
Security Recommendations for
TLS

N°SDE-NT-35-EN/ANSSI/SDE/NP
Document produced by ANSSI, formatted using LATEX.

FR Version 1.1: 19/08/2016
EN Version 1.1: 24/01/2017

Please send any comments or remarks to the following address:

guide.tls@ssi.gouv.fr

Table of Contents

Introduction 5

Who Should Read This Guide? 7

How to Read the Recommendations 9

1 Presentation of the TLS Protocol 11

1.1 Unfolding of the TLS Sessions 11

1.2 Public Key Infrastrustures 13

2 TLS Handshake Parameters 17

2.1 Protocol Versions 17

2.2 Cipher Suites 19

2.3 Extensions 26

2.4 Additional Considerations 33

3 Setting Up a PKI 37

3.1 X.509 Certificate Attributes 37

3.2 Trust Establishment 41

A Cipher Suites Guide 45

A.1 Recommended Suites 45

A.2 Relaxed Suites 47

B Examples of Applying the Recommendations 49

C List of Recommendations 53

Bibliography 55

Acronyms 61

3Security Recommendations for TLS

Introduction

The TLS1 protocol is one of the most widespread solutions for protecting network traffic.
In this client–server model, the application data is encapsulated in such a way as to
ensure confidentiality and integrity of the exchanges. The server is necessarily authen-
ticated, and additional functions allow for authenticating the client when such a need
has been identified.

Since the appearance of its predecessor SSL2 in 1995, TLS has been adopted by many
Internet stakeholders in order to secure traffic linked to websites and electronic mes-
saging. This is furthermore a privileged solution for protecting internal infrastructure
traffic. For these reasons, the protocol and its implementations are subject to constant
research. Over the years, several vulnerabilities have been discovered, motivating the
development of corrections and countermeasures in order to prevent compromising
exchanges.

The TLS deployment that provides the most assurance in terms of security is therefore
based on the use of up-to-date software, but also on adjusting the parameters of the
protocol according to the context. The explanations provided by this guide are sup-
plemented with several recommendations aimed at reaching a level of security that
is compliant with the state of the art, in particular concerning the cipher suites to be
retained.

1Transport Layer Security.
2Secure Sockets Layer.

5Security Recommendations for TLS

Who Should Read This Guide?

The purpose of this guide is to serve as a common repository for recommendations
that can be adapted according to the scope of each project attempting to comply, or
making it possible to comply, with the good practices linked to the TLS protocol.

It is intended for all audiences who wish to become familiar with or interact with the
TLS protocol: those responsible for the security of information systems, administrators
of organisation of all sizes, or developers of solutions who want to secure the exchange
of information through TLS.

Indeed, the state of a TLS connection is the result of a set of factors that are rarely under
the full control of a single entity. This state depends globally:

• on the capacities of the TLS stack, in charge in particular of the logic controller
and the cryptographic calculations, such as OpenSSL, GnuTLS or miTLS;
• on the capacities of the software that uses the TLS stack. For example, the
Apache solution has mod_ssl and mod_gnutls modules to serve as HTTP3 re-
sources by protecting them with OpenSSL or GnuTLS;
• on the configuration of the previous software. For example, although the
Apache software supports all of the versions SSLv3, TLS 1.0, TLS 1.1 and TLS 1.2
by default, the configuration options make it possible to never use SSLv3;
• on the capacities and the configuration of the TLS contact. For example, faced
with a client that offers using TLS 1.2, an Apache server that authorises the use
of TLS 1.0, TLS 1.1 and TLS 1.2 will choose to establish a TLS 1.2 session.

If there is no exact correspondence, the successive capacities of the preceding list are
strictly inclusive. Software does not have more capacities than the TLS stack on which
it is based. Likewise, a configuration file does not make it possible to deploy capacities
that would not be supported by the software in question.

Controlling an element of this chain therefore makes it possible to exclude certain
undesirable capacities. However, it is not always possible for an isolated entity to deploy
or to use the optimum parameters with respect to security recommendations.

The following recommendations abstract themselves from this variety of participants by
identifying the characteristics that are desirable for a TLS connection, independently of
the responsibilities for implementation. This transposition work, of which the circum-
stances are too varied to be handled completely, are however the subject of additional
publications (in French) from ANSSI [1, 2]. Common application examples are also
shown at the end of the document, in Appendix B.

3Hypertext Transfer Protocol.

7Security Recommendations for TLS

How to Read the Recommendations

This guide lists, through its recommendations, a set of preferred characteristics for
a TLS connection. The recommendations primarily focus on the profile of the traffic
exchanged and does not prejudge the means required for their implementation. The
hierarchy adopted is specified in table 1.

The autonomy of the recommendations allows the various stakeholders of the TLS con-
nection, whether direct or indirect, to apply them according to their respective positions.
For example, R4 recommends never using the version SSLv2. For an integrator, this
will entail compiling the TLS stack used so that the software developed does not support
SSLv2. For an administrator, if the software that he is using supports SSLv2, it will entail
excluding this version using the configuration options that are accessible.

Furthermore, how a recommendation is interpreted varies according to the contexts.
For example, R3 recommends using only TLS 1.2, while R3– tolerates versions
TLS 1.1 and TLS 1.0. Some integrators can choose to exclude from their software
products, right from when the TLS pile is compiled, versions TLS 1.1 and TLS 1.0. For
others, it may be necessary to include these downgraded versions in order to respond
to the compatibility needs of certain clients, while allowing clients who comply more
closely with the recommendations to exclude these versions using configuration options.

The reasoning, for the most part, indifferently concerns TLS clients and servers. In
addition, it is independent of the nature of the application traffic protected. As such, the
following recommendations apply to the HTTPS4 traffic handled by public web servers
as well as the infrastructure traffic protected by TLS within certain industrial control
systems.

Rx
This recommendation makes it possible to set up the target
architecture that offers a level of security that is compliant with the
state of the art.

Rx–

In the case where applying the recommendation for optimum security
is impossible, or insufficient with regards to needs in terms of
compatibility, this measure offers a first level of derogation. The trust
level is lower than with Rx.

Rx–– This derogation represents the lowest trust level permitted in order to
remain compatible with the guide.

Table 1: Hierarchy of the recommendations

4HTTP Secure.

9Security Recommendations for TLS

When TLS is deployed in an infrastructure with end-to-end control, the recommenda-
tions can be applied without restriction. For example, between R3, R3-- and R3––, it
is R3 that should be followed: the server and its clients must be configured to use TLS
1.2, and reject any connection attempt with a prior version of the protocol.

In the distinct context of the configuration of a TLS server faced with several clients of
which the capacities are not controlled, several compatibility issues arise. The ideal
parameters may in fact be too restrictive. Typically, when trying to communicate with
a public web server, several outdated client software programs risks not supporting a
portion of the most recommended functions.

In such a situation, a profile of the clients that are able to connect to the server should
be established, and consequently the permissibility of the configuration should be eval-
uated. Note that authorising certain deficient parameters generates a risk not only for
outdated clients based on this choice, but also sometimes for the server and up-to-date
clients. In particular, several vulnerabilities are based on the ability of an attacker to
downgrade the security parameters of a connection in order to make use of weaker
functions that may still be implemented [3, 4, 5].

Once this profile is established, the abilities of the various clients to conform to the
security recommendations can be evaluated. In the case of web browsers, there are
public resources that facilitate the connecting of versions of browsers with their security
capacities linked to TLS [6, 7]. For example, most of the Microsoft Internet Explorer
8 clients will not be able to connect to a server that only offers TLS 1.2, and require
activation of TLS 1.0 and certain associated cipher suites.

When the clients of a server are not controlled, a profile of desired clients
should be established. The possible monitoring of downgraded recommen-
dations (Rx-- or Rx––) is based on this profile.

R1 Restrict compatibility according to the profile of the clients

10 Security Recommendations for TLS

Chapter 1

Presentation of the TLS Protocol

1.1 Unfolding of the TLS Sessions
The development of the TLS protocol has followed several iterations [8, 9, 10] since
the designing of the SSL protocol, which is now obsolete [11]. The IETF5 is in charge
of the standardisation process. The numerical values of the various parameters are
referenced by IANA6.

The messages transmitted by the intermediary of the TLS protocol are called records.
They are generally encapsulated in TCP7 segments, a protocol in charge of ensuring
the network transport functionalities such as acknowledging the reception of data [12].
For datagram protocols, such as UDP8, a DTLS9 variant has been defined [13]. There
are four types of records, explained hereinafter: handshake, change_cipher_spec,
application_data and alert.

With a concern for interoperability, the specifications allow the two parties involved to
negotiate the version of the protocol that they will jointly adopt. This parameter is es-
tablished during a TLS handshake phase that precedes the effective protection of the ex-
changes. Likewise, the specifications allow for the use of different combinations of cryp-
tographic algorithms. The cipher suite retained for the session is determined through
messages of type handshake, in addition to messages of type change_cipher_spec
that signals its effective activation.

Figure 1.1 shows the negotiation of these parameters in a generic case. It makes use
of the following exchanges between the client and the server:

1. the client initiates a query by sending a message of type ClientHello, con-
taining in particular the cipher suites that it supports;

2. the server responds with a ServerHello which contains the retained suite;
3. the server sends a Certificate message which in particular contains its

public key within a digital certificate;
4. the server transmits in a ServerKeyExchange an ephemeral value that it signs

using the private key associated with the preceding public key;
5. the server manifests that it is on hold with a ServerHelloDone;

5Internet Engineering Task Force.
6Internet Assigned Numbers Authority.
7Transmission Control Protocol.
8User Datagram Protocol.
9Datagram Transport Layer Security.

11Security Recommendations for TLS

Client Server
1 ClientHello

2 ServerHello

3 Certificate

4 ServerKeyExchan
ge

5 ServerHelloDone

6 ClientKeyExchange
7 ChangeCipherSpec

8 Finished

9 ChangeCipherSp
ec

10 Finished

Application Data
Application Data

Figure 1.1: Generic initiation of a TLS session

6. after verification of the certificate and authentication of the preceding value,
the client in turn chooses an ephemeral value that it encrypts using the public
key of the certificate and then transmits in a ClientKeyExchange;

7. the server signals it activates the suite fully with a ChangeCipherSpec;
8. the client sends a Finished, the first message protected according to the

cipher suite with the secrets coming from the exchange of ephemeral keys;
9. the server signals the activation of the same suite with a ChangeCipherSpec;

10. the server sends in turn a Finished, its first secure message.

The generic case described here supposes the selection of one of the cipher suites
that provides PFS10. This property consists in the prevention of past session messages
decryption, even when the private key of the server has been compromised. It is ac-
complished through the negotiation of an ephemeral secret using a Diffie–Hellman
exchange [14].

The specifications of the protocol furthermore define several additional messages and
extensions that make it possible to supervise and enrich the protection of communi-
cations [10, 15]. In contexts wherein such a need has been identified, the server is
in particular able to request authentication of the client at the TLS level through a
CertificateRequest message. With regards to the extensions, a ClientHello can
for example contain additional information pertaining to the elliptic curves supported

10Perfect Forward Secrecy.

12 Security Recommendations for TLS

by the client in order to carry out the ECC11 calculations.

After the handshake, the client and the server possess a shared premaster secret,
whose calculation relied on elements contained in the ServerKeyExchange and the
ClientKeyExchange. On both sides, the premaster secret is derived into one mas-
ter secret that takes account of the random values contained in the ClientHello and
the ServerHello. Finally, the master secret is in turn derived in order to generate
the keys to ensure the confidentiality and the integrity of the application data, before
encapsulating it in messages of type application_data.

The specifications allow to redefine the security parameters or to refresh the encryption
keys without interrupting the TLS session, by using a new handshake. This session
renegotiating can be triggered at the initiative of the client through a new ClientHello.
It can also be solicited by the server with a HelloRequest message.

Messages of type alert enable to report anomalies observed during the handshake or
application data exchange. Certain messages comprise simply warnings, while others
call for immediate termination of the TLS session. Several alert codes exist, which for
example make it possible to report that a transmitted certificate is not valid, or that the
integrity check for a record has failed.

1.2 Public Key Infrastrustures
The validity of the certificates sent during TLS negotiation is crucial for the verification
of the identity of the communicating parties. All of the mechanisms and entities that
guarantee this validity and maintain it form a PKI12.

For any certificate compliant with the X.509 [16] standard followed by TLS, the assur-
ance that the public key it contains actually belongs to the server that it is announcing
as a subject (generally in the form of a domain name) is based on trust inherited from
an already recognised authority to the server in question. The successive trust links
established by each certification authority involved are materialised by cryptographic
signatures affixed to the various certificates.

As such, the Certificate message from which is extracted the public key whereon
is based the session secrets actually contains a chain of certificates, which the client
expects to form a link from a trusted root to the queried server. These roots are generally
listed in registers known as certificate stores. Microsoft, Apple and Debian, for example,
maintain such registers, which are made available to any application installed on the
associated operating systems. As for Mozilla, it maintains its own store, through its
NSS [17] library.

11Elliptic Curve Cryptography.
12Public Key Infrastructure.

13Security Recommendations for TLS

Certificates contain several attributes, such as a public key and a validity period, which
are usually supplemented with X.509v3 extensions. ANSSI recommends following ap-
pendix A4 [18] of the RGS13 The extensions make it possible in particular to specify
the framework of use for a certificate and to reinforce the assurances of the PKI. For
example, the presence of an EV14 extension signals that additional requirements were
added to the identity verification process carried out by the CA15 before it delivers the
certificate.

In order to handle the errors or attacks that could compromise the operation of a PKI,
but also to accompany the nominal procedures of security health such as key renewal,
certificate revocation mechanisms have been defined. Two main solutions exist:

• CRL16 files: these files correspond to lists of certificates revoked by a CA.
Maintaining an up-to-date CRL online is part of the services that a PKI has to
provide. The location of the CRL associated with a CA is entered in the CRLDP17

extension of each certificate issued by the CA;
• the OCSP18 protocol: this protocol, operating in client–server mode, allows
a client to check the validity of a certificate by questioning OCSP responders. If a
PKI makes an OCSP service available, the location of the associated responders
must be available in the AIA19 extension of each certificate issued by the CA.

Recent initiatives attempt to overcome the respective disadvantages of these two mech-
anisms, in particular the size of the CRLs which often exert a constraint on the network
resources, and the synchronous nature of the OCSP queries that inform the responders
of the profile of a portion of the connections of the client, as this can form a nuisance
with regards to privacy protection.

For the Chrome browser, the use of CRLs and of OCSP was deactivated. These mech-
anisms were replaced with an ad hoc system. The Google team identifies the most
significant revocations from the CRLs made available by the CAs, and distribute them
to the users in the form of aggregations called CRLSets [19]. Mozilla launched a similar
project for its Firefox browser, under the name OneCRL [20].

OCSP stapling is an alternative solution which consists for the server in directly supplying
an OCSP response among the TLS extensions of ServerHello, in such a way that the
client no longer has to query the responders itself [15].

13The Référentiel général de sécurité is a legal standard for the French public entities for operating
trusted information systems. It includes global cryptographic requirements as well as certificate manage-
ment instructions. The document is available in French only. Note however that many recommendations
from the RGS relative to X.509 certificates are recalled in section 3.1 of this guide.

14Extended Validation.
15Certification Authority.
16Certificate Revocation List.
17Certificate Revocation List Distribution Point.
18Online Certificate Status Protocol.
19Authority Information Access.

14 Security Recommendations for TLS

In addition to the revocation mechanisms, the Certificate Transparency project,
initiated by Google and standardised by IETF [21], aims to create public registers that
list X.509 certificates. These registers allow a TLS client that is compatible with Cer-
tificate Transparency to check the validity of certain certificates which were sent to it.
It also makes it possible to monitor the appearance of new certificates. Verification is
carried out via a SCT20 timestamped and signed by the administrators of one of the
registers, which ensures that the corresponding certificate was journalised. The SCTs
may be transmitted in a TLS extension, an OCSP response or within the certificate itself.

20Signed Certificate Timestamp.

15Security Recommendations for TLS

Chapter 2

TLS Handshake Parameters

This chapter covers the various parameters on which the security of a TLS connection
is based, without prejudging the nature of the application data to be protected or the
encryption context. Website security and TLS proxy configuration are addressed by
further technical documentation [1, 2].

Being widely used, the TLS protocol has been the subject of many studies which repeat-
edly uncovered new vulnerabilities [22, 23, 24, 4]. In light of the corrections and the
improvements made over the years, both to the specifications and to the implementa-
tions, it is essential to use the latest versions of the equipment and software involved in
securing communications.

The resources used for TLS deployment must be kept up to date.

R2 Use up-to-date software components

2.1 Protocol Versions
Since the publication of SSLv2 in 1995, the identification of limitations of the protocol
has justified several updates to its specifications. To date there are five variations of the
protocol in use: SSLv2, SSLv3, TLS 1.0, TLS 1.1 and TLS 1.2. The specifications of TLS
1.3 are being developed by the IETF [25].

The version used during a session is negotiated during the handshake. The client
reports in its ClientHello the highest version that it supports. Subsequently, the server
responds in its ServerHello with the highest version that it supports and which is at
most equal to that preferred by the client.

To date, under certain conditions specified in the rest of this section, TLS 1.0 is still
considered safe for use. However, TLS 1.1 resolves a portion of the attacks established
against TLS 1.0, and in turn TLS 1.2 was defined to be more robust than TLS 1.1.

If it appears necessary to support versions other than TLS 1.2, it is recommended to
simultaneously support the TLS_FALLBACK_SCSV suite defined hereinbelow. In partic-
ular, although the use of TLS 1.1 or TLS 1.0 is not encouraged in the general case,
these versions can be tolerated if it is necessary to communicate with components (non-
compliant with the recommendations) that do not support TLS 1.2.

17Security Recommendations for TLS

The connection must be made with version TLS 1.2. Any attempt to connect
with a prior version must be rejected.

R3 Use only TLS 1.2

Version TLS 1.2 must be supported and favoured. Versions TLS 1.1 and TLS
1.0, with support for TLS_FALLBACK_SCSV, are tolerated.

R3– Favour TLS 1.2 and tolerate TLS 1.1 and TLS 1.0

The publication of SSLv3 responded to several design flaws identified for SSLv2. How-
ever, this version of the protocol is today no longer considered to be safe. In June 2015,
the IETF listed several weaknesses of SSLv3 and formally declared it as obsolete [11].

In April 2015, the dummy cipher suite TLS_FALLBACK_SCSV was defined in order to limit
the risks of attack by version downgrading, in particular linked to implementations that
attempt to establish an SSLv3 connection after failed TLS connections [26]. Following a
first connection failure, a client that implements TLS_FALLBACK_SCSV and wants to try
a ClientHello of a downgraded version should add the preceding SCSV21 to it. In this
way, if a server observes the SCSV in a ClientHello which announces a version that
is less than the most recent version that it supports itself, it knows that a first exchange
has failed. Depending on the context, it may infer an attack attempt from this, and alert
the client.

Version SSLv3 is not at all recommended in the general case. In addition to
R3--, in the case where a strong need for compatibility has been identified,
and only in this case, the version SSLv3 along with TLS_FALLBACK_SCSV is
tolerated.

R3–– Favour TLS 1.2 and tolerate TLS 1.1, TLS 1.0 and SSLv3

The lack of robustness of SSLv2 has been established for a long time. The weakly pro-
tected handshake or the use of weak cryptographic primitives expose the exchanges
to several scenarios of compromise. Moreover, the DROWN [5] vulnerability revealed
that the simple supporting of SSLv2 by a server was able to compromise sessions ini-
tiated with later versions of the protocol. This version of the protocol should therefore
be banned.

21Signaling Cipher Suite Value.

18 Security Recommendations for TLS

It is strongly recommended that version SSLv2 not be used under any circum-
stances. In addition, the use of software components that do not support this
version of the protocol must be favoured.

R4 Do not use SSLv2

2.2 Cipher Suites
The ClientHello contains a set of cipher suites that the client is ready to use during
the session. It is expected that the server selects one of them, after comparison with
those that it supports and accepts to use. This selection affects the way in which the
cryptographic keys will be used to protect the records exchanged after the handshake,
which in particular transport application data. The procedure for negotiating keys is
itself modified according to the suite retained.

Each suite comprises a combination of the following encryption mechanisms:
• a key exchange method, which specifies an exchange algorithm and possibly
the signature algorithm used to authenticate the exchanges. RSA, ECDHE_RSA and
PSK are a few examples of these;
• a mechanism that ensures the confidentiality and the integrity of the data
exchanged after the handshake, defined:

• either as the composition of an encryption algorithm and of a hash func-
tion used in HMAC mode, such as AES_256_CBC_SHA384;
• or as an encryption algorithm used in AEAD22 mode, thus providing
confidentiality and integrity at the same time, such as AES_256_GCM;

• optionally, for suites defined for version TLS 1.2, a hash function used for
the derivation of the secrets, starting from the premaster secret. This option is in
particular used by AES_GCM suites.

For example, the suite TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 referenced by
IANA under code 0xC030 represents the association of the ECDHE_RSA key exchange
with the AES_256_GCM AEAD mode, along with SHA384 for the derivation of secrets.

Among the algorithms standardised before June 2016 for use in the framework of
TLS, the recommendations in this section form a whitelist of the desirable algorithms:
everything that is not recommended is implicitly disapproved. In particular, the use of
either the RC4 traffic encryption function or the MD5 hash function is disapproved.

To date, we issue no recommendation about the AEAD cipher CHACHA20_POLY1305,
for which the use with TLS was standardised in June 2016 [27].

22Authenticated Encryption with Associated Data.

19Security Recommendations for TLS

Key Exchange

There are several methods for exchanging keys, some of which do not require authenti-
cation from the server. However, in the absence of this protection, the key exchange is
vulnerable to man-in-the-middle attacks that can compromise the security of the entire
data exchange. Consequently, authenticating the server is indispensable.

During the key exchange, the server has to be authenticated by the customer.
Anonymised alternatives for these exchanges are strongly disapproved.

R5 Authenticate the server during key exchange

In the general case, the key exchange is based either on the asymmetrical encryption
of a secret using the public key of the server, or on the Diffie–Hellman algorithm. They
both allow for the establishment of a joint secret on either side of the unsecured channel.

The DH23 algorithm, sometimes designated as FFDH24, represents the historical Diffie–
Hellman exchange which rely on a multiplicative group. The mathematics of the
ECDH25 algorithm are based on an elliptic curve.

Verifying perfect forward secrecy means that, should the server’s private key be com-
promised, past communications would still be protected from third party decryption.
This property is ensured by the ephemeral variants of the preceding algorithms, DHE26

and ECDHE27, for which the Diffie–Hellman keys are generated at each new session.
In this context, the authentication provided through the key exchange takes the form of
a signing of the ServerKeyExchange with the private key of the server.

The perfect forward secrecy property must be ensured. For this, a cipher suite
based on an ephemeral Diffie–Hellman exchange (ECDHE or, failing this,
DHE) must be used.

R6 Always do PFS-enabling key exchanges

23Diffie–Hellman.
24Finite Field Diffie–Hellman.
25Elliptic Curve Diffie–Hellman.
26Diffie–Hellman Ephemeral.
27Elliptic Curve Diffie–Hellman Ephemeral.

20 Security Recommendations for TLS

Ephemeral Diffie–Hellman exchanges have to be supported and favoured. Ex-
changes based on the encryption of a secret using the key of the server, which
do not provide perfect forward secrecy, are tolerated.

R6– Favour PFS-enabling key exchanges

Concerning ECDHE, for data protection after 2020, the RGS recommends the use of
groups with a prime order of length 256-bit or more [28]. Among the curves recorded
with IANA [29], the tried out, retained curves are secp256r1, secp384r1, secp521r1
(a.k.a. P-256, P-384 and P-521), as well as brainpoolP256r1, brainpoolP384r1
and brainpoolP512r1.

Note that the negotiation of the DHE group is not, to date, allowed by the proto-
col. When this solution is favoured, the group is in fact imposed by the server in a
ServerKeyExchange. Thus, a client that wants to ensure PFS with DHE, but which is
presented with a group deemed to be unsatisfactory, would have no other solution than
to interrupt the session.

In contrast, the negotiation of the ECDHE parameters is made possible by the use of
the supported_groups extension. The latter makes it possible to select the implicit
parameter curves, recorded with IANA. The use of ECDHE is therefore preferred to that
of DHE when one of the communicating parties is not controlled.

ECDHE key exchange must be favoured, using curves secp256r1, secp384r1,
secp521r1, brainpoolP256r1, brainpoolP384r1 or brainpoolP512r1.

R7 Carry out an ECDHE key exchange

In the case of DHE, the security of the exchange is linked to the order of the multiplicative
group at play. The Logjam [4] attack illustrated the insufficiency of 512-bit groups, and
prompts use of 1024-bit groups for the most sensitive exchanges to be discouraged.
The RGS recommends using 3072-bit groups or more, and tolerates 2048-bit groups
for data protection until 2030.

DHE exchanges are tolerated with 2048-bit groups or more (3072-bits or more
if the information has to be protected after 2030).

R7– Carry out a DHE key exchange

21Security Recommendations for TLS

Other methods for exchanging keys such as PSK28 [30] and SRP29 [31] are based on
the prior sharing of a secret between the client and the server. More complex to deploy
and maintain, they form valid alternatives only in controlled environments, in particular
for infrastructure applications.

Symmetric-Key Algorithm

The premaster secret negotiated through the preceding exchange is derived into a
master secret. From this master secret is then derived the symmetrical encryption key
used for protecting the confidentiality of communications that follow the handshake.
The encryption algorithm at play is however set from the moment a cipher suite is
elected.

Stream Ciphers

Currently, RC4 is the only stream cipher proposed among the standardised suites. How-
ever, following work [32] indicating a statistical bias that can lead to compromising re-
peated data in a large number of TLS sessions, such as a password or an HTTP cookie,
IETF prohibited the use of this function [33].

Block Ciphers

In opposition, several block cipher functions can be used to secure TLS connections.
Published in 1977, DES30 is no longer considered safe today [34]. Its successor AES31

should be favoured, with a key size of 128 bits or more, in accordance with the RGS32.
Although they are subjected to less examination, Camellia and ARIA today offer security
comparable to AES and can be considered as alternatives.

The Triple DES algorithm forms a last resort. However, like the underlying DES algo-
rithm, it suffers from a reduced block size. Because of this, in order to prevent them
from being compromised, it is necessary to renew the Triple DES encryption keys at
least every gigabyte of application data exchanged.

Concerning the choice between a 128-bit or 256-bit key for AES, there is today no
practical attack that questions the trust placed in AES-128. However, as AES-256 is
deemed to be more robust, its use is preferred to that of AES-128 in this document.

28Pre-Shared Key.
29Secure Remote Password.
30Data Encryption Standard.
31Advanced Encryption Standard.
32Référentiel Général de Sécurité.

22 Security Recommendations for TLS

Suites that implement the AES-256 block cipher are to be favoured. The AES-
128 algorithm is an acceptable alternative.

R8 Use AES encryption

Suites that implement the Camellia and ARIA block ciphers are tolerated. Sup-
porting the AES algorithm is recommended, but not obligatory.

R8– Use Camellia or ARIA encryption

AES encryption must be supported and favoured. Suites that implement the
Triple DES block cipher algorithm are tolerated, as long as the associated
encryption keys are renewed at least at every gigabyte of application data
exchanged.

R8–– Favour AES and tolerate 3DES with refreshment

Encryption modes that implement the selected block cipher algorithm are described
after the introduction of the integrity mechanism based on a hash function.

Authentication Code
Once the TLS session is established, each record sent is protected in full. When the
cipher suite does not use an AEAD mode, it is an integrity code calculated by the HMAC
mode, which is based on a hash function. The standardised suites for TLS allow for the
use of MD5, SHA-1 or an element of the SHA-2 family.

The MD5 function has been subjected to many attacks, which motivated its exclusion
by the RGS. Since 2005, several studies have also altered the robustness of SHA-
1 [35, 36]. Although HMAC-SHA1 is not directly questioned today, in accordance with
the RGS, its use is not recommended. Use of either SHA-256 or SHA-384, both of
them functions from the SHA-2 family, must be preferred. Standardised in 2015, the
use of the SHA-3 [37] function for the TLS protocol has not been specified to date.

The HMAC used for authentication must be built using a representative of the
SHA-2 family: SHA-256 or SHA-384.

R9 Build the HMAC with SHA-2

23Security Recommendations for TLS

The construction of HMAC with SHA-2 must be supported and favoured. The
use of HMACs built with SHA-1 is tolerated.

R9– Favour the HMACs with SHA-2 and tolerate the HMACs with SHA-1

Encryption Mode

For the cipher suites defined for use with TLS versions prior to version 1.2, block ciphers
are used in CBC mode for encryption. The result is then combined with a HMAC which
ensures the integrity.

This combination is carried out according to the following scheme: the computation of
the HMAC covers a sequence number, a header, and the plain data. The plain data
and the integrity pattern coming from the HMAC are then encrypted according to the
CBC mode. This sequencing of operations introduces possible leaks of information
during the decrypting operation, that can potentially lead to attacks that challenge the
confidentiality of a piece of data transmitted through a large number of sessions [38].
Such leaks of information can be entirely avoided only at the price of a major imple-
mentation effort [39].

If the encrypt_then_mac extension is used, the order of the operations is reversed:
the HMAC covers already encrypted data. This makes it possible to avoid information
leaks during decryption, and to prevent certain vulnerabilities [40, 38].

Version 1.2 of the TLS protocol introduces the possibility of using AEAD cipher modes,
offering simultaneously an encryption function and an integrity code function. Suites
offering GCM and CCM modes of operation have as such been standardised.

The cipher suite retained must be used in AEAD mode, or in CBC mode in
conjunction with the encrypt_then_mac extension.

R10 Use a robust encryption mode

Cipher suites operating with the CBC + HMAC construction yet without the
encrypt_then_mac extension are tolerated. Supporting AEAD encryption
modes is recommended, but not obligatory.

R10– Use the CBC mode without encrypt_then_mac

24 Security Recommendations for TLS

Summary
The encryption suites that meet the preceding requirements and which are recom-
mended for general use with the TLS protocol are listed in tables 2.1 and 2.2. Recall
that the extension encrypt_then_mac is recommended for the suites that use the CBC
encryption mode.

Value Cipher suite
0xC02C TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
0xC02B TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
0xC0AD TLS_ECDHE_ECDSA_WITH_AES_256_CCM
0xC0AC TLS_ECDHE_ECDSA_WITH_AES_128_CCM
0xC024 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
0xC023 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

Table 2.1: TLS 1.2 suites recommended for servers with an ECDSA key

Value Cipher suite
0xC030 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
0xC02F TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
0xC028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
0xC027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

Table 2.2: TLS 1.2 suites recommended for servers with an RSA key

When one of the two communicating sides is not controlled, it is not always possible to
negotiate a TLS session with the preceding cipher suites. Appendix A indicates suites
of lesser security that can be considered to respond to strong compatibility needs. Fur-
thermore, the following section provides additional recommendations pertaining to the
deployment context.

Deployment Contexts
In the situation where the server and client profiles are controlled, if the server has a cer-
tificate for a ECDSA key, then it is sufficient for the server and the client to use only one of
the cipher suites from table 2.1, like TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
with elliptic curve secp256r1.

Should the latter become compromised, it is still preferable that each one of the com-
municating parties has an implementation of the other suites from table 2.1 that can
be used later. This principle also applies to the six elliptic curves recommended here-
inabove.

25Security Recommendations for TLS

Likewise, if the server has a certificate for an RSA key, it is recommended that the server
and the client have several cipher suites from table 2.2, and it is sufficient to implement
only one of them, for example TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384.

For preventive purposes, the communicating sides must implement several ac-
ceptable suites. When the infrastructure is controlled from end to end, they
can then use only one of them.

R11 Maintain several cipher suites available

In the absence of control on the clients, the server has to grant more trust to its own
processing than theirs. In particular, the server has to favour the preference between
cipher suites established in its own configuration, rather than the cipher suites order
inside the ClientHello.

When the clients of a server are not controlled, the order of the cipher suites
appearing in its configuration must prevail over the orders of the suites adver-
tised by the clients.

R12 Prefer the suites order of the server

2.3 Extensions
The ClientHello sent by the client at the beginning of the session may contain several
extensions. They generally enable the client to inform the server of its various capacities,
such as its support for ECDSA signatures. They also make it possible to provide the
server with additional information, such as the domain name that the client wants to
reach. The server confirms its own support and its desire to use some of the capacities of
the client by inserting a subset of extensions of the ClientHello into its ServerHello.
Each extension is identified by a two-byte integer, registered by IANA [41].

Depending on the context, these extensions can be purely informative, or indeed in-
dispensable for the unfolding of the TLS session. Using them is often conditioned to a
particular application. Because of this, the extensions for which the use is acceptable
for certain contexts do not have the value to be used for all of the sessions. Extensions
that are not recommended, however, are so in all circumstances. A client must not
send them in a ClientHello, and if a server or a client receives one of them, it should
ignore it. Choosing not to support these extensions may also reduce the attack surface
of the applications involved in the exchange.

26 Security Recommendations for TLS

Generically Recommended Extensions

• supported_groups (0x000A) [42]
This extension informs the server of the elliptic curves supported by the client (if any), in
accordance with the register maintained by IANA. Its support and use are mandatory
when the client or the server want to use ECC functions. The order in which the curves
are presented reflects the preferences of the client.

• signature_algorithms (0x000D) [10]
This extension signals the hash and signature algorithms supported for checking the au-
thenticity of future messages of the handshake, in particular the ServerKeyExchange.
In the recommended framework of a TLS 1.2 session with authenticated key exchange,
support for and use of it are required by the client and the server, and the support of at
least one representative of the SHA-2 family should be announced. For prior versions
of the protocol, the authentication mechanism is different and this extension must not
be used.

• signed_certificate_timestamp, ou sct (0x0012) [21]
This extension signals SCT support. In the CT33 model presented in section 1.2, an
SCT can be required in order to establish the validity of the certificate presented by the
server. Transmitting an SCT in the data field of this TLS extension is an alternative to the
presence of an SCT among the extensions of the certificate, or among the extensions
of an associated OCSP status.

• encrypt_then_mac (0x0016) [43]
This extension signals support for the cryptographic construction encrypt-then-mac, as
an addition to the historical construction mac-then-encrypt. The use of this extension is
highly recommended when the CBC encryption mode is used.

• extended_master_secret (0x0017) [44]
This extension signals the capacity to process an extended master secret. The pro-
cess for calculating the extended master secret is more robust than that of the legacy
master secret, because it is no longer based solely on the random values contained
in ClientHello and ServerHello, but also on all of the negotiated cryptographic
context (suites, method for exchanging keys, certificates), through a hash sum of all of
the messages exchanged during the handshake.

• renegotiation_info (0xFF01) [45]
The renegotiation mechanism and the need for this extension are discussed in section
2.4.

33Certificate Transparency.

27Security Recommendations for TLS

Acceptable, Context-Specific Extensions

• server_name (0x0000) [15]
This extension signals SNI34 support. It allows the client to specify the domain name of
the server that it wants to reach. Its use is widespread and makes it possible in particular
to host several TLS servers behind the same IP address.

• max_fragment_length (0x0001) [15]
This extension signals reduced fragmentation support. It makes it possible to bring to
212, 211, 210 or 29 the maximum standard length of 214 bytes defined for fragments of
the original message treated for the construction of records.

• trusted_ca_keys (0x0003) [15]
This extension signals certificate identifiers support. It may guide the server in the se-
lection of the certificate chains it sends in its Certificate message. For this, the client
supplies in the data field of the extension the names of the CAs that it trusts, or the hash
values of the corresponding certificates.

• status_request (0x0005) [15]
This extension signals OCSP stapling support. The data field of the extension sent by
the client lists the trusted OCSP responders. If the server supports this mechanism,
the extension that it sends in turn does not contain any data, but its Certificate
message is immediately followed by a CertificateStatus message containing an
OCSP response.

• user_mapping (0x0006) [46]
This extension signals support for sending additional data in a new SupplementalData
message from the client, as a helper to the server for identification. It is in particular
useful in the situation where the server has an index of the clients with which commu-
nication is authorised.

• cert_type (0x0009) [47]
This extension makes it possible to signal OpenPGP [48] certificates support. These dif-
fer from the legacy X.509 certificates, and make it possible to establish a cryptographic
link between an e-mail address, an identity and a public key. Using and supporting
this extension are generally not required.

• ec_point_formats (0x000B) [42]
This extension signals which elliptic curve point formats are supported by the client or
the server (if any). It is in fact possible to represent elliptic curve points in compressed
form. In the absence of this extension, it is expected that the point coordinates are
transmitted in their entirety.

34Server Name Indication.

28 Security Recommendations for TLS

• srp (0x000C) [31]
This extension signals SRP protocol support by the client. It furthermore contains a user-
name that allows the server to decide the parameters sent in the ServerKeyExchange.
The authentication of the server and of the client is based on the knowledge of a se-
cret that requires the same level of protection as the private keys in the framework of
traditional authentication. The use of this extension is associated with that of the SRP
cipher suites. In this situation, in order to reinforce its authentication, it is strongly rec-
ommended that the server have a certificate associated with an ECDSA or RSA key that
makes it possible to sign the ServerKeyExchange.

• use_srtp (0x000E) [49]
This extension signals DTLS-SRTP support. SRTP is a secure variant of RTP35, a protocol
optimised for transferring data in real time, such as video traffic [50]. The specifications
of RTP do not cover the negotiating of session parameters and keys, which can be
handled by DTLS, a variant of TLS intended for communication via datagrams. Using
and supporting this extension are generally not required.

• application_layer_protocol_negotiation, ou alpn (0x0010) [51]
This extension signals support for negotiating application protocols. It makes it possi-
ble to mark a preference among various application protocols sharing the same TLS-
protected port. The extension primarily aims to allow clients to announce their support
for HTTP/2, the most recent version of the HTTP protocol. Using and supporting it are
recommended when the use of HTTP/2 is desired.

• status_request_v2 (0x0011) [52]
This extension supplements the functionality of the status_request extension with re-
gards to the OCSP stapling mechanism, presented in section 1.2. It allows the server
to send the client a list of CertificateStatus messages, which not only contain the
status of its own certificate, but also that of intermediate certificates from the certificate
chain previously offered in the Certificate message.

• padding (0x0015) [53]
This extension allows the client to add padding to the ClientHello in the form of null
bytes. It was exceptionally defined as a response to the detection of a bug linked to the
length of ClientHello messages. Using and supporting this extension are generally
not required.

35Real-time Transport Protocol.

29Security Recommendations for TLS

• session_ticket (0x0023) [54]
This extension signals session resumption capabilities through session tickets. When it
is received in a ClientHello, if the server supports this mechanism, it confirms the use
of it by announcing in turn the extension in its ServerHello. Either the ClientHello
extension does not contain any additional data, in which case the server delivers a
session ticket which contains the parameters of the current negotiation in a crypto-
graphically protected form, or the ClientHello extension contains a session ticket
obtained beforehand, of which the cryptographic integrity is checked by the server,
and the associated negotiating parameters are consequently restored.

Unadvised Extensions

• client_certificate_url (0x0002) [15]
This extension signals support for client authentication via remote certificates, located by
one or several URLs. The latter are transmitted in a CertificateURL message, which
replaces the Certificate message that is usually issued by the client. This mech-
anism can be hijacked to force a server to perform a significant number of queries
(HTTP, FTP, and more particularly HTTPS) with various hosts. The extension is gener-
ally not necessary and its support outside of controlled environments is therefore not
recommended.

• truncated_hmac (0x0004) [15]
This extension signals truncated HMACs support, which consists in suffixing each record
with only the first ten bytes of the original HMAC. This construction weakens the au-
thentication mechanism and supporting it is not recommended.

• client_authz (0x0007) [55]
This extension allows the client to signal its ability to send additional authentication data
in SupplementalData messages. This enables the server to know which applications
the client should be interfaced with. This authentication information does not pertain
to the protocol, therefore supporting this extension is not recommended.

• server_authz (0x0008) [55]
This extension allows the server to signal its ability to send additional authentication data
in SupplementalData messages. This enables the client to learn of the reputation of
the server. This authentication information does not pertain to the protocol, therefore
supporting this extension is not recommended.

30 Security Recommendations for TLS

• heartbeat (0x000F) [56]
This extension signals heartbeat support. Heartbeats aim to keep a TLS connection
alive, by forcing the immediate sending of a HeartbeatResponse message for every
HeartbeatRequest received. This extension is generally not necessary and a defective
implementation of it in OpenSSL (versions 1.1.1 to 1.0.1f inclusive) was cause of the
Heartbleed [24] vulnerability. It is strongly recommended not to support it.

• client_certificate_type (0x0013) [57]
When completing mutual authentication, this extension enables the client to signal that
it may send a raw public key in its Certificate message, rather than a list of X.509
certificates. The proof of possession of the public key is established independently of
the TLS connection. This extension is generally not necessary as the use of a PKI should
be preferred. It is recommended not to support it.

• server_certificate_type (0x0014) [57]
This extension enables the server to signal that it may send a raw public key in its
Certificate message, rather than a list of X.509 certificates. For the same reasons
as the client_certificate_type extension, supporting this extension is not recom-
mended.

Summary

The extensions recommended in the general TLS framework are mentioned in
table 2.3. They must be supported by the controlled equipments and used in
the previously specified contexts.

R13 Use the extensions from table 2.3

Value Name Context of use
0x000A supported_groups In case of ECC
0x000D signature_algorithms In case of TLS 1.2
0x0012 sct In case of EV certificate
0x0016 encrypt_then_mac Always recommended
0x0017 extended_master_secret Always recommended
0xFF01 renegotiation_info In case of renegotiation

Table 2.3: TLS extensions recommended in the general framework

31Security Recommendations for TLS

Extensions from table 2.4 are context-specific. Only those evaluated as nec-
essary must be implemented and used.

R14 Assess the relevance of the extensions from table 2.4

The most commonly used extensions are server_name, status_request_v2,
status_request (to supplement status_request_v2 where compatibility with un-
controlled clients is necessary) and session_ticket.

Value Name Context of use
0x0000 server_name In case of shared hosting
0x0001 max_fragment_length In case of network constraints (rare)
0x0003 trusted_ca_keys In case of several trust anchors (rare)
0x0005 status_request In case of OCSP stapling
0x0006 user_mapping In case of indexed clients (rare)
0x0009 cert_type In case of OpenPGP certificates (rare)
0x000B ec_point_formats In case of compressed ECC points
0x000C srp In case of SRP suites
0x000E use_srtp In case of SRTP (rare)
0x0010 alpn In case of HTTP/2
0x0011 status_request_v2 In case of OCSP stapling
0x0015 padding In case of a defective server (rare)
0x0023 session_ticket In case of session resumption

Table 2.4: Context-specific TLS extensions

The extensions in table 2.5 are never recommended.

R15 Do not use the extensions from table 2.5

Value Name
0x0002 client_certificate_url
0x0004 truncated_hmac
0x0007 client_authz
0x0008 server_authz
0x000F heartbeat
0x0013 client_certificate_type
0x0014 server_certificate_type

Table 2.5: Unadvised TLS extensions

32 Security Recommendations for TLS

2.4 Additional Considerations

Random Items
During the TLS handshake, both the client and the server generate a random item and
send it, either via the ClientHello or the ServerHello. These two values intervene
several times, in particular during the signing of Diffie–Hellman parameters, during
the calculation of the master secret, and during the hashing of all of the handshake
messages for the Finished messages. In contexts where the generators are controlled,
the use of unpredictable values constitutes essential protection against replay attacks.

The computation of these 32-byte values must rely on a quality PRNG36, such as de-
fined by the RGS [28]. The specifications of TLS 1.2 separate the 32 bytes into 28
random bytes and a prefix of 4 bytes corresponding to the Unix time at the writing of
the message. This construction aimed to generate random items that were not imme-
diately predictable, should the PRNG be compromised. However, this scheme induces
risks for unwanted tracking, and the use of a robust PRNG remains indispensable.
Consequently, when possible, the fully randomised 32-byte structure is to be preferred.

The random values used in the ClientHello and theServerHello must orig-
inate from reliable PRNGs.

R16 Use a strong PRNG

The random values used in the ClientHello and the ServerHello must
favour 32 random bytes rather than the structure with a Unix time prefix.

R17 Favour random items without a predictable prefix

Compression
The handshake, in addition to the parameters for protecting records, also determines
a compression algorithm used on the application date before encryption. In practice,
the function usually retained is the one which actually leaves this data unchanged. It is
however still possible to use the Deflate algorithm [58].

However, the use of compression combined with the absence of protection on the
length of the encrypted messages can result in the compromising of a portion of the
data exchanged, and in particular session cookies that certain servers use to identify
their clients [59]. The use of these cookies by a third party is the same as identity theft,
which is dangerous for the initial client unless the server only proposed static content
that is identical for all of its clients.

36Pseudorandom Number Generator.

33Security Recommendations for TLS

This vulnerability is countered by most web browsers, which have either deactivated
the compression mechanisms, or have implemented a workaround such as not com-
pressing the header containing the sensitive cookie. However, this approach covers
neither the entirety of the applicative use cases, nor the entirety of the TLS-enabled
clients. Consequently, except when consulting a server with static content, compres-
sion remains unadvised.

Except when consulting a server with static content, using the TLS compression
mechanism is not recommended.

R18 Do not use TLS compression

Session Resumption
There are two methods for resuming a session, making it possible to shorten the TLS
handshake by restoring secrets that were previously established.

The first method is based on the session identifier contained in the ClientHello, as-
sociated by the client with a set of parameters and secrets that were previously cached.
In this situation, if the server itself has cached the parameters of the session charac-
terised by the received identifier, then it can choose to restore them and the phase of
exchanging keys does not need to be reproduced. If the server does not recognise the
session identifier, the negotiation continues in the standard way.

The second method is based on session tickets and the corresponding extension, de-
scribed briefly in section 2.3. The use of session tickets is preferred to that of session
identifiers, as it does not require the server to retain the parameters pertaining to a
session. Moreover, protecting them via cryptographic means is required by the speci-
fications of the extension [54].

However, regardless of the means of protection used, the retaining of parameters in-
duces a risk with respect to the perfect forward secrecy. In addition, although other
means of prevention exist, note that the Triple Handshake [60] attack is immediately
thwarted by the absence of support for a mechanism to resume the session.

Although the implementations rarely allow for this, if these mechanisms are used, the
period of time for retaining the cached information for the identifiers, as well as that
for tickets, must be reduced according to the level of security desired. A daily purge of
the caches is an acceptable compromise.

Session resumption is not recommended.

R19 Do not perform session resumption

34 Security Recommendations for TLS

Should a session resumption mechanism be used, then session tickets must be
preferred to session identifiers. In the case of session tickets, the tickets have to
be deleted at short intervals, and the encryption keys have to be deleted and
regenerated on a regular basis. In the case of session identifiers, the cached
data has to be deleted on both sides at regular intervals.

R19– Perform session resumption with PFS

The use of session tickets or session identifiers without the regular deleting of
the associated data is tolerated.

R19–– Perform session resumption without PFS

Renegotiation
The renegotiation mechanism initially designed for TLS exposes the client to a protocol
vulnerability. It is indeed possible for an attacker to pass off the first negotiation of a
client as a renegotiation. The attacker is thus in a position to inject application data
that the server attributes to the legitimate client. From a server standpoint, this data
transparently precedes the application data subsequently sent by the legitimate client.
This process can be used as a primer for more complex attack scenarios [22, 61].

The renegotiation_info extension was defined in order to carry out secure rene-
gotiations. The use of this extension requires retaining the protected content of the
Finished messages used to authenticate the last handshake.

If an attacker performs a first negotiation with a server that supports secure renego-
tiations, then passes off the ClientHello of a legitimate client as a renegotiation,
then the presence of the renegotiation_info extension in this ClientHello without
it being accompanied by the content of Finished (which, from the legitimate client
standpoint, never took place) allows the server to detect the hack and to terminate the
session. Note that the use of the extension is still necessary for the client even if it never
wants to perform a renegotiation.

A TLS client, whether or not it wants to perform renegotiations, must use the
renegotiation_info extension. A TLS server, if it wants to perform renego-
tiations, must use the renegotiation_info extension.

R20 Operate secure renegotiations

35Security Recommendations for TLS

Chapter 3

Setting Up a PKI

This chapter groups together the recommendations pertaining to the attributes of X.509
certificates used during the handshake. It also addresses the various revocation meth-
ods that exist. The methods for generating and storing keys, and obtaining or switching
between certificates, goes beyond the scope of this document. They are covered in Ap-
pendix B2 of the RGS [62].

3.1 X.509 Certificate Attributes
An X.509 certificate is comprised of several basic fields, generally accompanied with
extensions. The latter specify the contexts for use of the certificate and supply means
for checking the certificate more precisely within the certification chain. This chapter
describes a few of the important fields and extensions in the case of TLS authentication
certificates, and issues recommendations as to their content. Recommendations on the
other fields can be found in Appendix A4 of the RGS [18]. Additional information on
their use and their structure is provided in RFC 5280 [16].

3.1.1 Basic Fields
The serial number of a certificate generally identifies the certificate within the certifica-
tion authority that issued it. This serial number is a positive number whose size does not
exceed 20 bytes. It must be unique among all of the certificates generated by the same
CA. The RGS moreover recommends that CAs generate certificates with unpredictable
serial numbers, in order to prevent collision attacks which could affect the signature.

The signature field indicates the algorithms used by the certification authority to sign
the information of the certificate. It comprises the hash function used to calculate the
data imprint, as well as the signature algorithm that is then applied. It is recommended
to follow Appendix B1 of the RGS [28].

The hash function used for the signature of the certificate has to be one from
the SHA-2 family.

R21 Bear a certificate signed with SHA-2

37Security Recommendations for TLS

A certificate indicates its own period of validity through two fields:
• the notBefore field indicates the date from which the certificate is valid;
• the notAfter field indicates the date after which it is no longer valid.

The validity period of a TLS authentication certificate (either for a server or a
client) must not exceed 3 years.

R22 Bear a certificate valid for a 3-year period at most

It is sometimes possible to renew a certificate with a certification authority while still
retaining the same pair of asymmetric keys. However, in the same way as a certificate,
a pair of keys must not be valid for more than 3 years.

The information on the public key of the subject of the certificate (the Subject Public
Key Info) are structured into two parts: the identifier of the algorithm that will be imple-
mented with this key, as well as the public key itself. Appendix B1 of the RGS provides
several recommendations on the subject of algorithms and the key sizes to comply with.

For use up to 2030, RSA keys should be at least 2048-bit long, and ECDSA
keys should be at least 256-bit long. For ECDSA, the tried out, retained
curves are secp256r1, secp384r1, secp521r1, as well as brainpoolP256r1,
brainpoolP384r1 and brainpoolP512r1.

R23 Use keys of sufficient size

3.1.2 Extensions
Since version 3 of the X.509 standard, extensions can be added to the certificates. The
latter are primarily used to:

• identify the owner of the pair of asymmetric keys to which the certificate refers
(Subject Alternative Name);
• specify the possible uses of the certificate (Key Usage, Extended Key Usage,
Basic Constraints, Subject Alternative Name);
• supply information used to check the state of revocation of the certificate (CRL
Distribution Points, Freshest CRL, Authority Information Access);
• supply information to check the certificate within the certification chain (Au-
thority Key Identifier, Subject Key Identifier);
• supply a link to the certification policy that applies to the certificate (Certificate
Policies).

38 Security Recommendations for TLS

There is an attribute for marking extensions considered critical. If an application does
not recognise one critical extension of a certificate, it should reject the certificate.

The Key Usage extension defines the operations allowed to be carried out with the key
associated with the certificate. This extension contains one or several values:

• the digitalSignature value indicates that the public key can be used to check
electronic signatures which cover any object distinct from certificates and CRLs;
• the keyEncipherment value indicates that the public key can be used for ses-
sion keys encryption. Thus the exchange would infringe PFS;
• the keyAgreement value signals a key useful for a key exchange protocol. The
natural case corresponds to a static Diffie–Hellman key, but these certificates are
rare; as explained in section 2.2, preference is to be given to Diffie–Hellman
exchanges based on ephemeral keys, i.e. generated at each new session;
• the keyCertSign value indicates a certificate that belongs to a root or interme-
diate CA, of which the key was used to sign other certificates;
• the crlSign value also indicates a certificate that belongs to a root or interme-
diate CA, and of which the key was used to sign revocation lists.

In a certificate used for authentication, the Key Usage extension must be
present and marked as critical. For a server, it must contain the digitalSig-
nature and/or keyEncipherment values. For a client, it must contain the digi-
talSignature value. No other value is allowed.

R24 Bear an appropriate KeyUsage

The Extended Key Usage extension indicates a more precise use of the certificate and
adds to the Key Usage extension. Outside of id-kp-OCSPSigning used to characterise
the CA certificates of which the key is used to sign OCSP responses, the other values
defined for Extended Key Usage do not come into play in the framework of TLS.

In a certificate used for authentication, the Extended Key Usage extension must
be present and marked as non-critical. For a server, it must contain only the
id-kp-serverAuth value. For a client, it must contain only the id-kp-clientAuth
value.

R25 Bear an appropriate ExtendedKeyUsage

The SAN37 extension makes it possible to indicate identities of the subject of the certifi-
cate other than the one present in the Subject field, such as full DNS names (dNSName)
or email addresses (rfc822Name). As such, as an example, a web server certificate must

37Subject Alternative Name.

39Security Recommendations for TLS

contain the domain name consulted by the user in the Common Name portion of the
subject field, or among the FQDN38 of the dNSName entries of the SAN extension.

In a certificate used by a TLS server for authentication, the Subject Alternative
Name extension must be present and marked as non-critical. It must contain
at least one dNSName entry that corresponds to one of the FQDNs of the
application service that uses the certificate.

R26 Bear an appropriate (server-side) SubjectAlternativeName

The SAN extension is sometimes used to associate several services with the same cer-
tificate. However, it is not recommended to use the same private key, and therefore
the same certificate, for separate TLS services. Indeed, this practice will generate a
sharing of the individual risks looming over each TLS termination point. In particular,
the duplication, the distribution and the ubiquitous existence of the private key, in order
for it to serve several TLS services, increases the risk of it being compromised. On the
other hand, the use of a TLS proxy positioned in front of various application services
remains acceptable, as long as the TLS termination point remains unique.

The same certificate for authentication must not be used by more than one TLS
termination point.

R27 Hold each certificate for one TLS termination point only

This reasoning extends to differentiating certificates according to the parameters re-
tained for the negotiation. Indeed, certain attacks [5] have shown that the tolerance
for a certain version of the protocol could compromise sessions carried out with other
versions, if the latter were based on the same certificate.

For the same termination point, it is recommended to use as many certificates
as cleared versions and key exchange methods.

Further steps

The AKI39 extension makes it possible to identify the key of the CA that signed the
certificate, in particular when the CA in question has several keys. Standard X.509
makes it possible to use the identifier present in the SKI40 extension of the CA certificate

38Fully Qualified Domain Name.
39Authority Key Identifier.
40Subject Key Identifier.

40 Security Recommendations for TLS

with respect to the signature key, or to the association of the name of the CA and the
serial number of the certificate with respect to the signature key. Only the first of the
two options is RGS-compliant.

In a certificate used for authentication (either by a server or a client), the AKI
extension has to be present, marked as non-critical and contain the identifier
present in the SKI extension of the certificate of the CA with respect to the
signature key used.

R28 Bear an AKI corresponding to the SKI defined by the CA

The CRLDP and AIA extensions indicate access paths to the revocation information of
the certificate. The CRLDP extension can contain one or several URLs (HTTP, FTP, LDAP)
that point to a CRL, as does the AIA extension to an OCSP responder. A certificate
must contain at least one means of verifying its revocation status.

At least one extension among CRLDP and AIA must be present and marked as
non-critical.

R29 Offer revocation information

3.2 Trust Establishment

Certificate Chains
The Certificate message sent by the server usually contains several certificates: the
one that links the identity of the application server with the pair of asymmetrical keys
used for key exchange, but also those that make it possible to establish a trusted link
made of cryptographic signatures from the leaf certificate to a recognised certification
authority.

In order for all clients to process this chain of trust without ambiguity, it is necessary to
transmit it in an ordered manner and in full, from the leaf certificate to the intermediate
certificate signed by the trusted root. It is not necessary to transmit the root certificate
which makes it possible to check this last signature, because the client is already sup-
posed to have it locally. However, in the case where the leaf certificate and the root
certificate are the same self-signed certificate, it is still necessary to send it in order to
disclose the identity of the server.

The certificate chains which are sent using Certificate messages must be
ordered and complete.

R30 Transmit an ordered and complete certificate chain

41Security Recommendations for TLS

Revocation Checking
The setting up of revocation mechanisms is critical for assessing trust in certificates. The
main revocation methods are presented in section 1.2. At least one of these mecha-
nisms has to be implemented, and the URL of the CRL file or of the OCSP responder
has to be present in the extensions of the certificates.

The choice from among these mechanisms must be based on an analysis of the needs
in terms of security and availability, of the speed and time constraints as well as on the
architecture of the information system. An OCSP responder provides fresher revocation
information than the asynchronously downloaded CRL, but is has to be able to be
reached constantly. Moreover, the size of some CRLs may form an obstacle in deploying
them. In a massive revocation scenario, this performance constraint impacts more the
CAs that are responsible for the distribution of the CRLs, which face denial of service
risks [63].

As described in section 1.2, OCSP stapling provides improvements to the standard
OCSP protocol:

• in terms of performance: the OCSP responder is not queried at each revoca-
tion checking because the TLS server caches the OCSP responses;
• in terms of privacy: the OCSP responder no longer knows the clients that
connect to the services for which the certificate was issued.

When the OCSP protocol is implemented, it is recommended to use OCSP
stapling. This solution is also preferred to the distribution of CRLs.

R31 Prefer OCSP stapling

Most tools for certificate validation try to join the other URLs that may be present in the
CRLDP (or AIA) extension, should the first one not respond. It is therefore advised to
set up a redundant means for the publication of revocation information. In the case of
CRLs, the CRL file can be hosted on several different web servers (or directories). In the
case of OCSP, several OCSP servers can be implemented, sharing the same revocation
information.

For reasons of availability, redundant mechasnims for the publication of revo-
cation information must be implemented.

R32 Provide redundancy for revocation checking

42 Security Recommendations for TLS

Revocation Information Deficiency
The services for checking revocation information, when they can be accessed, enable
to validate or reject a certificate. In the event where none of them can be reached,
two behaviours are defined: the hard-fail behaviour consists in refusing the connec-
tion, while the soft-fail behaviour consists in accepting the certificate all the same and
continuing the exchange.

The choice between these two behaviours can depend on the context of use and the
criticality of the application. An application that favours availability will be configured
for soft-fail, while another wherein the need for security is predominant will activate
the hard-fail. If soft-fail is preferred and the OCSP responder (or the server delivering
the CRLs) becomes unavailable, then any attacker holding the key associated with a
revoked certificate will still be able to impersonate the subject of the certificate.

The TLS software components must implement a hard-fail behaviour.

R33 Operate in hard-fail mode

Certificate Transparency
In the framework of a public PKI, the CT programme presented in section 1.2 can
provide additional assurance as to the validity of a certificate transmitted by a server.
Currently, only the EV certificates are automatically checked by the TLS clients that are
compatible with CT. However, certain CAs such as Symantec or Let’s Encrypt record all
of their new certificates.

In the framework of a public PKI, it is recommended to use certificates that
have been registered by their CA as part of the CT programme.

R34 Use certificates registered to CT

TLS clients must reject all of the certificates which come with an invalid SCT,
and the EV certificates which do not come with any SCT.

R35 Reject all certificates invalidated by CT

TLS clients must reject the EV certificates which come with an invalid SCT, or
which do not come with any SCT.

R35– Reject EV certificates invalidated by CT

43Security Recommendations for TLS

Appendix A

Cipher Suites Guide

The following reference guide summarises the recommendations of section 2.2 into
several tables of cipher suites.

A.1 Recommended Suites
Tables A.1 and A.2 list the cipher suites that are recommended in the general case,
standardised for use with TLS 1.2. Recall that the use of CBC encryption mode is
recommended if in conjunction with the encrypt_then_mac extension.

Value Cipher suite
0xC02C TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
0xC02B TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
0xC0AD TLS_ECDHE_ECDSA_WITH_AES_256_CCM
0xC0AC TLS_ECDHE_ECDSA_WITH_AES_128_CCM
0xC024 TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
0xC023 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

Table A.1: Recommended suites for servers with an ECDSA key

Value Cipher suite
0xC030 TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
0xC02F TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
0xC028 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
0xC027 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256

Table A.2: Recommended suites for servers with an RSA key

45Security Recommendations for TLS

Although the use of the AES encryption, which has been extensively tried out, is to be
favoured, Camellia and ARIA are the object of no known attacks to date, and constitute
acceptable alternatives. The corresponding suites are mentioned in tables A.3 and A.4.
Finally, for deployments with pre-shared keys, the recommended suites are mentioned
in table A.5.

Value Cipher suite
0xC087 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_GCM_SHA384
0xC086 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_GCM_SHA256
0xC073 TLS_ECDHE_ECDSA_WITH_CAMELLIA_256_CBC_SHA384
0xC072 TLS_ECDHE_ECDSA_WITH_CAMELLIA_128_CBC_SHA256
0xC08B TLS_ECDHE_RSA_WITH_CAMELLIA_256_GCM_SHA384
0xC08A TLS_ECDHE_RSA_WITH_CAMELLIA_128_GCM_SHA256
0xC077 TLS_ECDHE_RSA_WITH_CAMELLIA_256_CBC_SHA384
0xC076 TLS_ECDHE_RSA_WITH_CAMELLIA_128_CBC_SHA256

Table A.3: Recommended suites for use with Camellia

Value Cipher suite
0xC05D TLS_ECDHE_ECDSA_WITH_ARIA_256_GCM_SHA384
0xC05C TLS_ECDHE_ECDSA_WITH_ARIA_128_GCM_SHA256
0xC061 TLS_ECDHE_RSA_WITH_ARIA_256_GCM_SHA384
0xC060 TLS_ECDHE_RSA_WITH_ARIA_128_GCM_SHA256
0xC049 TLS_ECDHE_ECDSA_WITH_ARIA_256_CBC_SHA384
0xC048 TLS_ECDHE_ECDSA_WITH_ARIA_128_CBC_SHA256
0xC04D TLS_ECDHE_RSA_WITH_ARIA_256_CBC_SHA384
0xC04C TLS_ECDHE_RSA_WITH_ARIA_128_CBC_SHA256

Table A.4: Recommended suites for use with ARIA

Value Cipher suite
0xC038 TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA384
0xC037 TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA256

Table A.5: Recommended suites for use with a PSK

46 Security Recommendations for TLS

A.2 Relaxed Suites
When one of the two sides is not controlled, it is not always possible to negotiate a TLS
session with one of the preceding cipher suites. In the case where a strong need for
compatibility has been identified, other suites can be adopted. As explained in section
2.2, this widening of the possibilities for negotiation are done generally to the detriment
of the security of communications. Consequently, it is suitable to evaluate the profile
of the servers or of the clients in question, and to adopt only suites that are deemed as
indispensable for the accomplishing of the application functions under consideration.

Relaxed Suites for TLS 1.2
In the absence of support for ECC, table A.6 lists the suites that are tolerated.

Value Cipher suite
0x009F TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
0x009E TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
0xC09F TLS_DHE_RSA_WITH_AES_256_CCM
0xC09E TLS_DHE_RSA_WITH_AES_128_CCM
0x006B TLS_DHE_RSA_WITH_AES_256_CBC_SHA256
0x0067 TLS_DHE_RSA_WITH_AES_128_CBC_SHA256

Table A.6: TLS 1.2 suites tolerated in the absence of ECC support

In the absence of support for Diffie–Hellman exchanges, table A.7 lists the suites that
are tolerated. They do not verify the PFS property.

Value Cipher suite
0x009D TLS_RSA_WITH_AES_256_GCM_SHA384
0x009C TLS_RSA_WITH_AES_128_GCM_SHA256
0xC09D TLS_RSA_WITH_AES_256_CCM
0xC09C TLS_RSA_WITH_AES_128_CCM
0x003D TLS_RSA_WITH_AES_256_CBC_SHA256
0x003C TLS_RSA_WITH_AES_128_CBC_SHA256

Table A.7: TLS 1.2 suites tolerated in the absence of DH support

Table A.8 lists the suites tolerated for SRP use. The latter are based on a HMAC-SHA1
for the integrity check for messages, and therefore remain relevant for TLS 1.0.

47Security Recommendations for TLS

Value Cipher suite
0xC021 TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA
0xC01E TLS_SRP_SHA_RSA_WITH_AES_128_CBC_SHA

Table A.8: TLS suites tolerated for password authentication

Relaxed Suites for TLS 1.0
When support for TLS 1.0 is indispensable, the suites in table A.9 are to be favoured.

Value Cipher suite
0xC00A TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
0xC009 TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
0xC014 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
0xC013 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA

Table A.9: Suites tolerated for TLS 1.0

As a last resort, the suites in table A.10 are suggested. Using them is not recommended
in the general case, for the reasons explained hereinabove.

Value Cipher suite
0x0039 TLS_DHE_RSA_WITH_AES_256_CBC_SHA
0x0033 TLS_DHE_RSA_WITH_AES_128_CBC_SHA
0xC008 TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
0xC012 TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
0x0016 TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA
0x0035 TLS_RSA_WITH_AES_256_CBC_SHA
0x002F TLS_RSA_WITH_AES_128_CBC_SHA
0x000A TLS_RSA_WITH_3DES_EDE_CBC_SHA

Table A.10: Suites barely tolerated for TLS 1.0

Downgraded suites based on a PSK or SRP key exchange, as well as those based on
Camellia or ARIA for symmetrical encryption, are not represented.

The remaining suites that are not mentioned, involving in particular DSA certificates, DH
or ECDH static key certificates, HMAC-MD5s, anonymous DH exchanges, or EXPORT
algorithms, are strongly discouraged.

48 Security Recommendations for TLS

Appendix B

Examples of Applying the
Recommendations

The following appendix presents applications for several software programs that use
the TLS protocol, by aligning as closely as possible with the recommendations of the
guide in light of their respective options. It is divided into two parts:

• the first part covers the generation of the OpenSSL library. It contains several
directives for compilation for the use of this library in a given product or service;
• the second part focuses on the configuration of common application mod-
ules, mod_ssl for Apache and ngx_http_ssl_module for NGINX. It shows the
directives that should be used to build a TLS context on the server side.

Application for the Compilation of OpenSSL
The chosen OpenSSL branch is 1.0.2. This is a LTS41 version for which maintenance
will be provided until 31 December 2019.

TheOpenSSL build system is based on a set of shell scripts, Perl programs andMakefiles
configured using ./config. Extract B.1 shows the deactivation of the algorithms and
the options that are not desirable, before running the compilation.

The compilation relates to two libraries of interest:
• libcrypto.so, for cryptographic algorithms;
• libssl.so, for the TLS protocol itself.

For use by other programs, these libraries can be selected through LD_LIBRARY_PATH,
or explicitly during compilation at linking time.

41Long Term Support.

49Security Recommendations for TLS

Listing B.1: Exemple of OpenSSL 1.0.2 compilation
Remember to download the latest stable version of the branch 1.0.2
$ tar -xzf openssl-1.0.2h.tar.gz
$ cd openssl-1.0.2h
$./config shared -D_FORTIFY_SOURCE=2 -fstack-protector-all \

-no-ssl2 -no-ssl3 -no-ssl2-method -no-ssl3-method \
-no-ec2m \
-no-weak-ssl-ciphers \
-no-seed -no-idea \
-no-mdc2 -no-md2 -no-md4 -no-whirlpool \
-no-rc2 -no-rc4 -no-rc5 -no-blowfish -no-cast \
-no-heartbeats \
-no-srp -no-psk -no-comp

$ make depend
$ make
$ ls lib*.so
libcrypto.so libssl.so

Application to the Configuration of Application
Modules for Apache and NGINX
Most applications have a TLS layer that makes it possible to configure them through
directives that roughly control the options and the extensions pertaining to the protocol.
It is not strictly necessary to use the previously generated library in order for these
directives to be complied with. They are however highly dependent on the TLS library
used as well as the version of it.

Here, we provide two examples of a configuration of TLS modules linked to OpenSSL:
mod_ssl for Apache in branch 2.4, and ngx_http_ssl_module for NGINX in branch
1.10. Note that, in addition to the configuration directives that they provide, these
modules can decide to apply additional parameters to the TLS layer without the in-
tegrator having a way to interact with it, unless the code in the module is modified
directly.

The configuration extracts proposed here can be applied to separate virtual hosts. They
focus on the parameters that are directly linked to TLS, and have to be supplemented
using the technical note on securing websites [1].

Apache
Configuration B.2 supposes the use of an Apache server in version 2.4.88 or later. It
offers recommended suites as well as certain relaxed suites. Several directives are not
supported by prior versions [64].

50 Security Recommendations for TLS

Listing B.2: SSL Apache 2.4.8+ configuration example
Activate TLS protocol
SSLEngine on
Force usage of TLS 1.2
SSLProtocol all -SSLv2 -SSLv3 -TLSv1 -TLSv1.1
Supply a certificate chain and a key
SSLCertificateKeyFile "/path/to/private/key.pem"
SSLCertificateFile "/path/to/certificate/chain.pem"
Deactivate the session cache and the tickets
SSLSessionCache none
SSLSessionTickets off
Deactivate compression
SSLCompression off
Prevent insecure renegotiations
SSLInsecureRenegotiation off
Activate OCSP stapling
SSLUseStapling on
SSLStaplingCache shmcb:logs/ssl_stapling(32768)
Use the recommended curves for ECDHE and supported_groups
SSLOpenSSLConfCmd ECDHParameters secp521r1:secp384r1:prime256v1:

brainpoolP512r1:brainpoolP384r1:brainpoolP256r1
SSLOpenSSLConfCmd Curves secp521r1:secp384r1:prime256v1:brainpoolP512r1:

brainpoolP384r1:brainpoolP256r1
Use a 2048-bit DH group, generated by OpenSSL with
openssl dhparam 2048 > /path/to/dhparams.pem
SSLOpenSSLConfCmd DHParameters "/path/to/dhparams.pem"

SSLHonorCipherOrder on
The branch 1.0.2 of OpenSSL :
- does not support CCM suites;
- does not support ARIA;
- supports CAMELLIA (in revision `h'), but only combined with
SHA-1. The implementation of SHA256 with CAMELLIA128 is expected.
Ordering relations used:
- ECDHE > DHE > RSA encryption ;
- GCM > CBC ;
- AES256 > AES128 > CAMELLIA256 > CAMELLIA128 ;
- SHA384 > SHA256 ;
- ECDSA > RSA.
#
With the current and future support provided, in branch 1.0.2:
SSLCipherSuite ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:

ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-
AES256-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-
AES128-SHA256:ECDHE-ECDSA-CAMELLIA256-SHA384:ECDHE-RSA-CAMELLIA256-SHA384:
ECDHE-ECDSA-CAMELLIA128-SHA256:ECDHE-RSA-CAMELLIA128-SHA256:DHE-RSA-AES256
-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-SHA256:DHE-RSA-AES128
-SHA256:AES256-GCM-SHA384:AES128-GCM-SHA256:AES256-SHA256:AES128-SHA256:
CAMELLIA128-SHA256

51Security Recommendations for TLS

NGINX
Configuration B.3 supposes the use of a NGINX server in version 1.6 or later. It cor-
responds to a situation where the client is controlled and wants to negotiate a TLS 1.2
session with a TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 cipher suite. Several
directives are not supported by prior versions [65].

Listing B.3: SSL NGINX 1.6+ configuration example, faced with a controlled client
Activate usage of the TLS protocol
listen 443 ssl;

Force usage of TLS 1.2
ssl_protocols TLSv1.2;

Supply the certificate chain and the key
ssl_certificate_key /path/to/private/key.pem;
ssl_certificate /path/to/certificate/chain.pem;

Deactivate the session cache and the tickets
ssl_session_cache none;
ssl_session_tickets off;

(Compression is deactivated by default since version 1.1.6)
(Renegotiations are deactivated by default since version 0.8.24)

Activate OCSP stapling
ssl_stapling on;
ssl_stapling_verify on;

Use a recommended curve, in accordance with the controlled client
ssl_ecdh_curve secp521r1;

Use a recommended suite, in accordance with the controlled client
ssl_ciphers ECDHE-ECDSA-AES256-GCM-SHA384;

52 Security Recommendations for TLS

Appendix C

List of Recommendations

R1 Restrict compatibility according to the profile of the clients 10

R2 Use up-to-date software components 17

R3 Use only TLS 1.2 . 18

R3- Favour TLS 1.2 and tolerate TLS 1.1 and TLS 1.0 18

R3-- Favour TLS 1.2 and tolerate TLS 1.1, TLS 1.0 and SSLv3 18

R4 Do not use SSLv2 . 19

R5 Authenticate the server during key exchange 20

R6 Always do PFS-enabling key exchanges 20

R6- Favour PFS-enabling key exchanges 21

R7 Carry out an ECDHE key exchange 21

R7- Carry out a DHE key exchange . 21

R8 Use AES encryption . 23

R8- Use Camellia or ARIA encryption . 23

R8-- Favour AES and tolerate 3DES with refreshment 23

R9 Build the HMAC with SHA-2 . 23

R9- Favour the HMACs with SHA-2 and tolerate the HMACs with SHA-1 . . 24

R10 Use a robust encryption mode . 24

R10- Use the CBC mode without encrypt_then_mac 24

R11 Maintain several cipher suites available 26

R12 Prefer the suites order of the server 26

R13 Use the extensions from table 2.3 . 31

R14 Assess the relevance of the extensions from table 2.4 32

R15 Do not use the extensions from table 2.5 32

R16 Use a strong PRNG . 33

R17 Favour random items without a predictable prefix 33

R18 Do not use TLS compression . 34

R19 Do not perform session resumption 34

R19- Perform session resumption with PFS 35

R19-- Perform session resumption without PFS 35

R20 Operate secure renegotiations . 35

53Security Recommendations for TLS

R21 Bear a certificate signed with SHA-2 37
R22 Bear a certificate valid for a 3-year period at most 38
R23 Use keys of sufficient size . 38
R24 Bear an appropriate KeyUsage . 39
R25 Bear an appropriate ExtendedKeyUsage 39
R26 Bear an appropriate (server-side) SubjectAlternativeName 40
R27 Hold each certificate for one TLS termination point only 40
R28 Bear an AKI corresponding to the SKI defined by the CA 41
R29 Offer revocation information . 41
R30 Transmit an ordered and complete certificate chain 41
R31 Prefer OCSP stapling . 42
R32 Provide redundancy for revocation checking 42
R33 Operate in hard-fail mode . 43
R34 Use certificates registered to CT . 43
R35 Reject all certificates invalidated by CT 43
R35- Reject EV certificates invalidated by CT 43

54 Security Recommendations for TLS

Bibliography

[1] Agence nationale de la sécurité des systèmes d’information (ANSSI), “Recom-
mandations pour la sécurisation des sites web.” <http://www.ssi.gouv.fr/
uploads/IMG/pdf/NP_Securite_Web_NoteTech.pdf>.

[2] Agence nationale de la sécurité des systèmes d’information (ANSSI), “Recomman-
dations de sécurité concernant l’analyse des flux HTTPS.” <http://www.ssi.
gouv.fr/uploads/IMG/pdf/NP_TLS_NoteTech.pdf>.

[3] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M. Kohlweiss,
A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “FREAK: Factoring RSA Export Keys.”
<https://mitls.org/pages/attacks/SMACK#freak>, March 2015.

[4] D. Adrian, B. Karthikeyan, Z. Durumeric, P. Gaudry, M. Green, J. A. Hal-
derman, D. Springall, E. Thomé, L. Valenta, B. VanderSloot, E. Wustrow,
S. Zanella-Béguelin, and P. Zimmermann, “Imperfect Forward Secrecy: How
Diffie–Hellman Fails in Practice.” <https://weakdh.org/imperfect-forward-
secrecy-ccs15.pdf>, October 2015.

[5] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube, L. Va-
lenta, D. Adrian, J. A. Halderman, V. Dukhovni, E. Käsper, S. Cohney, S. En-
gels, C. Paar, and Y. Shavitt, “DROWN: Breaking TLS using SSLv2.” <https:
//drownattack.com/drown-attack-paper.pdf>, March 2016.

[6] “Transport Layer Security – Applications and adoption.” <https://en.
wikipedia.org/wiki/Transport_Layer_Security#Web_browsers>.

[7] Qualys SSL Labs, “SSL/TLS Capabilities of Your Browser.” <https://www.
ssllabs.com/ssltest/viewMyClient.html>.

[8] T. Dierks and C. Allen, “The TLS Protocol Version 1.0.” RFC 2246 (Proposed
Standard), Jan. 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746,
6176, 7465, 7507.

[9] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.1.”
RFC 4346 (Proposed Standard), Apr. 2006. Obsoleted by RFC 5246, updated
by RFCs 4366, 4680, 4681, 5746, 6176, 7465, 7507.

[10] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.2.” RFC 5246 (Proposed Standard), Aug. 2008. Updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905.

55Security Recommendations for TLS

[11] R. Barnes, M. Thomson, A. Pironti, and A. Langley, “Deprecating Secure Sockets
Layer Version 3.0.” RFC 7568 (Proposed Standard), June 2015.

[12] R. Braden, “Requirements for Internet Hosts - Communication Layers.” RFC 1122
(INTERNET STANDARD), Oct. 1989. Updated by RFCs 1349, 4379, 5884,
6093, 6298, 6633, 6864.

[13] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security Version 1.2.”
RFC 6347 (Proposed Standard), Jan. 2012. Updated by RFCs 7507, 7905.

[14] E. Rescorla, “Diffie–Hellman Key Agreement Method.” RFC 2631 (Proposed Stan-
dard), June 1999.

[15] D. E. 3rd, “Transport Layer Security (TLS) Extensions: Extension Definitions.” RFC
6066 (Proposed Standard), Jan. 2011.

[16] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile.” RFC 5280 (Proposed Standard), May 2008. Updated by RFC 6818.

[17] Mozilla, “Network Security Services.” <https://developer.mozilla.org/en-
US/docs/Mozilla/Projects/NSS>.

[18] Agence nationale de la sécurité des systèmes d’information (ANSSI), “Référentiel
Général de Sécurité - Annexe A4.” <http://www.ssi.gouv.fr/uploads/2014/
11/RGS_v-2-0_A4.pdf>.

[19] Google, “CRLSets.” <https://dev.chromium.org/Home/chromium-
security/crlsets>.

[20] Mozilla, “Revoking Intermediate Certificates: Introducing OneCRL.” <https:
//blog.mozilla.org/security/2015/03/03/revoking-intermediate-
certificates-introducing-onecrl/>, March 2015.

[21] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency.” RFC 6962 (Ex-
perimental), June 2013.

[22] Common Vulnerabilities and Exposures, “CVE-2009-3555.” <https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3555>, August 2009.

[23] J. Rizzo and T. Duong, “Browser Exploit Against SSL/TLS.” <https:
//packetstormsecurity.com/files/105499/Browser-Exploit-Against-
SSL-TLS.html>, October 2011.

[24] Common Vulnerabilities and Exposures, “CVE-2014-0160.” <https://cve.
mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0160>, April 2014.

56 Security Recommendations for TLS

[25] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3 – Version
12.” <https://tools.ietf.org/html/draft-ietf-tls-tls13-12>, March
2016.

[26] B. Moeller and A. Langley, “TLS Fallback Signaling Cipher Suite Value (SCSV) for
Preventing Protocol Downgrade Attacks.” RFC 7507 (Proposed Standard), Apr.
2015.

[27] A. Langley, W. Chang, N. Mavrogiannopoulos, J. Strombergson, and S. Josefsson,
“ChaCha20-Poly1305 Cipher Suites for Transport Layer Security (TLS).” RFC 7905
(Proposed Standard), June 2016.

[28] Agence nationale de la sécurité des systèmes d’information (ANSSI), “Référentiel
Général de Sécurité - Annexe B1.” <http://www.ssi.gouv.fr/uploads/2014/
11/RGS_v-2-0_B1.pdf>.

[29] Internet Assigned Numbers Authority, “Transport Layer Security (TLS) Pa-
rameters.” <https://www.iana.org/assignments/tls-parameters/tls-
parameters.xhtml>.

[30] P. Eronen and H. Tschofenig, “Pre-Shared Key Ciphersuites for Transport Layer
Security (TLS).” RFC 4279 (Proposed Standard), Dec. 2005.

[31] D. Taylor, T. Wu, N. Mavrogiannopoulos, and T. Perrin, “Using the Secure Remote
Password (SRP) Protocol for TLS Authentication.” RFC 5054 (Informational), Nov.
2007.

[32] N. J. AlFardan, D. J. Bernstein, K. G. Paterson, B. Poettering, and J. C.
Schuldt, “On the Security of RC4 in TLS and WPA.” <https://cr.yp.to/
streamciphers/rc4biases-20130708.pdf>, July 2013.

[33] A. Popov, “Prohibiting RC4 Cipher Suites.” RFC 7465 (Proposed Standard), Feb.
2015.

[34] S. Kelly, “Security Implications of Using the Data Encryption Standard (DES).” RFC
4772 (Informational), Dec. 2006.

[35] H. Y. Xiaoyun Wang, “Advances in cryptology – crypto 2005: 25th annual in-
ternational cryptology conference, santa barbara, california, usa, august 14-18,
2005. proceedings,” 2005.

[36] M. Stevens, P. Karpman, and T. Peyrin, “Freestart collision for full SHA-1.” <https:
//eprint.iacr.org/2015/967>, 2016.

[37] M. J. Dworkin, “SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions.” <https://http://www.nist.gov/manuscript-
publication-search.cfm?pub_id=919061>, August 2015.

57Security Recommendations for TLS

[38] N. J. AlFardan and K. G. Paterson, “Lucky thirteen: Breaking the TLS and DTLS
record protocols,” in 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA, May 19-22, 2013, pp. 526–540, IEEE Computer Society,
2013.

[39] Adam Langley, “Lucky Thirteen attack on TLS CBC.” <https://www.
imperialviolet.org/2013/04/luckythirteen.html>, February 2013.

[40] B. Möller, T. Duong, and K. Kotowicz, “This POODLE bites: Exploiting the SSL 3.0
Fallback,” tech. rep., September 2014.

[41] Internet Assigned Numbers Authority, “Transport Layer Security (TLS) Extensions.”
<https://www.iana.org/assignments/tls-extensiontype-values/tls-
extensiontype-values.xhtml>.

[42] S. Blake-Wilson, N. Bolyard, V. Gupta, C. Hawk, and B. Moeller, “Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS).” RFC 4492
(Informational), May 2006. Updated by RFCs 5246, 7027.

[43] P. Gutmann, “Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram
Transport Layer Security (DTLS).” RFC 7366 (Proposed Standard), Sept. 2014.

[44] K. Bhargavan, A. Delignat-Lavaud, A. Pironti, A. Langley, and M. Ray, “Transport
Layer Security (TLS) Session Hash and Extended Master Secret Extension.” RFC
7627 (Proposed Standard), Sept. 2015.

[45] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, “Transport Layer Security (TLS)
Renegotiation Indication Extension.” RFC 5746 (Proposed Standard), Feb. 2010.

[46] S. Santesson, A. Medvinsky, and J. Ball, “TLS User Mapping Extension.” RFC 4681
(Proposed Standard), Oct. 2006.

[47] N. Mavrogiannopoulos and D. Gillmor, “Using OpenPGP Keys for Transport Layer
Security (TLS) Authentication.” RFC 6091 (Informational), Feb. 2011.

[48] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP Mes-
sage Format.” RFC 4880 (Proposed Standard), Nov. 2007. Updated by RFC
5581.

[49] D. McGrew and E. Rescorla, “Datagram Transport Layer Security (DTLS) Extension
to Establish Keys for the Secure Real-time Transport Protocol (SRTP).” RFC 5764
(Proposed Standard), May 2010.

[50] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A Transport Pro-
tocol for Real-Time Applications.” RFC 3550 (INTERNET STANDARD), July 2003.
Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160, 7164.

58 Security Recommendations for TLS

[51] S. Friedl, A. Popov, A. Langley, and E. Stephan, “Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension.” RFC 7301 (Proposed Stan-
dard), July 2014.

[52] Y. Pettersen, “The Transport Layer Security (TLS) Multiple Certificate Status Request
Extension.” RFC 6961 (Proposed Standard), June 2013.

[53] A. Langley, “A Transport Layer Security (TLS) ClientHello Padding Extension.” RFC
7685 (Proposed Standard), Oct. 2015.

[54] J. Salowey, H. Zhou, P. Eronen, and H. Tschofenig, “Transport Layer Security (TLS)
Session Resumption without Server-Side State.” RFC 5077 (Proposed Standard),
Jan. 2008.

[55] M. Brown and R. Housley, “Transport Layer Security (TLS) Authorization Exten-
sions.” RFC 5878 (Experimental), May 2010.

[56] R. Seggelmann, M. Tuexen, and M. Williams, “Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension.” RFC 6520 (Pro-
posed Standard), Feb. 2012.

[57] P. Wouters, H. Tschofenig, J. Gilmore, S. Weiler, and T. Kivinen, “Using Raw Pub-
lic Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS).” RFC 7250 (Proposed Standard), June 2014.

[58] S. Hollenbeck, “Transport Layer Security Protocol Compression Methods.” RFC
3749 (Proposed Standard), May 2004.

[59] J. Rizzo and T. Duong, “The CRIME attack.” <http://www.ekoparty.org/
archive/2012/CRIME_ekoparty2012.pdf>, 2012.

[60] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-Y. Strub, “Triple
Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS.”
<https://www.mitls.org/downloads/tlsauth.pdf>, May 2014.

[61] M. Rex, “MITM attack on delayed TLS-client auth through renegotiation.” <https:
//www.ietf.org/mail-archive/web/tls/current/msg03928.html>,
November 2009.

[62] Agence nationale de la sécurité des systèmes d’information (ANSSI), “Référentiel
Général de Sécurité - Annexe B2.” <http://www.ssi.gouv.fr/uploads/2014/
11/RGS_v-2-0_B2.pdf>.

[63] M. Prince, “The Hidden Costs of Heartbleed.” <https://blog.cloudflare.
com/the-hard-costs-of-heartbleed/>, April 2014.

[64] The Apache Software Foundation, “Apache Module mod_ssl.” <https://httpd.
apache.org/docs/2.4/en/ssl/ssl_howto.html>.

59Security Recommendations for TLS

[65] Nginx, “Module ngx_http_ssl_module.” <http://nginx.org/en/security_
advisories.html>.

60 Security Recommendations for TLS

Acronyms

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AIA Authority Information Access

AKI Authority Key Identifier

CA Certification Authority

CRL Certificate Revocation List

CRLDP Certificate Revocation List Distribution Point

CT Certificate Transparency

DES Data Encryption Standard

DH Diffie–Hellman

DHE Diffie–Hellman Ephemeral

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie–Hellman

ECDHE Elliptic Curve Diffie–Hellman Ephemeral

EV Extended Validation

FFDH Finite Field Diffie–Hellman

FQDN Fully Qualified Domain Name

HTTP Hypertext Transfer Protocol

HTTPS HTTP Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

LTS Long Term Support

OCSP Online Certificate Status Protocol

61Security Recommendations for TLS

PFS Perfect Forward Secrecy

PKI Public Key Infrastructure

PRNG Pseudorandom Number Generator

PSK Pre-Shared Key

RGS Référentiel Général de Sécurité

RTP Real-time Transport Protocol

SAN Subject Alternative Name

SCSV Signaling Cipher Suite Value

SCT Signed Certificate Timestamp

SKI Subject Key Identifier

SNI Server Name Indication

SRP Secure Remote Password

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

62 Security Recommendations for TLS

December 2016

Licence ouverte / Open Licence (Etalab v1)

Agence nationale de la sécurité des systèmes dʼinformation
ANSSI - 51 boulevard de La Tour-Maubourg - 75700 PARIS 07 SP

Website: www.ssi.gouv.fr
Email: communication@ssi.gouv.fr

About ANSSI

The Agence nationale de la sécurité des systèmes d’information (ANSSI - French Net-
work and Information Security Agency) was created on July 7, 2009 as an agency with
national jurisdiction.
By Decree No. 2009-834 of July 7, 2009 as amended by Decree No. 2011-170
of February 11, 2011, the agency has responsibility at national level concerning the
defence and security of information systems. It is attached to the Secrétaire général de
la défense et de la sécurité nationale (Secretariat-General for National Defense and
Security), under the authority of the Prime Minister.
For more information about ANSSI and its activites, please visit www.ssi.gouv.fr.

