
Machine Learning for Computer Security
Detection Systems:

Practical Feedback and Solutions

Anaël Beaugnon� and Pierre Chifflier

French National Cybersecurity Agency (ANSSI), Paris, France
{anael.beaugnon,pierre.chifflier}@ssi.gouv.fr

Abstract. Machine learning based detection models can strengthen de-
tection, but there remain some significant barriers to the widespread
deployment of such techniques in operational detection systems. In this
paper, we identify the main challenges to overcome and we provide both
methodological guidance and practical solutions to address them. The
solutions we propose are completely generic to be beneficial to any de-
tection problem on any data type and are freely available in SecuML [1].

Keywords: Computer Security Detection Systems · Machine Learning · Human-
Computer Interactions

1 Introduction

Machine learning detection models can be deployed in detection systems to im-
prove the detection of yet unknown threats. Various research papers have tackled
detection problems successfully with supervised learning (e.g. Android applica-
tions, PDF files, and memory dumps). Despite these encouraging results, there
remain some significant barriers to the widespread deployment of machine learn-
ing in operational detection systems.

Security experts responsible for setting up detection methods may have little or
no knowledge about machine learning. They may need advice, and ready-to-use
solutions, to build supervised detection models that fulfill their operational con-
straints. Can a detection method based on machine learning process streaming
data ? Machine learning models are reputed to be black-box methods among se-
curity experts. How can they trust such techniques to deploy them in operational
detection systems ?

Moreover, evaluating detection models is not a straightforward procedure,
while it is a critical step to ensure successful deployments. Security experts may
need advice to evaluate detection models thoroughly and to address potential
performance issues.

Finally, machine learning algorithms require annotated datasets that are hard
to acquire in the context of detection systems. Few annotated datasets are public



and they quickly become outdated. Besides, crowd-sourcing cannot be leveraged
to get annotated datasets at low cost since the data are often sensitive and
annotating requires expert knowledge.

In this paper, we provide practical feedback on building and deploying machine
learning based detection models. We highlight the pitfalls to avoid, we identify
key good practice elements, and we provide practical solutions to help security
experts build ready-to-deploy supervised detection models. The solutions we
propose are completely generic to be beneficial to any detection problem on any
data type, and are freely available in SecuML [1]. They consist in interactive
tools that hide some of the machine learning machinery to let security experts
focus mainly on detection.

Section 2 provides an overview of machine learning in detection systems and
presents the steps of the machine learning pipeline: feature extraction, data
annotation, training, and evaluation. Then, Section 3 details the first two steps
of the machine learning pipeline, while Section 4 focuses on the last two ones.

2 Detection Systems and Machine Learning

Supervised detection models can be deployed in detection systems, as an adjunct
to traditional techniques, to strengthen detection. In this section, we present the
operational constraints of computer security detection systems that supervised
methods must also meet. Then, we provide an overview of machine learning in
detection systems and we list the steps of the machine learning pipeline that are
then further detailed in the next sections.

2.1 Constraints of Computer Security Detection Systems

Computer security detection systems monitor a network, or a system, to identify
potential threats such as malicious files attached to email messages, or data ex-
filtrations. They involve several detection methods based on diverse techniques
(e.g. signatures, expert systems, anomaly detection, supervised learning) oper-
ating in parallel to strengthen detection capabilities.

We define two roles that operate in security operation centers: security ad-
ministrators and security operators. Security administrators are responsible for
setting up detection methods. They define the detection target, i.e. in which cir-
cumstances an alert should be triggered. They also set up an alert taxonomy,
i.e. the way the malicious behaviors are grouped into families that are then ex-
ploited to tag the alerts. Once security administrators have defined the detection
target and the alert taxonomy, they implement and deploy detection methods
accordingly. Thereafter, security operators analyze the alerts: they discard false
alarms and take the appropriate actions in case of security incident.

Detection methods must meet the following operational constraints to ensure
their operability in detection systems [16,18].



Local and Online Processing. The sensitivity of the data processed by de-
tection systems hinders the use of cloud computing services. In addition,
detection methods must analyze streaming data that cannot be stored due
to volumetry and privacy: they must enjoy a low time complexity to be
executed in near real time.

Effectiveness. Both false positives and negatives are extremely costly and must
therefore be minimized. One the one hand, if there are too many false pos-
itives, meaningless alarms will overwhelm security operators, and they will
have less time to analyze the significant ones. On the other hand, false neg-
atives can cause serious damage to the defended system.

Transparency. Transparency is crucial for both security administrators and
operators. Security operators need information about why an alert has been
triggered to assess its criticality and to discard false positives. Moreover,
security administrators will not deploy black-box detection methods. They
want to understand how detection methods work to trust them before their
deployment.

Controllability. Security administrators shall retain control over detection meth-
ods. They must be able to update them to correct potential errors forthwith.
Updating detection methods should be straightforward, since swiftness is
crucial to detect emerging threats as soon as possible.

Robustness. Detection methods are deployed in adversarial environments: ma-
licious behaviors constantly evolve as attackers attempt to deceive detectors.
Detection methods must therefore be designed to resist evasion attempts.
This constraint is related to Effectiveness but it concerns the ability to detect
malicious behaviors that have been especially crafted to evade a given detec-
tion method. Assessing robustness means evaluating how much the detection
performance drops when attackers slightly modify malicious behaviors with
the intent of misleading detection.

2.2 Deploying Supervised Detection Models

Supervised Detection Models. Supervised detection models are binary classifiers
that take as input an instance (e.g. a PDF file, a Windows Office document, an
Android application, or the traffic associated to an IP address) and return the
predicted label, benign or malicious, as output.

They are built with training algorithms from annotated data, a set of in-
stances for which the label is known. Training algorithms find the discriminating
characteristics automatically to build the detection rules.

Once the model has been trained on an annotated dataset, it can be deployed
in the detection system to detect malicious instances automatically. In practice,
most classifiers do not provide a binary answer (benign vs. malicious), but rather
a probability of maliciousness. The detection system triggers an alert only if the
probability of maliciousness is above the detection threshold set by security
administrators. This probability allows to sort alerts according to the confidence
of the predictions, and thus to identify which alerts security operators should
analyze foremost.



Supervised Learning Pipeline. First of all, security administrators must clearly
define their detection target since it significantly drives the building process of
supervised detection models. Then, it is not straightforward to train ready-to-
deploy supervised detection models, it involves several steps. In this paper, we
consider the whole pipeline with security administrators and operators as its
core since it is crucial to pursue real-world impact [21].

1. Feature Extraction. Standard machine learning algorithms do not take
raw data as input. Security administrators must transform the instances
into fixed-length vectors of features.

2. Data Annotation. Security administrators must annotate the data, i.e. as-
sociate a binary label, malicious or benign, to each instance according to the
detection target.

3. Training. There are many model classes (i.e. types of supervised models):
neural networks, random forests, k-nearest neighbors, etc. Security adminis-
trators must pick a model class before launching the training algorithm.

4. Evaluation. Security administrators must check whether the detection model
meets the effectiveness and robustness constraints.

The first model trained is usually not satisfactory. Setting up a detection
model is an iterative process where the evaluation phase provides avenues for
improvement. At each iteration, security administrators train and validate a
detection model. Based on the evaluation results, they can either consider that
the detection model is good enough for deployment or perform a new iteration
by modifying the annotated dataset, the extracted features or the model class.

3 Gathering Training Data

Unlabeled data can be easily acquired from a production environment, but se-
curity administrators must perform two steps to build a training dataset : 1)
feature extraction to transform each instance into a fixed-length vector of fea-
tures, and 2) annotation to associate a binary label, malicious or benign, to each
instance.

3.1 Feature Extraction

Features are boolean, numerical, or categorical values describing an instance that
detection models exploit to make decisions. For instance, presence of JavaScript,
number of Open Actions, number of images, or mean of the size of the objects, can
be numerical features computed for PDF files. Netflow data can be described by
the number of bytes and packets sent and received globally and for some specific
port numbers. Other aggregated values can be computed such as the number of
contacted IP addresses and ports.

The more discriminating the features are, the more efficient the detection
model is. Security administrators should leverage their domain expertise, and



rely on previous research works, to extract features that are relevant for their
detection target. Besides, they should prefer features that attackers can hardly
modify while maintaining the malicious payload to hinder evasion attempts.
Finally, they should pay attention to the memory and time complexity of the
features computation to meet the local and online processing constraint.

Feature extraction is the most manual step of the supervised learning pipeline
and it must be implemented for each data type. No ready-to-use solution is
available to assist security administrators perform this step. Some research works
focus on automatic feature generation [13, 19], but they have not yet met the
constraints of detection systems [4].

3.2 Data Annotation

Public Annotated Datasets. Some annotated datasets related to computer
security are public, but they must be handled cautiously. First of all, they may
not be consistent with the desired detection target, or outdated. Besides, they
may not be representative of the data encountered in the deployment environ-
ment and therefore lead to training bias. The concept of training bias will be
further explained in Section 4.3.

In-Situ Training. If no suitable public annotated dataset is available, in-situ
training is a solution. It consists in asking security administrators to annotate
data coming from production environments. This solution offers several advan-
tages over public annotated datasets: 1) the annotations correspond perfectly to
the detection target, 2) the data are up-to-date, and 3) the risk of training bias
is reduced since the data come from the production environment. However, it is
more expensive since it involves manual annotations by security administrators.

Active Learning. Active learning strategies [17] have been introduced in the ma-
chine learning community to reduce human effort in annotation projects. They
ask annotators to annotate only the most informative instances to maximize
the performance of detection models while minimizing the number of manual
annotations.

The computer security community has exploited active learning [2, 11, 20],
but they have mostly focused on query strategies and not on their integration
in annotation systems. Very few studies and solutions focus on improving user
experience in active learning procedures while it is critical to effectively stream-
line real-world annotation projects [21]. Security administrators do not want to
minimize only the number of manual annotations, but the overall time spent
annotating.

ILAB: an End-to-End Active Learning System. In order to fill this gap, we
have designed and implemented an end-to-end active learning system, ILAB
(Interactive Labeling), tailored to computer security experts’ needs. It consists in
an active learning strategy [5] and a user interface [6] that both aim to effectively
reduce the annotation workload.



ILAB is suitable for annotators who may have little knowledge about ma-
chine learning, and it can manipulate any data type. By default, the instances
to be annotated are represented by the values of their features. However, this
visualization may be hard to interpret especially when there are many features.
In order to address this issue, ILAB enables security administrators to plug
problem-specific visualizations. These visualizations should display the most rel-
evant information from a detection perspective, and they may point to external
tools or information to provide some context.

We have validated our design choices with user experiments [6]. We have
asked intended end-users, security administrators, to use ILAB on a large un-
labeled NetFlow dataset coming from a production environment. These experi-
ments have demonstrated that ILAB is an efficient active learning system that
security administrators can deploy in real-world annotation projects. We provide
an open-source implementation of ILAB1 in SecuML [1] to foster comparison in
future research works, and to enable security administrators to annotate their
own datasets.

3.3 Analysis of the Training Data

Training data play a central role in supervised learning. Their quality (the num-
ber of instances, the agreement of the annotations with the detection target,
and the discriminating power of the features) impacts directly the performance
of resulting detection models.

Before training a supervised detection model, security administrators should
examine their training data. They can inspect descriptive statistics such as the
minimum, the maximum, the mean and the variance of each feature. Thanks
to these analyses, they may detect bugs in the feature extraction. For instance,
they may notice that a feature defined as a ratio does not have all its values
between 0 and 1. Besides, these statistics allow to identify useless features those
variance is null on a given training dataset. Machine learning models trained on
this dataset will never leverage these features to make decisions, so there is no
need to compute them.

SecuML [1] offers a features analysis module 2 to carry out these checks before
training a detection model. It also displays indicators assessing the discriminat-
ing power of features individually (chi square test, and mutual information).

4 Training and Evaluation

Once security administrators have gathered a training dataset they can train a
supervised detection model. Many libraries dedicated to machine learning (e.g.
scikit-learn in python, Mahout or Weka in java, or Vowpal Wabbit in C++)
enable to train various model classes and propose several performance evaluation

1 https://anssi-fr.github.io/SecuML/_build/html/SecuML.ILAB.html
2 https://anssi-fr.github.io/SecuML/_build/html/SecuML.stats.html



metrics. In this section, we explain how security administrators should pick an
appropriate model class, and a relevant evaluation metric. Finally, we present
a four-step evaluation protocol that security administrators should carry out to
diagnose and fix potential accuracy issues before deployment.

4.1 Model Classes that Suit the Operational Constraints

Neural networks have become so popular that the confusion between deep learn-
ing and machine learning is often made. However, neural networks, used in deep
learning, are only one supervised model class, with both benefits and drawbacks.
There are many others: decision trees, k-nearest neighbors, or logistic regression,
to cite just a few examples. In this section, we explain how the operational con-
straints of detection systems (see Section 2.1) should drive the choice of the
supervised model class.

Controllability. All supervised model classes enjoy a high level of controllabil-
ity. Their decision rules can be updated automatically with both malicious and
benign instances.

Local and Online Processing. This is not a difficult requirement to meet
since the training phase of supervised models is usually time-consuming but not
the predictions. The training phase is thus performed offline, and once the model
has been trained, its application to new data is usually extremely fast.

Nevertheless, lazy learners, such as k-nearest neighbors, should be avoided in
the context of detection systems. These models have no training phase, and they
therefore need all the training data during the prediction phase. As a result, the
temporal complexity of the prediction phase is too high and it increases over
time when new instances are used to update the detection model.

To sum up, most model classes meet the online processing constraint. Only
lazy learners, such as k-nearest neighbors, should be avoided.

Transparency. Machine learning based detection models are reputed to be
black-box methods among the computer security community. Nonetheless, it is
crucial to make them more transparent to deploy them successfully in operational
detection systems [16]. We detail here three types of model classes that can be
explained.

k-Nearest Neighbors. The predictions of k-nearest neighbors are rather inter-
pretable: the k-nearest neighbors can be displayed to security operators to ex-
plain why an alert has been triggered. However, the detection model cannot be
described as a whole and it does not suit the online processing constraint.



Linear Models. Linear models, such as logistic regression or SVM, meet perfectly
the transparency constraint. The coefficients associated with each feature allow
to understand their behavior. The greater the absolute value of the coefficient of
a feature is, the more the feature influences the prediction. Features with a zero
coefficient have no influence on predictions. Features with negative coefficients
point out benign instances while features with positive coefficients point out the
malicious ones.

Tree-Based Models. Decision trees are transparent models. If the decision tree
does not contain too many nodes, security administrators can understand its
global behavior, and security operators can interpret individual predictions with
paths in trees.

Tree-based ensemble methods (e.g. random forests) are more complex than
decision trees, but they are still rather transparent. Their overall behavior can
be described by features’ importance. It provides a highly compressed, global
insight into the model behavior, but individual predictions are hard to interpret.

Computer security experts usually appreciate linear models and decision trees
because they can make an analogy with expert systems. Their main advantage
over expert systems is their controllability. The weights associated with each fea-
ture, or the decision rules in nodes, are not set manually with expert knowledge,
but automatically from annotated data. As a result, the weights, or the decision
rules, can be swiftly updated to follow threat evolution.

If we focus only on interpretable models, there are only a few options left.
Since transparency matters in many application domains, model-agnostic in-
terpretability methods have been introduced in the machine learning commu-
nity [14]. These methods intend to separate explanations from machine learning
models, in order to explain any model class, even the most complex ones.

Robustness. Attackers can craft adversarial examples that evade detection
while maintaining the same malicious payload [8]. They usually make slight
perturbations to their attack to cross the decision boundary.

Mathematical optimization [7] is a prominent approach to craft adversarial
examples that has been broadly applied to image recognition. A famous illus-
tration is a panda that is recognized as a gibbon with high confidence, if some
random noise, imperceptible to humans, is added to the picture [9]. These eva-
sion techniques may cast doubt on the usefulness of machine learning models in
detection systems if attackers can so easily mislead them.

We want to point out that it is much harder to generate adversarial examples
with these mathematical techniques in the context of threat detection. First of
all, they do not directly manipulate real-world objects (e.g. PDF files, Android
applications, event logs) but numerical vectors in the feature space. As a result,
it is necessary to invert the feature mapping, i.e. to generate a real-world object
from a feature vector, to get ready-to-use adversarial examples. It is particularly
easy for image recognition since the features correspond directly to the pixel



values, but it is often much more complex for threat detection. Besides, not
all adverse perturbations are valid: they must not corrupt the data format and
they must maintain the malicious payload. Some research works have focused on
generating adversarial examples for PDF files [7] and Android applications [12],
but these attacks work only for specific cases where the feature mapping can be
easily inverted.

Even if adversarial examples are difficult to craft in the context of threat
detection, it would be great to pick a model class particularly robust. Unfortu-
nately, adversarial techniques are generic, they are not tailored to any specific
model class, and there is still no consensus about the best method to make
detection models robust against evasion attempts [10].

Effectiveness. There is no way to determine which model classes are the most
effective since it depends deeply on the data. For instance, linear models are
simple: they require benign and malicious instances to be linearly separable to
work properly. If the data are not linearly separable, more complex models such
as quadratic models, tree-based models, or neural networks must be trained.

The effectiveness of a model class is data-dependent, the model selection is
thus performed empirically (see Section 4.3).

To sum up, the controllability and online processing constraints hardly restrict
the set of model classes that suit detection systems, and there is still no consensus
about the robustness constraint. Transparency and effectiveness are thus the
most important criteria.

We advise to begin by training a linear model (e.g. logistic regression or
SVM) that can be easily interpreted by security administrators and operators. If
a linear model does not perform well-enough, then we may move ahead to more
flexible model classes (e.g. tree-based models, neural networks). In Section 4.3,
we explain how to decide whether a more flexible model class is required.

4.2 Relevant Detection Performance Metrics

False Negatives and Positives The confusion matrix (see Figure 1) allows
to assess properly the performance of a detection method. It takes into account
the two types of errors that can occur: false negatives, i.e. malicious instances
which have not been detected, and false positives, i.e. benign instances which
have triggered a false alarm.

The confusion matrix allows to express performance metrics such as the de-
tection rate and the false alarm rate. There is a consensus on the definition of
the detection rate, also called True Positive Rate (TPR):

TPR =
TP

TP + FN
. (1)

On the contrary, the false alarm rate is not clearly defined.



Predicted label
Malicious Benign

True label
Malicious True Positive (TP) False Negative (FN)
Benign False Positive (FP) True Negative (TN)

True the prediction is true (predicted label = true label)
False the prediction is wrong (predicted label 6= true label)
Positive the prediction is Malicious

Negative the prediction is Benign

Fig. 1: Explanation of the Confusion Matrix.

How to Compute the False Alarm Rate ? There are two competing defini-
tions for the false alarm rate: the False Positive Rate (FPR), the most commonly
used, and the False Discovery Rate (FDR):

FPR =
FP

FP + TN
(2)

FDR =
FP

FP + TP
. (3)

The FPR is the proportion of benign instances that have triggered a false alarm,
while the FDR measures the proportion of the alerts that are irrelevant.

The FDR makes more sense than the FPR from an operational point of
view. First of all, it can be computed in operational environments in contrast to
the FPR (the number of benign instances, FP + TN , is unknown in practice).
Moreover, the FDR reveals the proportion of security operators’ time wasted an-
alyzing meaningless alerts, while the FPR has no tangible interpretation. Finally,
the FPR can be highly misleading when the proportion of malicious instances
is extremely low because of the base-rate fallacy [3]. Let’s take an example.
We consider 10,000 instances (10 malicious and 9990 benign) and we suppose
that there are 10 false positives and 2 false negatives (FP = 10, FN = 2,
TP = 8, TN = 9980). In this case, the FPR seems negligible (FPR = 0.1%)
while security operators spend more than half of their reviewing time analyzing
meaningless alerts (FDR = 55%).

For all these reasons, the False Discovery Rate (FDR) should be preferred
over the False Positive Rate (FPR) even if it is still less prevalent in practice.

ROC and FDR-TPR Curves. The ROC (or FPR-TPR) curve represents the
detection rate (TPR) according to the FPR for various values of the detection
threshold (see Figure 2). This curve is interesting to check whether machine
learning has learned something from the data, i.e. the ROC curve is away from
those of a random generator.

However, the FDR-TPR curve must be preferred to set the value of the
detection threshold according to the desired detection rate or the tolerated FDR,
for the same reason that the FDR should be preferred over the FPR.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

D
et

ec
ti

o
n

R
a
te

(T
P

R
)

ROC Curve

Optimal (AUC = 100%)
Good (AUC = 96%)
Bad (AUC = 60%)
Random (AUC = 50%)

Fig. 2: Explanation of the ROC Curve.

4.3 Evaluation Protocol

Training and Validation Datasets. In general, security administrators have
access to a single annotated dataset to set up their detection model. They must
therefore split it into a training and a validation dataset. The simplest way to
split it up is to select some instances randomly for training, and to keep the
remaining instances for validation.

If the instances are timestamped, i.e. the times of first appearance are known,
then a better evaluation process can be devised. All the instances occurring be-
fore a given cutoff timestamp can constitute the training dataset, while the
remaining instances are retained for validation purposes. This temporally con-
sistent evaluation process better assesses the performance of detection models
since in practice future instances are never available at training time.

1. How to Diagnose and Handle Underfitting ? Supervised detection
models should capture the relevant relations between the input data and the
labels we want to predict. Underfitting occurs when the detection model cannot
capture the underlying trend of the data. Intuitively, the model is not complex
enough to fit the data properly.

Diagnosis. Underfitting can be diagnosed by evaluating the performance of the
detection model on the training dataset. A detection model suffers from under-
fitting if the ROC curve is close to that of a random generator (see the random
curve in Figure 2).

Solution. Security administrators can solve underfitting in two ways: adding
discriminating features or training a more complex classification model class.
Figure 3a shows a two-dimensional dataset where a linear model is too simple
and cannot properly separate malicious from benign instances, while a slightly
more complex model, a quadratic model, is perfectly adapted (see Figure 3b).



(a) Linear Model: does not fit well the
training data.

(b) Quadratic Model: fits well the training
data.

Fig. 3: Illustration of Underfitting.

We want to point out that the performance of a detection model on its training
data is not a satisfactory assessment of its true performance. Analyzing the
training performance is a good way to diagnose underfitting, but it is not enough
to ensure that the detection model makes accurate predictions. The purpose of
detection models is not to classify training data correctly, but to be able to
generalize, i.e. correctly classify data unseen during the training phase. The
next section explains how to assess the generalization capabilities of detection
models, and how to react if they are not satisfactory.

2. How to Diagnose and Handle Overfitting ? Overfitting means that the
detection model is too flexible and fits too much the training data. The noise or
random fluctuations in the training data are picked up and learned as concepts
by the model. However, these concepts may not apply to new data and negatively
impact the generalization capabilities of the model.

Diagnosis. Overfitting occurs when the detection model predicts accurately the
label of training data, but fails to predict correctly the label of data unseen during
the training phase. It can be diagnosed by analyzing the model performance
on an independent validation set. If the detection model performs well on the
training dataset, but poorly on the validation set, then it suffers from overfitting.

Solution. Overfitting is usually caused by a too complex model class that has too
much flexibility to learn a decision boundary. When the detection model is too
complex (see Figures 4a and 4c), it predicts perfectly the label of the training
instances (see Figure 4a), but it makes many prediction errors on the validation
dataset (see Figure 4c). Indeed, the complex model fits perfectly the training
data, but it has weak generalization capabilities. On the other hand, a simpler
model (see Figures 4b and 4d) is able to avoid the outlier to generalize much
better on unseen data.

A detection model can make prediction errors on training data, but it must
generalize well to unseen data. Training data may contain outliers or annotation
errors, that the training algorithm should not take into account when building
the model to improve its generalization capabilities.



(a) Complex Model: no training errors.
space

(b) Simple Model: a single training error
on an outlier.

(c) Complex Model: many classification er-
rors on the validation dataset.

(d) Simple Model: no classification errors
on the validation dataset.

Fig. 4: Illustration of Overfitting. The top row represents the training dataset
while the bottom line represents the validation dataset.

To sum up, it is critical to strike an appropriate balance to avoid both under-
fitting and overfitting. The detection model must be neither too simple to avoid
underfitting nor too complex to avoid overfitting. To check whether a sound
compromise has been reached, security administrators must assess the perfor-
mance of a detection model both on its training data, and on an independent
validation dataset. However, these two assessment steps may not be sufficient
to ensure successful deployments since they are not able to identify potential
training biases.

3. How to Diagnose and Handle Training Biases ? There is a training bias
when the detection model performs well on the training and validation datasets,
but poorly in production. This issue occurs when the training dataset is not
representative of the data encountered in the deployment environment.

Diagnosis. When detection models are interpretable (see Section 4.1), security
administrators can inspect the features having the greatest impact on decision-
making, and decide for each of them whether they are consistent with the de-
tection target, or they reveal a training bias.

For instance, if a detection model for malicious PDF files relies mostly on
the feature contains JavaScript, we examine the values of this feature in the
training dataset. If all the malicious instances contain JavaScript, while none of



the benign PDF file does, then the training dataset is stereotyped and leads to
a training bias. In practice, benign PDF files may contain JavaScript, and the
model is very likely to trigger false alarms for these files.

Solution. The detection model can be deployed and updated with the false
and true positives analyzed by security operators to reduce the training bias.
The false positives are likely to be ambivalent instances (e.g. benign PDF files
with JavaScript) that will make the detection model smarter and more subtle.
However, this method has a major flaw: some false negatives may never be
detected because security operators inspect only the alerts. The best solution
to avoid training bias is to perform in-situ training, i.e. security administrators
annotate data directly from the production environment (see Section 3.2).

Training biases explain why outstanding results presented in academic papers
are often hard to reproduce in operational detection systems. The experiments
are usually carried out on public annotated datasets that may be biased. In prac-
tice, annotating a dataset in-situ may be costly, but it significantly reduces the
risk of training bias. Finally, we want to emphasize that the model transparency
is a real asset to diagnose and fix potential training biases.

4. How to Assess the Robustness Against Adversarial Examples ?
Papernot et al. have created cleverhans [15], an open-source library for bench-
marking the vulnerability of machine learning models to adversarial examples.
However, this library cannot benchmark computer security detection models di-
rectly since it does not manipulate real-world objects (e.g. PDF files, Android
applications, event logs) but numerical vectors in the feature space. No generic
solution assesses threat detection models in adversarial settings, specific proto-
cols must be devised for each data type [7, 12].

The robustness of an interpretable model can be assessed partly by examining
the most prominent features. Security administrators must assess whether the
value of these features can be easily modified by attackers while maintaining the
malicious payload. Using the same example as above about PDF files, the feature
contains JavaScript cannot be modified by attackers if the malicious payload is
contained in a JavaScript object. On the contrary, if the feature number of images
is associated to an extremely negative weight (i.e. the benign PDF files tend to
have more images than the malicious ones), then attackers can easily add images
to their malicious PDF file to bypass detection.

The first three evaluation steps, checking for underfitting, overfitting, and train-
ing bias, must be validated to get a ready-to-deploy detection model, while the
last one, assessing the robustness against adversarial examples, is noncompul-
sory. Indeed, an unrobust model, relying mostly on features that can be easily
controlled by attackers, may improve the detection capacities compared to al-
ready deployed detection techniques. However, robustness matters to detect more
advanced attacks.



4.4 Training and Diagnosing Detection Models with DIADEM

DIADEM (DIAgnosis of DEtection Models) assists security administrators with
training and evaluating detection models according to the protocol presented in
Section 4.3. The main advantages of DIADEM over traditional machine learn-
ing libraries are two-fold: 1) it hides some of the machine learning machinery to
let security administrators focus mainly on detection, and 2) it offers a graphi-
cal user interface to diagnose potential accuracy issues and to find solutions to
address them.

DIADEM displays the performance of the detection model both on the train-
ing and validation datasets to diagnose both underfitting and overfitting. Be-
sides, it displays information about the global behavior of transparent detection
models. Security administrators can review the most influential features and an-
alyze their descriptive statistics through the features analysis module (see Sec-
tion 3.3). This way they can understand why a feature has a significant impact
on decision-making, and they may diagnose biases in the training dataset.

We provide an open-source implementation of DIADEM 3 in SecuML [1] to
allow security administrators to build and diagnose their own detection models.

5 Conclusion

Machine learning is often presented as a silver bullet for detection systems: it
builds detection rules automatically from data, and its generalization capabilities
improve the detection of yet unknown threats. In practice, security administra-
tors must perform each step of the machine learning pipeline carefully to ensure
successful deployments, and they should bear in mind three crucial points.

Be cautious with public annotated datasets. Public annotated datasets are
appealing to avoid annotating data manually. However, they must be han-
dled cautiously since they may not be consistent with the desired detection
target, and they may be biased.

Neural networks are not always the best model class. There is no need
to train a neural network if a linear model is complex enough to fit the data.
Neural networks will only increase the risk of overfitting, and training biases
will be harder to diagnose.

Evaluation must no be reduced to figures. Examining numerical performance
measures such as false alarm and detection rates is not enough to ensure suc-
cessful deployments. Security administrators must conduct a more in-depth
analysis of the model behavior to diagnose potential training biases.

References

1. SecuML. https://github.com/ANSSI-FR/SecuML (2018)

3 https://anssi-fr.github.io/SecuML/_build/html/SecuML.DIADEM.html



2. Almgren, M., Jonsson, E.: Using active learning in intrusion detection. In: CSFW.
pp. 88–98 (2004)

3. Axelsson, S.: The base-rate fallacy and the difficulty of intrusion detection. ACM
Transactions on Information and System Security (TISSEC) 3(3), 186–205 (2000)

4. Beaugnon, A.: Expert-in-the-loop Supervised Learning for Computer Security De-
tection Systems. Ph.D. thesis, École Normale Supérieure (2018)

5. Beaugnon, A., Chifflier, P., Bach, F.: Ilab: An interactive labelling strategy for
intrusion detection. In: RAID (2017)

6. Beaugnon, A., Chifflier, P., Bach, F.: End-to-end active learning for computer
security experts. In: AICS (2018)

7. Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto,
G., Roli, F.: Evasion attacks against machine learning at test time. In: Machine
Learning and Knowledge Discovery in Databases, pp. 387–402. Springer (2013)

8. Biggio, B., Roli, F.: Wild patterns: Ten years after the rise of adversarial machine
learning. arXiv preprint arXiv:1712.03141 (2017)

9. Goodfellow, I.J., Papernot, N.: Breaking things is easy. http://www.cleverhans.
io/security/privacy/ml/2016/12/16/breaking-things-is-easy.html (2017)

10. Goodfellow, I.J., Papernot, N.: Is attacking machine learning easier than
defending it? http://www.cleverhans.io/security/privacy/ml/2017/02/15/

why-attacking-machine-learning-is-easier-than-defending-it.html (2017)
11. Görnitz, N., Kloft, M.M., Rieck, K., Brefeld, U.: Toward supervised anomaly de-

tection. JAIR (2013)
12. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial

examples for malware detection. In: European Symposium on Research in Com-
puter Security. pp. 62–79. Springer (2017)

13. Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: Towards automating
data science endeavors. In: DSAA. pp. 1–10. IEEE (2015)

14. Molnar, C.: Interprtable machine learning: A guide for making black box models
explainable. https://christophm.github.io/interpretable-ml-book/ (2018)

15. Papernot, N., Carlini, N., Goodfellow, I., Feinman, R., Faghri, F., Matyasko, A.,
Hambardzumyan, K., Juang, Y.L., Kurakin, A., Sheatsley, R., et al.: cleverhans
v2. 0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768
(2016)

16. Rieck, K.: Computer security and machine learning: Worst enemies or best friends?
In: SysSec. pp. 107–110 (2011)

17. Settles, B.: Active learning literature survey. University of Wisconsin, Madison
52(55-66), 11 (2010)

18. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for
network intrusion detection. In: S&P. pp. 305–316 (2010)

19. Šrndić, N., Laskov, P.: Hidost: a static machine-learning-based detector of malicious
files. EURASIP Journal on Information Security 2016(1), 22 (2016)

20. Stokes, J.W., Platt, J.C., Kravis, J., Shilman, M.: Aladin: Active learning of
anomalies to detect intrusions. Technical Report. Microsoft Network Security Red-
mond, WA (2008)

21. Wagstaff, K.L.: Machine learning that matters. In: ICML. pp. 529–536 (2012)


