integrity errors on all objects, based on the following attributes: user data stored in all
possible memory areas, depending on the integrity c ontrol attributes .
Upon detection of a data integrity error, the TSF shall signal the error and react .

fpt_php.3 - Resistance to physical attack

fpt_php.3.1 : The TSF shall resist physical manipulation and physical probing to the
TSF by responding automatically such that the SFRs are always enforced.
Refinement:
The TSF will implement appropriate mechanisms to continuously counter physical manipulation
and physical probing. Due to the nature of these attacks (especially manipulation) the TSF can
by no means detect attacks on all of its elements. Therefore, permanent protection against
these attacks is required ensuring that security functional requirements are enforced. Hence,
“automatic response” means here (i) assuming that there might be an attack at any time and (ii)
countermeasures are provided at any time.

fdp_itt.1 - Basic internal transfer protection

fdp_itt.1.1 : The TSF shall enforce the Data Processing Policy to prevent the
disclosure of user data when it is transmitted between physically-separated parts of the

81

TOE.

fpt_itt.1 - Basic internal TSF data transfer protec tion

fpt_itt.1.1 : The TSF shall protect TSF data from disclosure when it is transmitted
between separate parts of the TOE.
Refinement:
The different memories, the CPU and other functional units of the TOE (e.g. a cryptographic co-
processor) are seen as separated parts of the TOE. This requirement is equivalent to
FDP_ITT.1 above but refers to TSF data instead of User Data. Therefore, it should be
understood as to refer to the same Data Processing Policy defined under FDP_IFC.1 below.

fdp_ifc.1 - Subset information flow control

fdp_ifc.1.1 : The TSF shall enforce the Data Processing Policy on all confidential
data when they are processed or transferred by the TSF or by the Security IC Embedded
Software .
Data Processing Policy
User Data of the Composite TOE and TSF data shall not be accessible from the TOE except
when the Security IC Embedded Software decides to communicate the User Data via an
external interface. The protection shall be applied to confidential data only but without the
distinction of attributes controlled by the Security IC Embedded Software.

fcs_rng.1/IC – Generation of random numbers

fcs_rng.1.1/IC : The TSF shall provide a physical random number generator that
implements:

� A total failure test detects a total failure of ent ropy source immediately when
the RNG has started. When a total failure is detect ed, no random numbers
will be output .

� If a total failure of the entropy source occurs whi le the RNG is being
operated, the RNG prevents the output of any intern al random number that
depends on some raw random numbers that have been g enerated after the
total failure of the entropy source.

� The online test shall detect non-tolerable statisti cal defects of the raw
random number sequence (i) immediately when the RNG has started, and (ii)
while the RNG is being operated. The TSF must not o utput any random
numbers before the power-up online test has finishe d successfully or when a
defect has been detected.

� The online test procedure shall be effective to det ect non-tolerable
weaknesses of the random numbers soon.

� The online test procedure checks the quality of the raw random number
sequence. It is triggered externally. The online te st is suitable for detecting
non-tolerable statistical defects of the statistica l properties of the raw
random numbers within an acceptable period of time.

fcs_rng.1.2/IC : The TSF shall provide octets of bits that meet:

� Test procedure A does not distinguish the internal random numbers from
output sequences of an ideal RNG.

� The average Shannon entropy per internal random bit exceeds 0.997.

82

7.6.1.5 Additional Security Functional Requirements

fpt_tst.1 - TSF testing

fpt_tst.1.1 : The TSF shall run a suite of self tests at the conditions: during initial start-up
and periodically during normal operation to demonstrate the correct operation of the TSF .

fpt_tst.1.2 : The TSF shall provide authorised users with the capability to verify the integrity of
TSF data .

fpt_tst.1.3 : The TSF shall provide authorised users with the capability to verify the integrity of
parts of TSF (TSF executable code) .

fpt_emsec.1 - TOE emanation

fpt_emsec.1.1 : The TOE shall not emit variations in power consumption or timing
during command execution in excess of non-useful information enabling access to
TSF Data: D.CRYPTO and User Data: D_APP_KEYs, D.PIN .

fpt_emsec.1.2 : The TSF shall ensure unauthorized users are unable to use the following
interface electrical contacts to gain access to TSF Data: D.CRYPTO and User
Data: D_APP_KEYs, D.PIN .

7.6.2 TOE Security assurance requirements

The assurance requirements of this evaluation are EAL5 augmented by ALC_DVS.2 and
AVA_VAN.5.
The assurance requirements ensure, among others, the security of the TOE during its
development and production. We present here some application notes on the assurance
requirements included in the EAL of the ST.

ADV_FSP.5 Complete semi-formal functional specification with additional error information

ADV_ARC.1 Security architecture description

ADV_TDS.4 Semiformal modular design

ADV_IMP.1 Implementation representation of the TSF

ADV_INT.2 Well-structured internals
These SARs ensure that the TOE will be able to meet its security requirements and fulfill its
objectives. The Java Card System shall implement the [7]. The implementation of the Java
Card API shall be designed in a secure manner, including specific techniques to render
sensitive operations resistant to state-of-art attacks.

AGD_OPE.1 Operational user guidance
These SARs ensure proper installation and configuration: the TOE will be correctly configured
and the TSFs will be put in good working order. The administrator is the card Issuer, the
platform developer, the card embedder or any actor who participates in the fabrication of the
TOE once its design and development is complete (its source code is available and released by
the TOE designer). The users are applet developers, the card manager developers, and
possibly the final user of the TOE.
The applet and API packages programmers should have a complete understanding of the
concepts defined in [8] and [9]. They must delegate key management, PIN management and
cryptographic operations to dedicated APIs. They should carefully consider the effect of any
possible exception or specific event and take appropriate measures (such as catch the
exception, abort the current transaction, and so on.). They must comply with all the

83

recommendations given in the platform programming guide as well. Failure to do so may
jeopardize parts of (or even the whole) applet and its confidential data.
This guidance also includes the fact that sharing object(s) or data between applets (through
shareable interface mechanism, for instance) must include some kind of authentication of the
involved parties, even when no sensitive information seems at stake (so-called “defensive
development”).

AGD_PRE.1 Preparative procedures
This SAR ensures the integrity of the TOE and its documentation during the transfer of the TOE
between all the actors appearing in the first two stages. Procedures shall ensure protection of
TOE material/information under delivery and storage that corrective actions are taken in case of
improper operation in the delivery process and storage and that people dealing with the
procedure for delivery have the required skills.

ALC_CMC.4 Production support, acceptance procedures and automation

ALC_CMS.5 Development tools CM coverage
These components contribute to the integrity and correctness of the TOE during its
development. Procedures dealing with physical, personnel, organizational, technical measures
for the confidentiality and integrity of Java Card System software (source code and any
associated documents) shall exist and be applied in software development.

ALC_DEL.1 Delivery procedures

ALC_LCD.1 Developer defined life-cycle model

ALC_TAT.2 Compliance with implementation standards
It is assumed that security procedures are used during all manufacturing and test operations
through the production phase to maintain confidentiality and integrity of the TOE and of its
manufacturing and test data (to prevent any possible copy, modification, retention, theft or
unauthorized use).

ATE_COV.2 Analysis of coverage

ATE_DPT.3 Testing: modular design

ATE_FUN.1 Functional testing

ATE_IND.2 Independent testing - sample
The purpose of these SARs is to ensure whether the TOE behaves as specified in the design
documentation and in accordance with the TOE security functional requirements.
This is accomplished by determining that the developer has tested the security functions
against its functional specification and high level design, gaining confidence in those tests
results by performing a sample of the developer’s tests, and by independently testing a subset
of the security functions.

ASE_CCL.1 Conformance claims

ASE_ECD.1 Extended components definition

ASE_INT.1 ST Introduction
ASE_OBJ.2 Security objectives

ASE_REQ.2 Derived security requirements

ASE_SPD.1 Security problem definition

ASE_TSS.1 TOE summary specification
These requirements are covered by this document.
Augmentation of level EAL5 results from the selection of the following two SARs:

ALC_DVS.2 Sufficiency of security measures

84

EAL5 requires for the development security the assurance component ALC_DVS.1. This
dictates a documentation and check of the security measures in the development environment.
The component ALC_DVS.2 requires additionally a justification, that the measures provide the
necessary level of protection.

AVA_VAN.5 Advanced methodical vulnerability analysis
EAL5 requires for the vulnerability assessment the assurance component AVA_VAN.4.
Its aim is to determine whether the TOE, in its intended environment, has vulnerabilities
exploitable by attackers processing moderate attack potential. In order to provide the necessary
level of protection, EAL5 is augmented with the component AVA_VAN.5, which requires that
the TOE is resistant against attackers processing high attack potential.

7.6.3 Security requirements rationale

7.6.3.1 OBJECTIVES

Identification

O.SID
Subjects' identity is AID-based (applets, packages), and is met by the following SFRs:
FIA_ATD.1/AID, FMT_MSA.1/JCRE, FMT_MSA.1/JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, FMT_MTD.1/JCRE and FMT_MTD.3/JCRE.
Lastly, installation procedures ensure protection against forgery (the AID of an applet is under
the control of the TSFs) or re-use of identities (FIA_UID.2/AID, FIA_USB.1/AID).

O.ROLES
Users’ identification and association with corresponding roles is ensured by
FMT_SMR.1/GP_API

85

Execution

O.FIREWALL
This objective is met by the FIREWALL access control policy (FDP_ACC.2/FIREWALL and
FDP_ACF.1/FIREWALL) and the JCVM information flow control policy (FDP_IFF.1/JCVM,
FDP_IFC.1/JCVM) The functional requirements of the class FMT (FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FMT_SMR.1, FMT_SMF.1, FMT_MSA.2/FIREWALL_JCVM,
FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM, FMT_MSA.1/JCRE and FMT_MSA.1/JCVM)
also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_CONFID
Only arrays can be designated as global, and the only global arrays required in the Java Card
API are the APDU buffer and the byte array input parameter (bArray) to an applet's install
method. The clearing requirement of those arrays is met by FDP_RIP.1/APDU and
FDP_RIP.1/bArray respectively. The JCVM information flow control policy (FDP_IFF.1/JCVM,
FDP_IFC.1/JCVM) prevents an application from keeping a pointer to a shared buffer, which
could be used to read its contents when the buffer is being used by another application.

O.GLOBAL_ARRAYS_INTEG
This objective is met by the JCVM information flow control policy (FDP_IFF.1/JCVM,
FDP_IFC.1/JCVM), which prevents an application from keeping a pointer to the input/output
buffer of the card, or any other global array that is shared by all the applications. Such a pointer
could be used to access and modify it when the buffer is being used by another application.

O.NATIVE
This security objective is covered by FDP_ACF.1/FIREWALL: the only means to execute native
code is the invocation of a Java Card API method.

O.OPERATE
The TOE is protected in various ways against applets' actions (FPT_TDC.1), the FIREWALL
access control policy (FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL), and is able to
detect and block various failures or security violations during usual working (FPT_FLS.1,
FPT_FLS.1/ODEL, FAU_ARP.1/JCS). Its security-critical parts and procedures are also
protected: applets' installation may be cleanly aborted (FDP_ROL.1/FIREWALL),
communication with external users and their internal subjects is well-controlled (FIA_ATD.1/AID
and FIA_USB.1/AID) to prevent alteration of TSF data (also protected by components of the
FPT class).
Almost every objective and/or functional requirement indirectly contributes to this one too.

Application Note : In addition, protection of the start-up phase of the TOE (TSF-testing)
is also indirectly covered by FPT_TST.1. Functional requirements that indirectly
contribute to satisfy this objective are: FDP_ACC.1 /ATOMICITY, FDP_ROL.1/ATOMICITY,
FPT_FLS.1/OPERATE, FPT_FLS.1/SCP.

O.REALLOCATION
This security objective is satisfied by the following SFRs: FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT,
FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, which imposes that the contents of the reallocated
block shall always be cleared before delivering the block.

O.RESOURCES
The TSFs detects stack/memory overflows during execution of applications (FAU_ARP.1/JCS,
FPT_FLS.1, FPT_FLS.1/ODEL). Failed installations are not to create memory leaks

86

(FDP_ROL.1/FIREWALL) as well. Memory management is controlled by the TSF
(FMT_MTD.1/JCRE, FMT_MTD.3/JCRE, FMT_SMR.1 and FMT_SMF.1).

O.SCP.RECOVERY
In case of loss of power, or if the smart card is withdrawn from the CAD while an operation is in
progress, mechanisms implemented in the TSF allow to recover to a consistent and secure
state (FPT_FLS.1/OPERATE), eventually completing the interrupted operation or rolling it back
(FDP_ROL.1/ATOMICITY).

O.SCP.IC
This objective is automatically satisfied by security requirements drawn from the Security
Target Lite of the certified secure microcontroller ([STLite_ST31G480]) and listed in section
7.6.1.4 - SCP Platform Security Functional Requirements– IC Hardware (i.e: FPT_FLS.1,
FRU_FLT.2, FPT_FLS.1/SCP, FMT_LIM.1/Test, FMT_LIM.2/Test, FDP_SDC.1,
FDP_SDI.2/SCP, FPT_PHP.3, FDP_ITT.1, FPT_ITT.1, FDP_IFC.1).

O.SCP.SUPPORT
TSF Secure mechanism for storing data in NVRAM memory and supporting transactional
updates has been defined by FDP_ACC.1/ATOMICITY and FDP_ROL.1/ATOMICITY. The
SCP portion of the TSF, relying on the certified secure microcontroller and associated crypto-
library ([STLite_ST31G480]), provides low-level cryptographic primitives to allow
implementation of the Java Card System cryptography services (see O.CIPHER). In addition
the SCP provides self-test mechanisms (as defined by FPT_TST.1) and preserves a secure
state in case of security violations detected by low-level routines or by the IC
(FPT_FLS.1/Operate).

Services

O.ALARM
This objective is met by FPT_FLS.1, FPT_FLS.1/ODEL which guarantee that a secure state is
preserved by the TSF when failures occur, and FAU_ARP.1/JCS which defines TSF reaction
upon detection of a potential security violation.

O.CIPHER
This security objective is directly covered by the instantiations of FCS_CKM.1, FCS_CKM.2,

FCS_CKM.3, FCS_CKM.4 and FCS_COP.1. The instantiation of the SFR FPR_UNO.1,

frp_uno.1/Key, contributes in covering this security objective and controls the observation of the

cryptographic operations which may be used to disclose the keys.

FCS_RNG.1/IC and FCS_RNG.1/DRBG also contribute in covering O.CIPHER because
random generation is provided as a cryptographic service to applications and plays an
important role in cryptographic algorithms and countermeasures.

O.KEY-MNGT
This relies on the same security functional requirements as O.CIPHER, plus FDP_RIP.1 and
FDP_SDI.2/SCP as well. Precisely it is met by the following components and related
instantiations: FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, FCS_CKM.4, FCS_COP.1,
FPR_UNO.1/KEY, FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS, FDP_RIP.1/APDU,
FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS and FDP_RIP.1/TRANSIENT.

O.PIN-MNGT
This security objective is ensured by FDP_RIP.1/ODEL, FDP_RIP.1/OBJECTS,
FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,

87

FDP_RIP.1/TRANSIENT FPR_UNO.1/PIN, FDP_ROL.1/FIREWALL and FDP_SDI.2 security
functional requirements. The TSFs behind these are implemented by API classes. The firewall
security functions (FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL) shall protect the
access to private and internal data of the objects.

O.TRANSACTION
Directly met by FDP_ROL.1/FIREWALL, FDP_RIP.1/ABORT (more precisely, by the element
FDP_RIP.1.1/ABORT), FDP_RIP.1/ODEL, FDP_RIP.1/APDU, FDP_RIP.1/bArray,
FDP_RIP.1/KEYS, FDP_RIP.1/TRANSIENT and FDP_RIP.1/OBJECTS (more precisely, by the
element FDP_RIP.1.1/OBJECTS).

O.OBJ-DELETION
This security objective specifies that deletion of objects is secure. The security objective is met
by the security functional requirements FDP_RIP.1/ODEL and FPT_FLS.1/ODEL.

Embedded Software

O.SIDE_CHANNEL
This security objective requires the TOE to protect confidential user and TSF data stored and/or
processed in the smart card IC, against disclosure by measurement and analysis of the shape
and amplitude of signals or the time between events found by measuring signals on the
electromagnetic field, power consumption, clock, or I/O lines, which is addressed by the SFR
FPT_EMSEC.1.

O.LIFE_CYCLE
This is ensured by the policy defined in FDP_ACC.1/GP_API and FDP_ACF.1/GP_API and
enforced by the rules defined in FMT_MSA.1/GP_API, FMT_MSA.3/GP_API and
FIA_UID.1/GP_API, the TOE manages its own life cycle states as well as transitions between
them and rejects operations unexpected in its current life cycle.

7.6.3.2 Rationale tables of security objectives and SFRs

Component Objectives

fdp_acc.2/FIREWALL
O.FIREWALL
O.OPERATE
O.PIN-MNGT

fdp_acf.1/FIREWALL

O.FIREWALL
O.NATIVE
O.OPERATE
O.PIN-MNGT

fdp_ifc.1/JCVM
O.FIREWALL
O.GLOBAL_ARRAYS_CONFID
O.GLOBAL_ARRAYS_INTEG

fdp_iff.1/JCVM
O.FIREWALL
O.GLOBAL_ARRAYS_CONFID
O.GLOBAL_ARRAYS_INTEG

fdp_rip.1/OBJECTS

O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fmt_msa.1/JCRE
O.SID
O.FIREWALL

fmt_msa.1/JCVM
O.SID
O.FIREWALL

88

fmt_msa.2/FIREWALL_JCVM O.FIREWALL

fmt_msa.3/FIREWALL
O.SID
O.FIREWALL

fmt_msa.3/JCVM
O.SID
O.FIREWALL

fmt_smf.1
O.FIREWALL
O.RESOURCES

fmt_smr.1
O.FIREWALL
O.RESOURCES

fcs_ckm.1/RSA
O.CIPHER
O.KEY-MNGT

fcs_ckm.1/EC
O.CIPHER
O.KEY-MNGT

fcs_ckm.1/DSA
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/DES
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/AES
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/RSA_STD
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/RSA_CRT
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/EC
O.CIPHER
O.KEY-MNGT

fcs_ckm.2/DSA
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/DES
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/AES
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/RSA_STD
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/RSA_CRT
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/EC
O.CIPHER
O.KEY-MNGT

fcs_ckm.3/DSA
O.CIPHER
O.KEY-MNGT

fcs_ckm.4
O.CIPHER
O.KEY-MNGT

fcs_cop.1/DES-TDES_Cipher
O.CIPHER
O.KEY-MNGT

fcs_cop.1/DES_MAC
O.CIPHER
O.KEY-MNGT

fcs_cop.1/AES_Cipher
O.CIPHER
O.KEY-MNGT

fcs_cop.1/AES_MAC
O.CIPHER
O.KEY-MNGT

fcs_cop.1/AES_CMAC
O.CIPHER
O.KEY-MNGT

89

fcs_cop.1/RSA_Cipher
O.CIPHER
O.KEY-MNGT

fcs_cop.1/RSA_Signature
O.CIPHER
O.KEY-MNGT

fcs_cop.1/EC_Signature
O.CIPHER
O.KEY-MNGT

fcs_cop.1/SHA
O.CIPHER
O.KEY-MNGT

fcs_cop.1/ECDH_KeyExchange
O.CIPHER
O.KEY-MNGT

fcs_cop.1/DH_KeyExchange
O.CIPHER
O.KEY-MNGT

fcs_cop.1/ECDHGMap
O.CIPHER
O.KEY-MNGT

fcs_cop.1/DHGMap
O.CIPHER
O.KEY-MNGT

fcs_rng.1/DRBG
O.SCP.SUPPORT
O.CIPHER

fdp_rip.1/ABORT

O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fdp_rip.1/APDU

O.GLOBAL_ARRAYS_CONFID
O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fdp_rip.1/bArray

O.GLOBAL_ARRAYS_CONFID
O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fdp_rip.1/KEYS

O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fdp_rip.1/TRANSIENT

O.REALLOCATION
O.KEY-MNGT
O.PIN-MNGT
O.TRANSACTION

fdp_rol.1/FIREWALL

O.OPERATE
O.RESOURCES
O.PIN-MNGT
O.TRANSACTION

fau_arp.1/JCS
O.OPERATE
O.RESOURCES
O.ALARM

fdp_sdi.2
O.KEY-MNGT
O.PIN-MNGT

90

fpr_uno.1/PIN O.PIN-MNGT

fpr_uno.1/KEY
O.CIPHER
O.KEY-MNGT

fpt_fls.1
O.OPERATE
O.RESOURCES
O.ALARM

fpt_tdc.1 O.OPERATE

fia_atd.1/AID
O.SID
O.OPERATE

fia_uid.2/AID O.SID

fia_usb.1/AID
O.SID
O.OPERATE

fmt_mtd.1/JCRE
O.SID
O.FIREWALL
O.RESOURCES

fmt_mtd.3/JCRE
O.SID
O.FIREWALL
O.RESOURCES

fdp_rip.1/ODEL

, O.REALLOCATION,
O.KEY-MNGT,
O.PIN-MNGT,
O.TRANSACTION,
O.OBJ-DELETION

fpt_fls.1/ODEL

O.OPERATE,
O.RESOURCES,
O.ALARM,
O.OBJ-DELETION

fdp_acc.1/GP_API O.LIFE_CYCLE

fdp_acf.1/GP_API O.LIFE_CYCLE

fmt_msa.1/GP_API O.LIFE_CYCLE

fmt_msa.3/GP_API O.LIFE_CYCLE

fmt_smr.1/GP_API O.ROLES

fia_uid.1/GP_API O.LIFE_CYCLE

fdp_acc.1/Atomicity
O.OPERATE (indirectly)
O.SCP.SUPPORT

fdp_rol.1/Atomicity
O.OPERATE (indirectly)
O.SCP.RECOVERY
O.SCP.SUPPORT

fpt_fls.1/Operate
O.OPERATE (indirectly)
O.SCP.RECOVERY
O.SCP.SUPPORT

fru_flt.2 O.SCP.IC

fpt_fls.1/SCP

O.OPERATE
O.RESOURCES
O.ALARM
O.SCP.IC

fmt_lim.1/Test O.SCP.IC

fmt_lim.2/Test O.SCP.IC

fdp_sdc.1 O.SCP.IC

fdp_sdi.2 O.SCP.IC

91

fpt_php.3 O.SCP.IC

fdp_itt.1 O.SCP.IC

fpt_itt.1 O.SCP.IC

fdp_ifc.1 O.SCP.IC

fcs_rng.1/IC
O.SCP.SUPPORT
O.CIPHER

fcs_cop.1/DRBG
O.SCP.SUPPORT
O.CIPHER

fpt_tst.1
O.OPERATE (indirectly)
O.SCP.SUPPORT

fpt_emsec.1 O.SIDE_CHANNEL

Table 12 - Security Functional Requirements (SFR) vs. Objectives

7.6.3.3 Dependencies

SFRs dependencies

Requirements CC Dependencies Satisfied Dependencies

fdp_acc.2/FIREWALL fdp_acf.1 fdp_acf.1/FIREWALL

fdp_acf.1/FIREWALL
fdp_acc.1
fmt_msa.3

fdp_acc.2/FIREWALL
fmt_msa.3/FIREWALL

fdp_ifc.1/JCVM fdp_iff.1 fdp_iff.1/JCVM

fdp_iff.1/JCVM
fdp_ifc.1
fmt_msa.3

fdp_ifc.1/JCVM
fmt_msa.3/JCVM

fdp_rip.1/OBJECTS No dependencies No dependencies

fmt_msa.1/JCRE
fmt_smr.1
fmt_smf.1
One of : fdp_acc.1, fdp_ifc.1

fdp_acc.2/FIREWALL
fmt_smr.1
fmt_smf.1 dependency is not
supported (see below)

fmt_msa.1/JCVM
fmt_smr.1
fmt_smf.1
One of : fdp_acc.1, fdp_ifc.1

fmt_smr.1
fmt_smf.1
fdp_acc.2/FIREWALL
fdp_ifc.1/JCVM

fmt_msa.2/FIREWALL_JCVM
fmt_msa.1
fmt_smr.1
One of : fdp_acc.1 fdp_ifc.1

fmt_msa.1/JCVM
fmt_msa.1/JCRE
fmt_smr.1
fdp_acc.2/FIREWALL
fdp_ifc.1/JCVM

fmt_msa.3/FIREWALL
fmt_msa.1
fmt_smr.1

fmt_msa.1/JCRE
fmt_msa.1/JCVM
fmt_smr.1

fmt_msa.3/JCVM
fmt_msa.1
fmt_smr.1

fmt_msa.1/JCVM
fmt_smr.1

fmt_smf.1 No dependencies No dependencies

fmt_smr.1 fia_uid.1 fia_uid.2/AID

fcs_ckm.1/RSA
fcs_ckm.1/EC
fcs_ckm.1/DSA

fcs_ckm.4
One of : fcs_ckm.2 fcs_cop.1

fcs_ckm.4
fcs_ckm.2

fcs_ckm.2/DES
fcs_ckm.2/AES
fcs_ckm.2/RSA_STD

fcs_ckm.4
One of : fdp_itc.1 fdp_itc.2 fcs_ckm.1

fcs_ckm.4
fcs_ckm.1/EC
fcs_ckm.1/RSA
fcs_ckm.1/DSA

92

fcs_ckm.2/RSA_CRT
fcs_ckm.2/EC
fcs_ckm.2/DSA

fcs_ckm.3/DES
fcs_ckm.3/AES
fcs_ckm.3/RSA_STD
fcs_ckm.3/RSA_CRT
fcs_ckm.3/EC
fcs_ckm.3/DSA

fcs_ckm.4
One of : fdp_itc.1 fdp_itc.2 fcs_ckm.1

fcs_ckm.4
fcs_ckm.1/EC
fcs_ckm.1/RSA
fcs_ckm.1/DSA

fcs_ckm.4 One of : fdp_itc.1 fdp_itc.2 fcs_ckm.1
fcs_ckm.1/EC
fcs_ckm.1/RSA
fcs_ckm.1/DSA

fcs_cop.1/DES-TDES_Cipher
fcs_cop.1/DES_MAC
fcs_cop.1/AES_Cipher
fcs_cop.1/AES_MAC
fcs_cop.1/AES_CMAC
fcs_cop.1/RSA_Cipher
fcs_cop.1/RSA_Signature
fcs_cop.1/EC_Signature
fcs_cop.1/SHA
fcs_cop.1/ECDH_KeyExchange
fcs_cop.1/DH_KeyExchange
fcs_cop.1/ECDHGMap
fcs_cop.1/DHGMap

fcs_ckm.4
One of : fdp_itc.1 fdp_itc.2 fcs_ckm.1

fcs_ckm.4
fcs_ckm.1/EC
fcs_ckm.1/RSA
fcs_ckm.1/DSA

fcs_rng.1/DRBG No dependencies No dependencies

fdp_rip.1/ABORT No dependencies No dependencies

fdp_rip.1/APDU No dependencies No dependencies

fdp_rip.1/bArray No dependencies No dependencies

fdp_rip.1/KEYS No dependencies No dependencies

fdp_rip.1/TRANSIENT No dependencies No dependencies

fdp_rol.1/FIREWALL One of: fdp_acc.1 fdp_ifc.1
fdp_acc.2/FIREWALL,
fdp_ifc.1/JCVM

fau_arp.1/JCS fau_saa.1 Not supported (see below)

fdp_sdi.2 No dependencies No dependencies

fpr_uno.1/PIN No dependencies No dependencies

fpr_uno.1/KEY No dependencies No dependencies

fpt_fls.1 No dependencies No dependencies

fpt_tdc.1 No dependencies No dependencies

fia_atd.1/AID No dependencies No dependencies

fia_uid.2/AID No dependencies No dependencies

fia_usb.1/AID fia_atd.1 fia_atd.1/AID

fmt_mtd.1/JCRE
fmt_smr.1
fmt_smf.1

fmt_smr.1
fmt_smf.1

fmt_mtd.3/JCRE fmt_mtd.1 fmt_mtd.1/JCRE

fdp_rip.1/ODEL No dependencies No dependencies

fpt_fls.1/ODEL No dependencies No dependencies

fdp_acc.1/GP_API fdp_acf.1 fdp_acf.1/GP_API

fdp_acf.1/GP_API One of : fdp_acc.1 fdp_ifc.1 fdp_acc.1/GP_API

fmt_msa.1/GP_API
fmt_smr.1
fmt_smf.1
One of : fdp_acc.1 fdp_ifc.1

fmt_smr.1/GP_API
fmt_smf.1 not supported
fdp_acc.1/GP_API

93

fmt_msa.3/GP_API
fmt_msa.1
fmt_smr.1

fmt_msa.1/GP_API
fmt_smr.1/GP_API

fmt_smr.1/GP_API fia_uid.1 fia_uid.1/GP_API

fia_uid.1/GP_API No dependencies No dependencies

fdp_acc.1/Atomicity fdp_acf.1 Not supporte Not supported (see below)

fdp_rol.1/Atomicity One of : fdp_acc.1 fdp_ifc.1 fdp_acc.1/Atomicity

fpt_fls.1/Operate No dependencies No dependencies

fru_flt.2 fpt_fls.1/SCP fpt_fls.1/SCP

fpt_fls.1/SCP No dependencies No dependencies

fmt_lim.1/Test fmt_lim.2/Test fmt_lim.2/Test

fmt_lim.2/Test fmt_lim.1/Test fmt_lim.1/Test

fdp_sdc.1 No dependencies No dependencies

fdp_sdi.2/SCP No dependencies No dependencies

fpt_php.3 No dependencies No dependencies

fdp_itt.1 One of : fdp_acc.1 fdp_ifc.1 fdp_ifc.1

fpt_itt.1 No dependencies No dependencies

fdp_ifc.1 fdp_iff.1 Not supported (see below)

fcs_rng.1/IC No dependencies No dependencies

fpt_tst.1 No dependencies No dependencies

fpt_emsec.1 fpt_emsec.1 fpt_emsec.1

Table 13 - Security Functional Requirements (SFRs) dependencies

Rationale for the exclusion of dependencies

The dependency FMT_SMF.1 of FMT_MSA.1/JCRE is unsup ported. The dependency
between FMT_MSA.1/JCRE and FMT_SMF.1 is not satisfied because no management
functions are required for the Java Card RE.
The dependency FAU_SAA.1 of FAU_ARP.1 is unsupporte d. Potential violation analysis is
used to specify the set of auditable events whose occurrence or accumulated occurrence held
to indicate a potential violation of the SFRs, and any rules to be used to perform the violation
analysis. The dependency of FAU_ARP.1/JCS on this functional requirement assumes that a
"potential security violation" is an audit event indicated by the FAU_SAA.1 component. The
events listed in FAU_ARP.1/JCS are, on the contrary, merely self-contained ones (arithmetic
exception, ill-formed bytecodes, access failure) and ask for a straightforward reaction of the
TSFs on their occurrence at runtime. The JCVM or other components of the TOE detect these
events during their usual working order. Thus, in principle there would be no applicable audit
recording in this framework.
Moreover, no specification of one such recording is provided elsewhere. Therefore no set of
auditable events could possibly be defined.
The dependency FMT_SMF.1 of FMT_MSA.1/GP_API is uns upported. The dependency
between FMT_MSA.1/GP_API and FMT_SMF.1 is not satisfied because no management
functions are required for the GP API.
The dependency FDP_ACF.1 of FDP_ACC.1/Atomicity is unsupported. The FDP_ACC
requirement serves as a framework for the definition of the operations that can be rolled back.
There is no need to require FDP_ACF since there is neither mandatory attribute nor rule.
The dependency FDP_IFF.1 of FDP_IFC.1 is unsupported (taken from PP_0035). Part 2 of
the Common Criteria defines the dependency of FDP_IFC.1 (information flow control policy
statement) on FDP_IFF.1 (Simple security attributes). The specification of FDP_IFF.1 would not
capture the nature of the security functional requirement nor add any detail. As stated in the
Data Processing Policy referred to in FDP_IFC.1 there are no attributes necessary. The security
functional requirement for the TOE is sufficiently described using FDP_ITT.1 and its Data
Processing Policy (FDP_IFC.1).

94

SARs dependencies

EAL5+ Assu rance

Requirements
CC Dependencies Satisfied Dependencies

ADV_ARC.1 (ADV_FSP.1) and (ADV_TDS.1) ADV_FSP.5, ADV_TDS.4
ADV_FSP.5 (ADV_IMP.1) and (ADV_TDS.1) ADV_IMP.1, ADV_TDS.4
ADV_IMP.1 (ADV_TDS.3) and (ALC_TAT.1) ADV_TDS.4, ALC_TAT.2
ADV_INT.2 (ADV_IMP.1) and (ADV_TDS.3) and

(ALC_TAT.1)
ADV_IMP.1, ADV_TDS.4,

ALC_TAT.2
ADV_TDS.4 (ADV_FSP.5) ADV_FSP.5
AGD_OPE.1 (ADV_FSP.1) ADV_FSP.5
AGD_PRE.1 No dependencies
ALC_CMC.4 (ALC_CMS.1) and (ALC_DVS.1) and

 (ALC_LCD.1)
ALC_CMS.4, ALC_DVS.2,)

ALC_LCD.1
ALC_CMS.5 No dependencies
ALC_DEL.1 No dependencies
ALC_DVS.2 No dependencies
ALC_LCD.1 No dependencies
ALC_TAT.2 (ADV_IMP.1) ADV_IMP.1
ASE_CCL.1 (ASE_ECD.1) and (ASE_INT.1) and

(ASE_REQ.1)
ASE_ECD.1, ASE_INT.1,

ASE_REQ.2
ASE_ECD.1 No dependencies
ASE_INT.1 No dependencies
ASE_OBJ.2 (ASE_SPD.1) ASE_SPD.1
ASE_REQ.2 (ASE_ECD.1) and (ASE_OBJ.2) ASE_ECD.1, ASE_OBJ.2
ASE_SPD.1 No dependencies
ASE_TSS.1 (ADV_FSP.1) and (ASE_INT.1) and

(ASE_REQ.1)
ADV_FSP.5, ASE_INT.1,

ASE_REQ.2
ATE_COV.2 (ADV_FSP.2) and (ATE_FUN.1) ADV_FSP.5, ATE_FUN.1
ATE_DPT.3 (ADV_ARC.1) and (ADV_TDS.4) and

(ATE_FUN.1)
ADV_ARC.1, ADV_TDS.4,

ATE_FUN.1
ATE_FUN.1 (ATE_COV.1) ATE_COV.2
ATE_IND.2 (ADV_FSP.2) and (AGD_OPE.1) and

(AGD_PRE.1) and (ATE_COV.1) and
(ATE_FUN.1)

ADV_FSP.5, AGD_OPE.1,
AGD_PRE.1, ATE_COV.2,

ATE_FUN.1
AVA_VAN.5 (ADV_ARC.1) and (ADV_FSP.4) and

(ADV_IMP.1) and (ADV_TDS.3) and
(AGD_OPE.1) and (AGD_PRE.1) and

(ATE_DPT.1)

ADV_ARC.1, ADV_FSP.5,
ADV_IMP.1, ADV_TDS.4,

AGD_OPE.1, AGD_PRE.1,
ATE_DPT.3

Table 14 - Security Assurance Requirements (SARs) dependencies

Rationale for the Security Assurance Requirements

EAL5 is required for this type of TOE and product since it is intended to defend against
sophisticated attacks. This evaluation assurance level allows a developer to gain maximum
assurance from positive security engineering based on good practices. EAL5 represents the
highest practical level of assurance expected for a commercial grade product. In order to
provide a meaningful level of assurance that the TOE and its embedding product provide an
adequate level of defense against such attacks the evaluators should have access to the low
level design and source code. The lowest for which such access is required is EAL5.

The assurance level EAL5 is achievable, since it requires no specialist techniques on the part of
the developer.

Additional assurance requirements are also required due to the definition of the TOE and the
intended security level to assure.

ALC_DVS.2 Sufficiency of Security Measures

95

Development security is concerned with physical, procedural, personnel and other technical
measures that may be used in the development environment to protect the TOE and the
embedding product. The standard ALC_DVS.1 requirement mandated by EAL5 is not enough.

Due to the nature of the TOE and embedding product, it is necessary to justify the sufficiency of
these procedures to protect their confidentiality and integrity. ALC_DVS.2 has no dependencies.

AVA_VAN.5 Advanced methodical Vulnerability Analysi s
The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced methodical
vulnerability analysis" is considered as the expected level for Java Card technology-based
products hosting sensitive applications, in particular in payment and identity areas. AVA_VAN.5
has dependencies on ADV_ARC.1, ADV_FSP.1, ADV_TDS.3, ADV_IMP.1, AGD_PRE.1 and
AGD_OPE.1. All of them are satisfied by EAL5.

7.7 TOE summary specification (ASE_TSS)

7.7.1 Statement of the TOE security functionality

7.7.1.1 SF.Firewall

This security functionality enforces the FIREWALL access control SFP and JCVM information
flow control SFP.
Its main responsibilities are:
• to check inter-context access;

• to manage access to JCRE Entry Point Object and Global Array so to control the applets
access to system resources;

• to control Shareable access so to permit inter-applet resources sharing in a secure and
aware way;

• to check temporary references storing: Temporary JCRE Entry Point Object references
cannot be stored in any static fields.

7.7.1.2 SF.SecureManagement

Secure Management Security Functionality main responsibilities are:
• Providing the JCRE and JCVM functionalities:

- APDU handling and forwarding to application,

- Application selection process,

- Consistent execution of bytecodes

• Memory cleaning upon: allocation of class instances, arrays, and APDU buffer, and de-
allocation of bArray object, any transient object, any reference to an object instance created
during an aborted transaction.

• Guaranteeing, with the support of SF.SmartCardPlatform, that operations on secret keys
and PIN codes are not observable by other subjects by observation of variations in power
consumption or timing analysis.

• Preservation of a secure state and taking appropriate action when the following types of
failures occur:

- loss of power or card tearing,

- applet and card life cycle inconsistencies,

- NVRAM failure audited through exceptions in the read/write operations and
consistency/integrity checks,

- potential security violations and abnormal operating conditions detected and made
available by the IC and crypto-library,

96

- corruption of security attributes of objects and arrays,

- corruption of value of sensitive data.

• Secure management of security attributes:

- Selected Applet Context

- Active Applet,

- Active Context,

- List of registered applets’ AIDs,

- Package AID,

- Applet’s version number,

- Applet Selection Status,

- Application Privileges,

- Application Life Cycle State,

- Card Life Cycle State

• Permitting operations roll-back enforcing the FIREWALL access control SFP.

This security functionality also provides service API to applets for secure management of applet
life cycle and integrity protected arrays.

7.7.1.3 SF.CryptoKey

This security functionality is related to all the operations on the application keys.
In particular it manages:
• key distribution;

• key access;

• key destruction;

• key generation;

SF.CryptoKey also assures key integrity.
The security functionality relies on a cryptolibrary provided by the hardware manufacturer to
perform the RSA and the EC key generation. The cryptolibrary uses an hardware random
number generator in order to generate prime numbers and keys (see SF.SmartCardPlatform).
This security functionality is also provided as a service by API to applets.

7.7.1.4 SF.CryptoOp

This security functionality provides to users the cryptographic support to perform
encryption/decryption and signature/verification.
The cryptographic functionalities provided are:
• DES-ECB in (encryption/decryption)

• DES-CBC in (encryption/decryption)

• Triple DES-ECB in (encryption/decryption) with 16, 24 bytes of key

• Triple DES-CBC in (encryption/decryption) with 16, 24 bytes of key

• AES-ECB in (encryption/decryption) with 128, 192, 256 bits of key

• AES-CBC in (encryption/decryption) with 128, 192, 256 bits of key

• AES-CMAC in (signature/verification) with 128, 192, 256 bits of key

• RSA both with key in standard and CRT mode. Supported key length up to 2048 bits

• EC over GF(p) signature calculation and verification with key length up to 521 bits

• SHA Digest Calculation with digest sizes of 160 (SHA-1), 224, 256, 384, 512 bits

97

The security functionality also provides means for random number generation, Diffie-Hellman
and Elliptic Curve Diffie-Hellman shared secret generation and exchange, Elliptic Curve Generic
Mapping.

In order to avoid disclosure of secret values, memory areas containing cryptographic keys and
data used in the calculation are cleared after the execution of crypto operations.
The security functionality relies on the operating system software and hence on crypto library
provided by the hardware manufacturer in order to perform the elementary cryptographic
computations (see SF.SmartCardPlatform).
This security functionality is also provided as a service by API to applets.

7.7.1.5 SF.Transaction

Controls all the operations concerning “persistent memory” updates in order to guarantee the
coherence of the sensitive data if a failure occurs during the operations.
This SF has two main responsibilities:
• Grant the atomic updates of class fields, instance fields and elements of persistent arrays;

• Provide to the TOE the support for Java Card transactional mechanism;

The mechanism relies on dedicated buffers in NVRAM.
NVRAM data affected by the update operation are either completely updated or reverted at the
value they had at the beginning of the operation.
This security functionality is also provided as a service by API to applets.

7.7.1.6 SF.PIN

This security functionality is related to all the operation related to PIN objects.
In particular SF.PIN:
• provides means to perform PIN Verification;

• automatically decreases the try check counter of PINs in case of PIN verification failure;

• provides the functionality to update PIN value and the try counter.

PIN verification procedure consists in the comparison of the PIN provided by the user
application requesting the verification procedure with the PIN stored into a PIN object.

This security functionality also guarantees the integrity of the stored PIN value, try counter and
verification status.
This security functionality is also offered as a service by API to applets.

7.7.1.7 SF.ObjectDeletion

This security functionality is in charge of de-allocation of memory resources of objects no longer
accessible from the installed packages and applet instances. Clearing is only performed when
applet invokes JCSystem.requestObjectDeletion() method. The security functionality also
guarantees that, once the method has been invoked, information content of unreachable objects
cannot be retrieved anymore.
This security functionality is also offered as a service by API to applets.

7.7.1.8 SF.SmartCardPlatform

The exact formulation of Security Functionalities featured by the certified hardware and
associated crypto library can be found in the hardware security target [STLite_ST31G480].

98

7.7.2 TOE summary specification rationale

The following table provides a list of the TOE Security Functionalities (SF) and the coverage of
the SFRs by the SFs.

 SFR SF

S
F

.F
ire

w
al

l

S
F

.S
ec

ur
eM

an
ag

em
en

t

S
F

.C
ry

pt
oK

ey

S
F

.C
ry

pt
oO

p

S
F

.T
ra

ns
ac

tio
n

S
F

.O
bj

ec
tD

el
et

io
n

S
F

.P
IN

S
F

.S
m

ar
tC

ar
dP

la
tfo

rm

fdp_acc.2/FIREWALL X
fdp_acf.1/FIREWALL X
fdp_ifc.1/JCVM X
fdp_iff.1/JCVM X
fdp_rip.1/OBJECTS X
fmt_msa.1/JCRE X
fmt_msa.1/JCVM X
fmt_msa.2/FIREWALL_JCVM X
fmt_msa.3/FIREWALL X
fmt_msa.3/JCVM X
fmt_smf.1 X
fmt_smr.1 X
fcs_ckm.1/RSA X X
fcs_ckm.1/EC X X
fcs_ckm.1/ DSA X X
fcs_ckm.2/DES X
fcs_ckm.2/AES X
fcs_ckm.2/RSA _STD X
fcs_ckm.2/RSA _CRT X
fcs_ckm.2/EC X
fcs_ckm.2/ DSA X
fcs_ckm.3/DES X
fcs_ckm.3/AES X
fcs_ckm.3/RSA _STD X
fcs_ckm.3/RSA _CRT X
fcs_ckm.3/EC X
fcs_ckm.3/ DSA X
fcs_ckm.4 X
fcs_cop.1/DES -TDES_Cipher X X
fcs_cop.1/DES _MAC X X
fcs_cop.1/AES _Cipher X X
fcs_cop.1/AES _MAC X X
fcs_cop.1/AES _CMAC X X
fcs_cop.1/RSA _Cipher X X
fcs_cop.1/RSA _Signature X X
fcs_cop.1/EC _Signature X X
fcs_cop.1/SHA X X
fcs_cop.1/ ECDH_KeyExchange X X
fcs_cop.1/DH _KeyExchange X X
fcs_cop.1/ ECDHGMap X X
fcs_cop.1/ DHGMap X X
fcs_rng.1 /DRBG X X

99

 SFR SF

S
F

.F
ire

w
al

l

S
F

.S
ec

ur
eM

an
ag

em
en

t

S
F

.C
ry

pt
oK

ey

S
F

.C
ry

pt
oO

p

S
F

.T
ra

ns
ac

tio
n

S
F

.O
bj

ec
tD

el
et

io
n

S
F

.P
IN

S
F

.S
m

ar
tC

ar
dP

la
tfo

rm

fdp_rip.1/ABORT X
fdp_rip.1/APDU X
fdp_rip.1/bArray X
fdp_rip.1/KEYS X X
fdp_rip.1/TRANSIENT X
fdp_rol.1/FIREWALL X X
fau_arp.1/JCS X
fdp_sdi.2 X X X
fpr_uno.1/PIN X X
fpr_uno.1/KEY X X
fpt_fls.1 X
fpt_tdc.1 X
fia_atd.1/AID X
fia_uid.2/AID X
fia_usb.1/AID X
fmt_mtd.1/JCRE X
fmt_mtd.3/JCRE X
fdp_rip.1/ODEL X
fpt_fls.1/ODEL X
fdp_acc.1/GP_API X
fdp_acf.1/GP_API X
fmt_msa.1/GP_API X
fmt_msa.3/GP_API X
fmt_smr.1/GP_API X
fia_uid.1/GP_API X
fdp_acc.1/Atomicity X
fdp_rol.1/Atomicity X
fpt_fls.1/Operate X X
fru_flt.2 X
fpt_fls.1/SCP X
fmt_lim.1 /Test X
fmt_lim.2 /Test X
fdp_ sdc.1 X
fdp_ sdi.2/SCP X
fpt_php.3 X
fdp_itt.1 X
fpt_itt.1 X
fdp_ifc.1 X
fcs_rng.1 /IC X X
fpt_tst.1 X X
fpt_emsec.1 X X

Table 15 - Mapping of Security Functional Requirements (SFRs) on Security Functions (SFs)

100

8. QUALITY REQUIREMENTS

NA

9. ENVIRONMENTAL/ECOLOGICAL REQUIREMENTS

STMicroelectronics recommends viewing documents on the screen rather than printing to limit paper
consumption.

