
...

A
N
SSI-PA

-074-EN
06/09/2020

.

PROGRAMMING RULES TO DEVELOP
SECURE APPLICATIONS WITH RUST

.

ANSSI GUIDELINES

..

TARGETED AUDIENCE:

Developers Administrators IT security managers IT managers Users

..

..

..

..

Information

.

.......

Warning

.

This document, written by the ANSSI, presents the “ProgrammingRules toDevelop Secure
Applications with Rust”. It is freely available at www.ssi.gouv.fr/en/. It is an original
creation from the ANSSI and it is placed under the “Open Licence” published by the Etalab
mission (www.etalab.gouv.fr). Consequently, its diffusion is unlimited and unrestricted.
This document is a courtesy translation of the initial French document “Titre non défini”,
available at www.ssi.gouv.fr. In case of conflicts between these two documents, the latter
is considered as the only reference.
These recommendations are provided as is and are related to threats known at the publica-
tion time. Considering the information systems diversity, the ANSSI cannot guarantee direct
application of these recommendations on targeted information systems. Applying the fol-
lowing recommendations shall be, at first, validated by IT administrators and/or IT security
managers.

.

Document changelog:

.

VERSION

.

DATE

.

CHANGELOG

..

1.0

.

06/09/2020

.

Initial version

...

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 1

..

https://www.ssi.gouv.fr/en/best-practices/
www.etalab.gouv.fr
https://www.ssi.gouv.fr/fr/bonnes-pratiques/recommandations-et-guides/

Contents
1 Introduction 4

1.1 Target Audience . 4
1.2 Contributions . 5
1.3 Structure of the Document . 5

2 Development environment 6
2.1 Rustup . 6

2.1.1 Rust Editions . 6
2.1.2 Stable, nightly and beta toolchains . 6

2.2 Cargo . 7
2.2.1 Clippy . 8
2.2.2 Rustfmt . 9
2.2.3 Rustfix . 10
2.2.4 Others . 10

3 Libraries 11
3.1 Cargo-outdated . 11
3.2 Cargo-audit . 11

4 Language generalities 12
4.1 Naming . 12
4.2 Unsafe code . 12
4.3 Integer overflows . 13
4.4 Error handling . 14

4.4.1 Panics . 14
4.4.2 FFI and panics . 15

5 Memory management 16
5.1 Forget and memory leaks . 16
5.2 Uninitialized memory . 18
5.3 Secure memory zeroing for sensitive information . 18

6 Type system 20
6.1 Standard library traits . 20

6.1.1 Drop trait, the destructor . 20
6.1.2 Send and Sync traits . 21
6.1.3 Comparison traits (PartialEq, Eq, PartialOrd, Ord) 22

7 Foreign Function Interface (FFI) 26
7.1 Typing . 27

7.1.1 Data layout . 27
7.1.2 Type consistency . 28
7.1.3 Platform-dependent types . 29
7.1.4 Non-robust types: references, function pointers, enums 30
7.1.5 Opaque types . 34

2 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

7.2 Memory and resource management . 35
7.3 Panics with foreign code . 39

7.3.1 no_std . 39
7.4 Binding a foreign library in Rust . 40
7.5 Binding a Rust library in another language . 40

7.5.1 Minimal example of a C-exported Rust library 40

Recommendation List 43

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 3

..

1
Introduction

Rust is a multi-paradigm language with a focus on memory safety.

It aims to be system programming oriented, allowing fine-grained memory management with-
out garbage collection but also without tedious and error-prone manual memory allocations and
deallocations. It achieves this goal by means of its ownership system (mostly related to variable
aliasing). At any point of a Rust program, the compiler tracks how many variables refer to a given
data, and enforces a set of rules which enable automatic memory management, memory safety
and data-race free programs.

The language also focuses on performance, with powerful compilation optimizations and language
constructs that allow writing zero-cost abstraction code.

Moreover, the Rust language provides some high-level programming features. Thanks to higher-
order functions, closures, iterators, etc., it allows to write program parts in the same vein as in
functional programming languages. Besides, static typing discipline, type inference, and ad hoc
polymorphism (in the form of traits) are other ways Rust provides to build libraries and programs
in a safe manner.

Nevertheless, due to its versatility, the language possibly offers some constructions that, if not used
properly, can introduce security problems, by making code misinterpreted by the programmer or
a reviewer. In addition, as for every tool in the compilation or soware verification field, the tools
used to develop, compile and execute programs can expose certain features or configurations that,
if misused, may lead to vulnerabilities.

Thus, the object of this document is to compile hints and recommendations to stay in a safe zone
for secure applications development while taking advantage of the range of possibilities the Rust
language can offer.

1.1 Target Audience
The guide intents to group recommendations that should be applied for application development
with strong security level requirements. Anyway, it can be followed by everyone who wants to
ensure that guarantees offered by the Rust platform are not invalidated due to unsafe, misleading
or unclear feature usage.

It is not intended to be a course on how to write Rust programs, there are already plenty of good
learning resources for this purpose (see for instance the Rust documentation main page). The pur-
pose is rather to guide the programmer and inform him about some pitfalls he may encounter.

4 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://www.rust-lang.org
https://doc.rust-lang.org

These recommendations form a complement to the good level of trust the Rust language already
provides. That said, recalls are sometimes necessary for clarity, and the experienced Rust program-
mer may rely solely on highlighted inserts (Rule, Recommendation, Warning, etc.).

1.2 Contributions
This guide is written in a collaborative and open manner, via the GitHub platform (https://
github.com/ANSSI-FR/rust-guide). All contributions for future versions are welcome, whether
in the form of direct propositions (pull requests) or in the form of suggestions and discussions (is-
sues).

1.3 Structure of the Document
This document considers separately different phases of a typical (and simplified) development pro-
cess. Firstly, we provide some advices on how to take advantage of using tools of the Rust ecosystem
for secure development. A following chapter focuses on precautions to take when choosing and
using external libraries. Then, recommendations about the Rust language constructs are exposed.
A summary of recommendations presented throughout the document is listed at the end of this
guide.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 5

..

https://github.com/ANSSI-FR/rust-guide
https://github.com/ANSSI-FR/rust-guide

2
Development environment

2.1 Rustup
Rustup is the Rust toolchain installer. Among other things, it enables switching between different
flavors of the toolchain (stable, beta, nightly), managing additional components installation and
keeping them up to date.

.......

Warning

.

From a security perspective, rustup does perform all downloads over HTTPS, but
does not yet validate signatures of downloads. Protection against downgrade attacks,
certificate pinning, validation of signatures are still works in progress. In some cases,
it may be preferable to opt for an alternative installation method listed in the Install
section of the official Rust website.

2.1.1 Rust Editions
Several flavors, called editions, of the Rust language coexist.

The concept of editions has been introduced to clarify new features implementation and to make
them incremental. A new edition will be produced every two or three years, as stated in the Edition
Guide, but this doesn’t mean that new features and improvements will only be shipped in a new
edition.

Some editions bring new keywords and language constructs. Recommendations for secure appli-
cations development then remain closely linked to features of the language, that are used in such
applications, rather than to Rust editions. In the rest of this guide, best effort will be made to
highlight constructions and language features that are specific to a particular Rust edition.

.......

Note

.
No specific edition is recommended, as long as users follow the recommendations
related to the features offered by the edition that has been chosen.

2.1.2 Stable, nightly and beta toolchains
Orthogonally to editions that allow one to select a flavor (a set of features) of the Rust language,
the Rust toolchain is provided in three different versions, called release channels:

n nightly releases are created once a day,

6 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://github.com/rust-lang/rustup.rs
https://doc.rust-lang.org/edition-guide/
https://doc.rust-lang.org/edition-guide/

n beta releases are created every six weeks, from promoted nightly releases,
n stable releases are created every six weeks, from promoted beta releases.

When playingwith different toolchains, it is important to check not onlywhat the default toolchain
is, but also if overrides are currently set for some directories.

.......

Console

.

$ pwd
/tmp/foo
$ rustup toolchain list
stable-x86_64-unknown-linux-gnu (default)
beta-x86_64-unknown-linux-gnu
nightly-x86_64-unknown-linux-gnu
$ rustup override list
/tmp/foo nightly-x86_64-unknown-linux-gnu
$

......

R1

.

RULE - Use a stable compilation toolchain

.
Development of a secure application must be done using a fully stable toolchain, for
limiting potential compiler, runtime or tool bugs.

When using a specific cargo subcommand that requires a nightly component, it is preferable to run
it by switching the toolchain only locally, instead of explicitly switching the complete toolchain.
For example, to run the (nightly) latest rustfmt:

.......

Console

.

$ rustup toolchain list
stable-x86_64-unknown-linux-gnu (default)
beta-x86_64-unknown-linux-gnu
nightly-x86_64-unknown-linux-gnu
$ rustup run nightly cargo fmt
$ # or
$ cargo +nightly fmt
$

2.2 Cargo
Once Rustup has set up the appropriate Rust toolchain, Cargo is available through the command
line program cargo. Cargo is the Rust package manager. It has a fundamental role in most Rust
development:

n It structures project by providing the project skeleton (cargo new),
n It compiles the project (cargo build),
n It generates the project’s documentation (cargo doc),
n It runs tests (cargo test) and benchmarks (cargo bench),
n It manages and download dependencies,
n It makes packages distributable and publishes them on crates.io,

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 7

..

https://doc.rust-lang.org/stable/cargo/
https://crates.io

n It’s also a front-end to run complementary tools such as those that are described below, in the
form of sub-commands.

.......

Warning

.

Like rustup, cargo does perform all downloads over HTTPS, but does not validate
the registry index. Ongoing discussions occur on how to best protect and verify
crates. For now, the security relies on the good security of the website crates.io and
the GitHub hosted repository containing the registry index. In some cases, it may be
preferable to opt for an alternative installation method for dependencies.

Cargo proposes many different commands and options to adapt the build process to your project
needs, mainly through the manifest file Cargo.toml. For a complete presentation, see The Cargo
Book.

During the development of a secure application, some of the options may require some attention.
The [profile.*] sections allow configuring how the compiler is invoked. For example:

n the debug-assertions variable controls whether debug assertions are enabled,
n the overflow-checks variable controls whether overflows are checked for integer arithmetic.

Overriding the default options may cause bugs not being detected, even when using the debug
profile that normally enables runtime checks (for example checks for integer overflows, see 4.3).

......

R2

.

RULE - Keep default values for critical variables in cargo profiles

.
The variables debug-assertions and overflow-checks must not be overridden in
development profiles sections ([profile.dev] and [profile.test]).

Cargo proposes other ways to setup its configuration and change its behavior on a given system.
This can be very useful, but it may also be difficult to know and remember at a given time all
the options that are effectively used, and in particular passed to the compiler. At the end, this
can affect the confidence and robustness of the build process. It is preferable to centralize com-
piler options and flags in the configuration file Cargo.toml. For the case of environment variable
RUSTC_WRAPPER, for example, that may be used to generate part of code or to run external tools
before Rust compilation, it is preferable to use the Cargo build scripts feature.

......

R3

.

RULE - Keep default values for compiler environment variables when run-
ning cargo

.
The environment variables RUSTC, RUSTC_WRAPPER and RUSTFLAGSmust not be over-
riden when using Cargo to build the project.

2.2.1 Clippy
Clippy is a tool that provides and checks many lints (bugs, styling, performance issues, etc.). Since
version 1.29, clippy can be used within the stable rustup environment. It is recommended to

8 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://crates.io
https://doc.rust-lang.org/cargo/index.html
https://doc.rust-lang.org/cargo/index.html
https://github.com/rust-lang/rust-clippy

install clippy as a component (rustup component add clippy) in the stable toolchain instead of
installing it as a project dependency.

The tool comes with some lint categories regarding the kind of issues it aims to detect. The
warnings should be re-checked by the programmer before committing the fix that is suggested
by clippy, especially in the case of lints of the category clippy::nursery since those hints are
still under development.

......

R4

.

RULE - Use linter regularly

.
A linter, such as clippy, must be used regularly during the development of a secure
application.

2.2.2 Rustfmt
Rustfmt is a tool that formats your code according to style guidelines. The documentation of the
tool states some limitations, among others partial support of macro declarations and uses. One
should use the --check option that prints proposed changes, review these changes, and finally
apply them if the code readability is not affected.

So, to launch it:

.......

Console

.

$ cargo fmt -- --check
$ # review of the changes
$ cargo fmt

These guidelines can be customized to your needs by creating a rustfmt.toml or .rustfmt.toml
file at the root of your project. It will be used to override the default settings, for instance:

.......

Toml

.

Set the maximum line width to 120
max_width = 120
Maximum line length for single line if-else expressions
single_line_if_else_max_width = 40

For more information about the guidelines that rustfmt will check, have a look at the Rust Style
Guide.

......

R5

.

RULE - Use Rust formatter (rustfmt)

.
The tool rustfmt can be used to ensure that the codebase respects style guidelines
(as described in rustfmt.toml file), with --check option and manual review.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 9

..

https://github.com/rust-lang/rustfmt
https://github.com/rust-dev-tools/fmt-rfcs/blob/master/guide/guide.md
https://github.com/rust-dev-tools/fmt-rfcs/blob/master/guide/guide.md

2.2.3 Rustfix
Included with Rust, since the end of 2018, Rustfix is a tool dedicated in fixing compiler warnings
as well as easing transitions between editions.

.......

Console

.
$ cargo fix

To prepare a Rust 2015 project to transition to Rust 2018, one can run:

.......

Console

.
$ cargo fix --edition

Rustfix will either fix the code to be compatible with Rust 2018 or print a warning that explains
the problem. This problemwill have to be fixed manually. By running the command (and possibly
fixing manually some issues) until there is no warning, one can ensure the code is compatible with
both Rust 2015 and Rust 2018.

To switch definitely to Rust 2018, one may run:

.......

Console

.
$ cargo fix --edition-idioms

Be advised that this tool provides few guarantees on the soundness of the proposed fixes. In par-
ticular mode, some corrections (such as some of those provided with the --edition-idioms) are
known to break the compilation or change the program semantics in some case.

......

R6

.

RULE - Manually check automatic fixes

.
In a secure Rust development, any automatic fix (for instance, provided by rustfix)
must be verified by the developer.

2.2.4 Others
There exist other useful tools or cargo subcommands for enforcing program security whether by
searching for specific code patterns or by providing convenient commands for testing or fuzzing.
They are discussed in the following chapters, according to their goals.

10 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://github.com/rust-lang-nursery/rustfix

3
Libraries

In addition to the standard library, Rust provides an easy way to import other libraries in a project,
thanks to cargo. The libraries, known as crates in the Rust ecosystem, are imported from the
open-source components central repository crates.io.

It should be noticed that the quality (in terms of security, performances, readability, etc.) of the
published crates is very variable. Moreover, their maintenance can be irregular or interrupted.
The usage of each component from this repository should be justified, and the developer should
validate the correct application of rules from the current guide in its code. Several tools can aid in
that task.

3.1 Cargo-outdated
Cargo-outdated tool allows one to easily manage dependencies versions.

For a given crate, it lists current dependencies versions (using its Cargo.toml), and checks latest
compatible version and also latest general version.

......

R7

.

RULE - Check for outdated dependencies versions (cargo-outdated)

.
The cargo-outdated tool must be used to check dependencies status. Then, each
outdated dependencymust be updated or the choice of the versionmust be justified.

3.2 Cargo-audit
Cargo-audit tool allows one to easily check for security vulnerabilities reported to the RustSec
Advisory Database.

......

R8

.

RULE - Check for security vulnerabilities report on dependencies (cargo-
audit)

.
The cargo-audit tool must be used to check for known vulnerabilities in dependen-
cies.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 11

..

https://crates.io
https://github.com/kbknapp/cargo-outdated
https://github.com/RustSec/cargo-audit

4
Language generalities

4.1 Naming
As of now, the standard library is the de facto standard for naming things in the Rust world. How-
ever, an effort has been made to formalize it, first in RFC 430, then in the Rust API Guidelines.

The basic rule consists in using :

n UpperCamelCase for types, traits, enum variants,
n snake_case for functions, methods, macros, variables and modules,
n SCREAMING_SNAKE_CASE for statics and constants,
n 'lowercase for lifetimes.

The Rust API Guidelines also prescribes more precise naming conventions for some particular
constructions:

n (C-CONV) for conversion methods (as_, to_, into_),
n (C-GETTER) for getters,
n (C-ITER) for iterator-producing methods,
n (C-ITER-TY) for iterator types,
n (C-FEATURE) for feature naming,
n (C-WORD-ORDER) for word order consistency.

......

R9

.

RULE - Respect naming conventions

.
Development of a secure application must follow the naming conventions outlined
in the Rust API Guidelines.

4.2 Unsafe code
The joint utilization of the type system and the ownership system aims to enforce safety regarding
memory management in Rust’s programs. So the language aims to avoid memory overflows, null
or invalid pointer constructions, and data races. To perform risky actions such as system calls, type
coercions, or directmanipulations ofmemory pointers, the language provides the unsafe keyword.

12 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://github.com/rust-lang/rfcs/blob/master/text/0430-finalizing-naming-conventions.md
https://rust-lang.github.io/api-guidelines/
https://rust-lang.github.io/api-guidelines/
https://rust-lang.github.io/api-guidelines/

......

R10

.

RULE - Don't use unsafe blocks

.

For a secured development, the unsafe blocks must be avoided. Aerward, we list
the only cases where unsafe may be used, provided that they come with a proper
justification:

n The Foreign Function Interface (FFI) of Rust allows for describing functions
whose implementations are written in C, using the extern "C" prefix. To use
such a function, the unsafe keyword is required. “Safe” wrapper shall be defined
to safely and seamlessly call C code.

n For embedded device programming, registers and various other resources are of-
ten accessed through a fixed memory address. In this case, unsafe blocks are
required to initialize and dereference those particular pointers in Rust. In order
tominimize the number of unsafe accesses in the code and to allow easier identifi-
cation of them by a programmer, a proper abstraction (data structure or module)
shall be provided.

n A function can be marked unsafe globally (by prefixing its declaration with the
unsafe keyword) when it may exhibit unsafe behaviors based on its arguments,
that are unavoidable. For instance, this happens when a function tries to deref-
erence a pointer passed as an argument.

With the exception of these cases, #[forbid(unsafe_code)]must appear in main.rs
to generate compilation errors if unsafe is used in the code base.

4.3 Integer overflows
Although some verification is performed byRust regarding potential integer overflows, precautions
should be taken when executing arithmetic operations on integers.

In particular, it should be noted that using debug or release compilation profile changes integer
overflowbehavior. In debug configuration, overflow cause the termination of the program (panic),
whereas in the release configuration the computed value silentlywraps around themaximumvalue
that can be stored.

This last behavior can bemade explicit by using the Wrapping generic type, or the overflowing_<op>
and wrapping_<op> operations on integers (the <op> part being add, mul, sub, shr, etc.).

.......

Rust

.

use std::num::Wrapping;

let x: u8 = 242;

println!("{}", x + 50); // panics in debug, prints 36 in release.
println!("{}", x.overflowing_add(50).0); // always prints 36.
println!("{}", x.wrapping_add(50)); // always prints 36.
println!("{}", Wrapping(x) + Wrapping(50)); // always prints 36.

// always panics:
let (res, c) = x.overflowing_add(50);
if c { panic!("custom error"); }

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 13

..

....
else { println!("{}", res); }

......

R11

.

RULE - Use appropriate arithmetic operations regarding potential overflows

.

When assuming that an arithmetic operation can produce an overflow, the special-
ized functions overflowing_<op>, wrapping_<op>, or the Wrapping type must be
used.

4.4 Error handling
The Result type is the preferred way of handling functions that can fail. A Result object must be
tested, and never ignored.

......

R12

.

RECO - Implement custom Error type wrapping all possible errors

.

A crate can implement its own Error type, wrapping all possible errors. It must be
careful to make this type exception-safe (RFC 1236), and implement Error + Send
+ Sync + 'static as well as Display.

......

R13

.

RECO - Use the ? operator and do not use the try! macro

.
The ? operator should be used to improve readability of code. The try! macro
should not be used.

Third-party crates may be used to facilitate error handling. Most of them (notably failure, snafu,
thiserror) address the creation of new custom error types that implement the necessary traits and
allow wrapping other errors.

Another approach (notably proposed in the anyhow crate) consists in an automatic wrapping of
errors into a single universal error type. Suchwrappers should not be used in libraries and complex
systems because they do not allow developers to provide context to the wrapped error.

4.4.1 Panics
Explicit error handling (Result) should always be preferred instead of calling panic. The cause of
the error should be available, and generic errors should be avoided.

Crates providing libraries should never use functions or instructions that can fail and cause the
code to panic.

Common patterns that can cause panics are:

n using unwrap or expect,
n using assert,
n an unchecked access to an array,
n integer overflow (in debug mode),

14 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://crates.io/crates/failure
https://crates.io/crates/snafu
https://crates.io/crates/thiserror
https://crates.io/crates/anyhow

n division by zero,
n large allocations,
n string formatting using format!.

......

R14

.

RULE - Don't use functions that can cause panic!

.
Functions or instructions that can cause the code to panic at runtime must not be
used.

......

R15

.

RULE - Test properly array indexing or use the get method

.
Array indexing must be properly tested, or the getmethod should be used to return
an Option.

4.4.2 FFI and panics
When calling Rust code from another language (for ex. C), the Rust code must be careful to never
panic. Stack unwinding from Rust code into foreign code results in undefined behavior.

......

R16

.

RULE - Handle correctly panic! in FFI

.

Rust code called from FFI must either ensure the function cannot panic, or use
catch_unwind or the std::panic module to ensure the rust code will not abort or
return in an unstable state.

Note that catch_unwind will only catch unwinding panics, not those that abort the process.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 15

..

5
Memory management

5.1 Forget and memory leaks
While the usual way for memory to be reclaimed is for a variable to go out of scope, Rust pro-
vides special functions to manually reclaim memory: forget and drop of the std::mem module
(or core::mem). While drop simply triggers an early memory reclamation that calls associated
destructors when needed, forget skips any call to the destructors.

.......

Rust

.

let pair = ('*', 0xBADD_CAFEu32);
drop(pair); // here `forget` would be equivalent (no destructor to call)

Both functions are memory safe in Rust. However, forget will make any resource managed by
the value unreachable and unclaimed.

.......

Rust

.

let s = String::from("Hello");
forget(s); // Leak memory

In particular, using forget may result in not releasing critical resources leading to deadlocks or
not erasing sensitive data from the memory. That is why, forget is unsecure.

......

R17

.

RULE - Do not use forget

.
In a secure Rust development, the forget function of std::mem (core::mem) must
not be used.

......

R18

.

RECO - Use clippy lint to detect use of forget

.

The lint mem_forget of Clippymay be used to automatically detect any use of forget.
To enforce the absence of forget in a crate, add the following line at the top of the
root file (usually src/lib.rs or src/main.rs):

.......

Rust

.
#![deny(clippy::mem_forget)]

The standard library includes other way to forget dropping values:

16 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

n Box::leak to leak a resource,
n Box::into_raw to exploit the value in some unsafe code, notably in FFI,
n ManuallyDrop (in std::mem or core::mem) to enforce manual release of some value.

Those alternatives may lead to the same security issue but they have the additional benefit of
making their goal obvious.

......

R19

.

RULE - Do not leak memory

.
In a secure Rust development, the code must not leak memory or resource in partic-
ular via Box::leak.

ManuallyDrop and Box::into_raw shi the release responsibility from the compiler to the devel-
oper.

......

R20

.

RULE - Do release value wrapped in ManuallyDrop

.

In a secure Rust development, any value wrapped in ManuallyDrop must be un-
wrapped to allow for automatic release (ManuallyDrop::into_inner) or manually
released (unsafe ManuallyDrop::drop).

......

R21

.

RULE - Always call from_raw on into_rawed value

.

In a secure Rust development, any pointer created with a call to into_raw (or
into_raw_nonnull) from one of the following types:

n std::boxed::Box (or alloc::boxed::Box),
n std::rc::Rc (or alloc::rc::Rc),
n std::rc::Weak (or alloc::rc::Weak),
n std::sync::Arc (or alloc::sync::Arc),
n std::sync::Weak (or alloc::sync::Weak),
n std::ffi::CString,
n std::ffi::OsString,

must eventually be transformed into a value with a call to the respective from_raw
to allow for their reclamation.

.......

Rust

.

let boxed = Box::new(String::from("Crab"));
let raw_ptr = unsafe { Box::into_raw(boxed) };
let _ = unsafe { Box::from_raw(raw_ptr) }; // will be freed

.......

Note

.

In the case of Box::into_raw, manual cleanup is possible but a lot more complicated
than re-boxing the raw pointer and should be avoided:

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 17

..

....

.......

Rust

.

// Excerpt from the standard library documentation
use std::alloc::{dealloc, Layout};
use std::ptr;

let x = Box::new(String::from("Hello"));
let p = Box::into_raw(x);
unsafe {

ptr::drop_in_place(p);
dealloc(p as *mut u8, Layout::new::<String>());

}

Because the other types (Rc and Arc) are opaque andmore complex, manual cleanup
is not possible.

5.2 Uninitialized memory
By default, Rust forces all values to be initialized, preventing the use of uninitialized memory
(except if using std::mem::uninitialized or std::mem::MaybeUninit).

......

R22

.

RULE - Do not use uninitialized memory

.

The std::mem::uninitialized function (deprecated 1.38) or the
std::mem::MaybeUninit type (stabilized 1.36) must not be used, or explicitly
justified when necessary.

The use of uninitialized memory may result in two distinct security issues:

n drop of uninitialized memory (also a memory safety issue),
n non-drop of initialized memory.

.......

Note

.

std::mem::MaybeUninit is an improvement over std::mem::uninitialized. In-
deed, it makes dropping uninitialized values a lot more difficult. However, it does
not change the second issue: the non-drop of an initializedmemory is as much likely.
It is problematic, in particular when considering the use of Drop to erase sensitive
memory.

5.3 Secure memory zeroing for sensitive information
Zeroing memory is useful for sensitive variables, especially if the Rust code is used through FFI.

......

R23

.

RULE - Zero out memory of sensitive data after use

.

Variables containing sensitive data must be zeroed out aer use, using functions that
will not be removed by the compiler optimizations, like std::ptr::write_volatile
or the zeroize crate.

18 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

The following code shows how to define an integer type that will be set to 0 when freed, using the
Drop trait:

.......

Rust

.

/// Example: u32 newtype, set to 0 when freed
pub struct ZU32(pub u32);

impl Drop for ZU32 {
fn drop(&mut self) {

println!("zeroing memory");
unsafe{ ::std::ptr::write_volatile(&mut self.0, 0) };

}
}

{
let i = ZU32(42);
// ...

} // i is freed here

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 19

..

6
Type system

6.1 Standard library traits
6.1.1 Drop trait, the destructor
Types implement the trait std::ops::Drop to perform some operations when the memory associ-
ated with a value of this type is to be reclaimed. Drop is the Rust equivalent of a destructor in C++
or a finalizer in Java.

Dropping is done recursively from the outer value to the inner values. When a value goes out of
scope (or is explicitly dropped with std::mem::drop), the value is dropped in two steps. The first
step happens only if the type of this value implements Drop. It consists in calling the dropmethod
on it. The second step consists in repeating the dropping process recursively on any field the value
contains. Note that a Drop implementation is only responsible for the outer value.

First and foremost, implementing Drop should not be systematic. It is only needed if the type
requires some destructor logic. In fact, Drop is typically used to release external resources (network
connections, files, etc.) or to release memory (e.g. in smart pointers such as Box or Rc). As a result,
Drop trait implementations are likely to contain unsafe code blocks as well as other security-critical
operations.

......

R24

.

RECO - Justify Drop implementation

.
In a Rust secure development, the implementation of the std::ops::Drop trait
should be justified, documented and peer-reviewed.

Second, Rust type system only ensures memory safety and, from the type system’s standpoint,
missing drops is allowed. In fact, several things may lead to missing drops, such as:

n a reference cycle (for instance, with Rc or Arc),
n an explicit call to std::mem::forget (or core::mem::forget) (see section 5.1),
n a panic in drop,
n program aborts (and panics when abort-on-panic is on).

And missing drops may lead to exposing sensitive data or to lock limited resources leading to un-
availability issues.

20 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

......

R25

.

RULE - Do not panic in Drop implementation

.
In a Rust secure development, the implementation of the std::ops::Drop trait must
not panic.

Beside panics, secure-critical drop should be protected.

......

R26

.

RULE - Do not allow cycles of reference-counted Drop

.
Value whose type implements Drop must not be embedded directly or indirectly in
a cycle of reference-counted references.

......

R27

.

RECO - Do not rely only on Drop to ensure security

.

Ensuring security operations at the end of some treatment (such as key erasure at
the end of a cryptographic encryption) should not rely only on the Drop trait imple-
mentation.

6.1.2 Send and Sync traits
The Send and Sync traits (defined in std::marker or core::marker) are marker traits used to en-
sure the safety of concurrency in Rust. When implemented correctly, they allow the Rust compiler
to guarantee the absence of data races. Their semantics is as follows:

n A type is Send if it is safe to send (move) it to another thread.
n A type is Sync if it is safe to share a immutable reference to it with another thread.

Both traits are unsafe traits, i.e., the Rust compiler does not verify in any way that they are im-
plemented correctly. The danger is real: an incorrect implementation may lead to undefined
behavior.

Fortunately, in most cases, one does not need to implement it. In Rust, almost all primitive types
are Send and Sync, and for most compound types the implementation is automatically provided
by the Rust compiler. Notable exceptions are:

n Raw pointers are neither Send nor Sync because they offer no safety guards.
n UnsafeCell is not Sync (and as a result Cell and RefCell aren’t either) because they offer

interior mutability (mutably shared value).
n Rc is neither Send nor Sync because the reference counter is shared and unsynchronized.

Automatic implementation of Send (resp. Sync) occurs for a compound type (structure or enu-
meration) when all fields have Send types (resp. Sync types). Using an unstable feature (as of
Rust 1.37.0), one can block the automatic implementation of those traits with a manual negative
implementation:

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 21

..

.......

Rust

.

#![feature(option_builtin_traits)]

struct SpecialType(u8);
impl !Send for SpecialType {}
impl !Sync for SpecialType {}

The negative implementation of Send or Sync are also used in the standard library for the excep-
tions, and are automatically implemented when appropriate. As a result, the generated documen-
tation is always explicit: a type implements either Send or !Send (resp. Sync or !Sync).

As a stable alternative to negative implementation, one can use a PhantomData field:

.......

Rust

.
struct SpecialType(u8, PhantomData <*const ()>);

......

R28

.

RECO - Justify Send and Sync implementation

.

In a Rust secure development, the manual implementation of the Send and Sync
traits should be avoided and, if necessary, should be justified, documented and peer-
reviewed.

6.1.3 Comparison traits (PartialEq, Eq, PartialOrd, Ord)
Comparisons (==, !=, <, <=, >, >=) in Rust relies on four standard traits available in std::cmp (or
core::cmp for no_std compilation):

n PartialEq<Rhs> that defines a partial equivalence between objects of types Self and Rhs,
n PartialOrd<Rhs> that defines a partial order between objects of types Self and Rhs,
n Eq that defines a total equivalence between objects of the same type. It is only a marker trait

that requires PartialEq<Self>!
n Ord that defines the total order between objects of the same type. It requires that PartialOrd<Self>

is implemented.

As documented in the standard library, Rust assumes a lot of invariants about the implementa-
tions of those traits:

n For PartialEq

> Internal consistency: a.ne(b) is equivalent to !a.eq(b), i.e., ne is the strict inverse of eq. The
default implementation of ne is precisely that.

> Symmetry: a.eq(b) and b.eq(a), are equivalent. From the developer’s point of view, it
means:

» PartialEq is implemented for type A (noted A: PartialEq),

22 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

» PartialEq<A> is implemented for type B (noted B: PartialEq<A>),
» both implementations are consistent with each other.

> Transitivity: a.eq(b) and b.eq(c) implies a.eq(c). It means that:

» A: PartialEq,
» B: PartialEq<C>,
» A: PartialEq<C>,
» the three implementations are consistent with each other (and their symmetric implemen-

tations).

n For Eq

> PartialEq<Self> is implemented.

> Reflexivity: a.eq(a). This stands for PartialEq<Self> (Eq does not provide any method).

n For PartialOrd

> Equality consistency: a.eq(b) is equivalent to
a.partial_cmp(b) == Some(std::ordering::Eq).

> Internal consistency:

» a.lt(b) iff a.partial_cmp(b) == Some(std::ordering::Less),
» a.gt(b) iff a.partial_cmp(b) == Some(std::ordering::Greater),
» a.le(b) iff a.lt(b) || a.eq(b),
» a.ge(b) iff a.gt(b) || a.eq(b).

Note that by only defining partial_cmp, the internal consistency is guaranteed by the default
implementation of lt, le, gt, and ge.

> Antisymmetry: a.lt(b) (respectively a.gt(b)) implies b.gt(a) (respectively, b.lt(b)). From
the developer’s standpoint, it also means:

» A: PartialOrd,
» B: PartialOrd<A>,
» both implementations are consistent with each other.

> Transitivity: a.lt(b) and b.lt(c) implies a.lt(c) (also with gt, le and ge). It also means:

» A: PartialOrd,
» B: PartialOrd<C>,
» A: PartialOrd<C>,
» the implementations are consistent with each other (and their symmetric).

n For Ord

> PartialOrd<Self>

> Totality: a.partial_cmp(b) != None always. In otherwords, exactly one of a.eq(b), a.lt(b),
a.gt(b) is true.

> Consistency with PartialOrd<Self>: Some(a.cmp(b)) == a.partial_cmp(b).

The compiler do not check any of those requirements except for the type checking itself. However,
comparisons are critical because they intervene both in liveness critical systems such as schedulers

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 23

..

and load balancers, and in optimized algorithms that may use unsafe blocks. In the first use, a
bad ordering may lead to availability issues such as deadlocks. In the second use, it may lead to
classical security issues linked to memory safety violations. That is again a factor in the practice of
limiting the use of unsafe blocks.

......

R29

.

RULE - Respect the invariants of standard comparison traits

.
In a Rust secure development, the implementation of standard comparison traits
must respect the invariants described in the documentation.

......

R30

.

RECO - Use the default method implementation of standard comparison
traits

.

In a Rust secure development, the implementation of standard comparison traits
should only define methods with no default implementation, so as to reduce the risk
of violating the invariants associated with the traits.

There is a Clippy lint to check that PartialEq::ne is not defined in PartialEq implementations.

Rust comes with a standard way to automatically construct implementations of the comparison
traits through the #[derive(...)] attribute:

n Derivation PartialEq implements PartialEq<Self>with a structural equality providing that
each subtype is PartialEq<Self>.

n Derivation Eq implements the Eq marker trait providing that each subtype is Eq.
n Derivation PartialOrd implements PartialOrd<Self> as a lexicographical order providing

that each subtype is PartialOrd.
n Derivation Ord implements Ord as a lexicographical order providing that each subtype is Ord.

For instance, the short following code shows how to compare two T1s easily. All the assertions
hold.

.......

Rust

.

#[derive(PartialEq, Eq, PartialOrd, Ord)]
struct T1 {

a: u8, b: u8
}

assert!(&T1 { a: 0, b: 0 } == Box::new(T1 { a: 0, b: 0 }).as_ref());
assert!(T1 { a: 1, b: 0 } > T1 { a: 0, b: 0 });
assert!(T1 { a: 1, b: 1 } > T1 { a: 1, b: 0 });

.......

Warning

.

Derivation of comparison traits for compound types depends on the field order, and
not on their names.
First, it means that changing the order of declaration of two fields change the result-
ing lexicographical order. For instance, provided this second ordered type:

24 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

....

.......

Rust

.

#[derive(PartialEq, Eq, PartialOrd, Ord)]
struct T2 {

b: u8, a: u8
};

we have T1 {a: 1, b: 0} > T1 {a: 0, b: 1} but T2 {a: 1, b: 0} < T2 {a: 0,
b: 1}.
Second, if one of the underlying comparison panics, the order may change the result
due to the use of short-circuit logic in the automatic implementation.
For enums, the derived comparisons depends first on the variant order then on the
field order.

Despite the ordering caveat, derived comparisons are a lot less error-prone than manual ones and
makes code shorter and easier to maintain.

......

R31

.

RECO - Derive comparison traits when possible

.

In a secure Rust development, the implementation of standard comparison traits
should be automatically derived with #[derive(...)] when structural equality and
lexicographical comparison is needed. Anymanual implementation of standard com-
parison traits should be documented and justified.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 25

..

7
Foreign Function Interface (FFI)

The Rust approach to interfacing with other languages relies on a strong compatibility with C.
However, this boundary is by its very nature unsafe (see Rust Book: Unsafe Rust).

Functions that aremarked extern aremade compatible with C code during compilation. Theymay
be called from C code with any parameter values. The exact syntax is extern "<ABI>" where ABI
is a calling convention and depends on the target platform. The default one is Cwhich corresponds
to a standard C calling convention on the target platform.

.......

Rust

.

// export a C-compatible function
#[no_mangle]
unsafe extern "C" fn mylib_f(param: u32) -> i32 {

if param == 0xCAFEBABE { 0 } else { -1 }
}

For the function mylib_f to be accessible with the same name, the functionmust also be annotated
with the #[no_mangle] attribute.

Conversely, one can call C functions from Rust if they are declared in an extern block:

.......

Rust

.

use std::os::raw::c_int;
// import an external function from libc
extern "C" {

fn abs(args: c_int) -> c_int;
}

fn main() {
let x = -1;
println!("{} {}\n", x, unsafe { abs(x) });

}

.......

Note

.

Any foreign function imported in Rust through an extern block is automatically
unsafe. That is why, any call to a foreign function must be done from an unsafe
context.

extern blocks may also contain foreign global variable declarations prefixed with the static key-
word:

26 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html

.......

Rust

.

//! A direct way to access environment variables (on Unix).
//! Should not be used! Not thread safe, have a look at `std::env`!

extern {
// Libc global variable
#[link_name = "environ"]
static libc_environ: *const *const std::os::raw::c_char;

}

fn main() {
let mut next = unsafe { libc_environ };
while !next.is_null() && !unsafe { *next }.is_null() {

let env = unsafe { std::ffi::CStr::from_ptr(*next) }
.to_str()
.unwrap_or("<invalid>");

println!("{}", env);
next = unsafe { next.offset(1) };

}
}

7.1 Typing
Typing is the way Rust ensures memory safety. When interfacing with other languages, which
may not offer the same guarantee, the choice of types in the binding is essential to maintain the
memory safety.

7.1.1 Data layout
Rust provides no short or long term guarantees with respect to how the data is laid out in the
memory. The only way to make data compatible with a foreign language is through explicit use of
a C-compatible data layout with the repr attribute (see Rust Reference: Type Layout). For instance,
the following Rust types:

.......

Rust

.

#[repr(C)]
struct Data {

a: u32,
b: u16,
c: u64,

}
#[repr(C, packed)]
struct PackedData {

a: u32,
b: u16,
c: u64,

}

are compatible with the following C types:

.......

C

.

struct Data {
uint32_t a;
uint16_t b;
uint64_t c;

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 27

..

https://doc.rust-lang.org/reference/type-layout.html

....

};
__attribute__((packed))
struct PackedData {

uint32_t a;
uint16_t b;
uint64_t c;

}

......

R32

.

RULE - Use only C-compatible types in FFI

.

In a secure Rust development, only C-compatible types must be used as parameter or
return type of imported or exported functions and as types of imported or exported
global variables.
The lone exception is types that are considered opaque on the foreign side.

The following types are considered C-compatible:

n integral or floating point primitive types,
n repr(C)-annotated struct,
n repr(C) or repr(Int)-annotated enumwith at least one variant and only fieldless variants (where

Int is an integral primitive type),
n pointers.

The following types are not C-compatible:

n Dynamically sized types,
n Trait objects,
n Enums with fields,
n Tuples (but repr(C) tuple structures are OK).

Some types are compatibles with some caveats:

n Zero-sized types, which is really zero sized (which is let unspecified in C and contradicts the C++
specification),

n repr(C), repr(C, Int), or repr(Int)-annotated enum with fields (see RFC 2195).

7.1.2 Type consistency

......

R33

.

RULE - Use consistent types at FFI boundaries

.

Types must be consistent on each side of the FFI boundary.
Although some details may be hidden on one side with respect to the other (typically
to make a type opaque), types on both sides must have the same size and the same
alignment requirement.

28 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://rust-lang.github.io/rfcs/2195-really-tagged-unions.html

Concerning enums with fields in particular, the corresponding types in C (or C++) are not obvious,
cf. RFC 2195.

Automated tools to generate bindings, such as rust-bindgen or cbindgen, may be of help in making
types consistent between C and Rust.

......

R34

.

RECO - Use automatic binding generator tools

.
In a secure Rust development, automated generation tools should be used to gener-
ate bindings when possible and to maintain them continually.

.......

Warning

.

For binding C/C++ to Rust, rust-bindgen is able to automatically generate the low-
level binding. A high-level safe binding is highly recommended (see recommendation
”Provide safe wrapping to foreign library”). Also some options of rust-bindgen may
result in dangerous translations, in particular rustified_enum.

7.1.3 Platform-dependent types
When interfacing with a foreign language, like C or C++, it is oen required to use platform-
dependent types such as C’s int, long, etc.

In addition to c_void in std::ffi (or core::ffi) for void, the standard library offers portable
type aliases in std:os::raw (or core::os::raw):

n c_char for char (either i8 or u8),
n c_schar for signed char (always i8),
n c_uchar for unsigned char (always u8),
n c_short for short,
n c_ushort for unsigned short,
n c_int for int,
n c_uint for unsigned int,
n c_long for long,
n c_ulong for unsigned long,
n c_longlong for long long,
n c_ulonglong for unsigned long long,
n c_float for float (always f32),
n c_double for double (always f64).

The libc crate offersmore C compatible types that cover almost exhaustively the C standard library.

......

R35

.

RULE - Use portable aliases c_* when binding to platform-dependent
types

.
In a secure Rust development, when interfacingwith foreign code that uses platform-
dependent types, such as C’s int and long, Rust code must use portable type aliases,

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 29

..

https://rust-lang.github.io/rfcs/2195-really-tagged-unions.html
https://crates.io/crates/rust-bindgen
https://crates.io/crates/cbindgen
https://crates.io/crates/rust-bindgen
https://crates.io/crates/libc

....

such as provided by the standard library or the libc crate, rather than platform-
specific types, except if the binding is automatically generated for each platform (see
Note below).

.......

Note

.

Automatic binding generation tools (e.g. cbindgen, rust-bindgen) are able to ensure
type consistency on a specific platform. They should be used during the build process
for each target to ensure that the generation is sound for the specific target platform.

7.1.4 Non-robust types: references, function pointers, enums
A trap representation of a particular type is a representation (pattern of bits) that respects the type’s
representation constraints (such as size and alignment) but does not represent a valid value of this
type and leads to undefined behavior.

In simple terms, if a Rust variable is set to such an invalid value, anything can happen from a
simple program crash to arbitrary code execution. When writing safe Rust, this cannot happen
(except through a bug in the Rust compiler). However, when writing unsafe Rust and in particular
in FFI, it is really easy.

In the following, non-robust types are types that have such trap representations (at least one). A
lot of Rust types are non-robust, even among the C-compatible types:

n bool (1 byte, 256 representations, only 2 valid ones),
n references,
n function pointers,
n enums,
n floats (even if almost every language have the same understanding of what is a valid float),
n compound types that contain a field of a non-robust type.

On the other hand, integer types (u*/i*), packed compound types that contain no non-robust fields,
for instance are robust types.

Non-robust types are a difficulty when interfacing two languages. It revolves into deciding which
language of the two is responsible in asserting the validity of boundary-crossing values and
how to do it.

......

R36

.

RULE - Do not use unchecked non-robust foreign values

.

In a secure Rust development, there must not be any use of unchecked foreign values
of non-robust types.
In other words, either Rust translates robust types to non-robust types through ex-
plicit checking or the foreign side offers strong guarantees of the validity of the value.

30 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://crates.io/crates/libc
https://crates.io/crates/cbindgen
https://crates.io/crates/rust-bindgen

......

R37

.

RECO - Check foreign values in Rust

.
In a secure Rust development, the validity checks of foreign values should be done
in Rust when possible.

Those generic rules are to be adapted to a specific foreign language or for the associated risks. Con-
cerning languages, C is particularly unfit to offer guarantees about validity. However, Rust is not
the only language to offer strong guarantees. For instance, some C++ subset (without reinterpre-
tation) allows developers to do lot of type checking. Because Rust natively separates the safe and
unsafe segments, the recommendation is to always use Rust to check when possible. Concerning
risks, the most dangerous types are references, function references, and enums, and are discussed
below.

.......

Warning

.

Rust’s boolhas beenmade equivalent to C99’s _Bool (aliased as bool in <stdbool.h>)
and C++’s bool. However, loading a value other than 0 and 1 as a _Bool/bool is an
undefined behavior on both sides. Safe Rust ensures that. Standard-compliant C
and C++ compilers ensure that no value but 0 and 1 can be stored in a _Bool/bool
value but cannot guarantee the absence of an incorrect reinterpretation (e.g., union
types, pointer cast). To detect such a bad reinterpretation, sanitizers such as LLVM’s
-fsanitize=bool may be used.

7.1.4.1 References and pointers

Although they are allowed by the Rust compiler, the use of Rust references in FFI may break Rust’s
memory safety. Because their “unsafety” is more explicit, pointers are preferred over Rust refer-
ences when binding to another language.

On the one hand, reference types are very non-robust: they allow only pointers to valid memory
objects. Any deviation leads to undefined behavior.

When binding to and from C, the problem is particularly severe because C has no references (in
the sense of valid pointers) and the compiler does not offer any safety guarantee.

When binding with C++, Rust references may be bound to C++ references in practice even though
the actual ABI of an extern "C" function in C++ with references is “implementation-defined”.
Also, the C++ code should be checked against pointer/reference confusion.

Rust references may be used reasonably with other C-compatible languages including C variants
allowing for non-null type checking, e.g. Microso SAL annotated code.

On the other hand, Rust’s pointer types may also lead to undefined behaviors but are more ver-
ifiable, mostly against std/core::ptr::null() (C’s (void*)0) but also in some context against
a known valid memory range (particularly in embedded systems or kernel-level programming).
Another advantage of using Rust pointers in FFI is that any load of the pointed value is clearly
marked inside an unsafe block or function.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 31

..

......

R38

.

RECO - Do not use reference types but pointer types

.

In a secure Rust development, the Rust code should not use references types but
pointer types.
Exceptions include:

n Rust references that are opaque in the foreign language and only manipulated
from the Rust side,

n Option-wrapped references (see Note below),
n references bound to foreign safe references, e.g. from some augmented C vari-

ants or from C++ compiled in an environment where extern "C" references are
encoded as pointers.

......

R39

.

RULE - Do not use unchecked foreign references

.

In a secure Rust development, every foreign references that is transmitted to Rust
through FFI must be checked on the foreign side either automatically (for instance,
by a compiler) or manually.
Exceptions include Rust references in an opaque wrapping that is created and ma-
nipulated only from the Rust side and Option-wrapped references (see Note below).

......

R40

.

RULE - Check foreign pointers

.

In a secure Rust development, any Rust code that dereferences a foreign pointer
must check their validity beforehand. In particular, pointers must be checked to be
non-null before any use.
Stronger approaches are advisable when possible. They includes checking pointers
against known valid memory range or tagging (or signing) pointers (particularly ap-
plicable if the pointed value is only manipulated from Rust).

The following code a simple example of foreign pointer use in an exported Rust function:

.......

Rust

.

/// Add in place
#[no_mangle]
pub unsafe extern fn add_in_place(a: *mut u32, b: u32) {

// checks for nullity of `a`
// and takes a mutable reference on it if it's non-null
if let Some(a) = a.as_mut() {

*a += b
}

}

Note that the methods as_ref and as_mut (for mutable pointers) allows easy access to a reference
while ensuring a null check in a very Rusty way. On the other side in C, it can be used as follows:

32 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

.......

C

.

#include <stdint.h>
#include <inttypes.h>

//! Add in place
void add_in_place(uint32_t *a, uint32_t b);

int main() {
uint32_t x = 25;
add_in_place(&x, 17);
printf("%" PRIu32 " == 42", x);
return 0;

}

.......

Note

.

Option<&T> and Option<&mut T> for any T: Sized are allowable in FFI instead of
pointers with explicit nullity checks. Due to the Rust guaranteed “nullable pointer
optimization”, a nullable pointer is acceptable on the C side. The C NULL is under-
stood as None in Rust while a non-null pointer is encapsulated in Some. While quite
ergonomic, this feature does not allow stronger validations such as memory range
checking.

7.1.4.2 Function pointers

Function pointers that cross FFI boundaries may ultimately lead to arbitrary code execution and
represents a real security risks.

......

R41

.

RULE - Mark function pointer types in FFI as extern and unsafe

.
In a secure Rust development, any function pointer types at the FFI boundary must
be marked extern (possibly with the specific ABI) and unsafe.

Function pointers in Rust are a lot more similar to references than they are to normal pointers. In
particular, the validity of function pointers cannot be checked directly on the Rust side. However,
Rust offers two alternative possibilities:

n use Option-wrapped function pointer and check against null:

.......

Rust

.

#[no_mangle]
pub unsafe extern "C" fn repeat(

start: u32, n: u32,
f: Option<unsafe extern "C" fn(u32) -> u32>

) -> u32 {
if let Some(f) = f {

let mut value = start;
for _ in 0..n {

value = f(value);
}
value

} else {
start

}
}

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 33

..

On the C side:

.......

C

.
uint32_t repeat(uint32_t start, uint32_t n, uint32_t (*f)(uint32_t));

n use raw pointers with an unsafe transmutation to the function pointer type, allowing more
powerful checks at the cost of ergonomics.

......

R42

.

RULE - Check foreign function pointers

.
In a secure Rust development, any foreign function pointer must be checked at the
FFI boundary.

When binding with C or even C++, one cannot guarantee easily the validity of the function pointer.
C++ functors are not C-compatible.

7.1.4.3 Enums

Usually the possible bit patterns of valid enum values are really small with respect to the number
of possible bit patterns of the same size. Mishandling an enum value provided by a foreign code
may lead to type confusion and have severe consequences on soware security. Unfortunately,
checking an enum value at the FFI boundary is not simple on both sides.

On the Rust side, it consists to actually use an integer type in the extern block declaration, a robust
type, and then to perform a checked conversion to the enum type.

On the foreign side, it is possible only if the other language allows for stricter checks than plain C.
enum class in C++ are for instance allowable. Note however that as for reference the actual extern
"C" ABI of enum class is implementation defined and should be verified for each environment.

......

R43

.

RECO - Do not use incoming Rust enum at FFI boundary

.

In a secure Rust development, when interfacing with a foreign language, the Rust
code should not accept incoming values of any Rust enum type.
Exceptions include Rust enum types that are:

n opaque in the foreign language and only manipulated from the Rust side,
n bound to safe enums in the foreign language, e.g. enum class types in C++.

Concerning fieldless enums, crates like [num_derive] or [num_enum] allows developer to easily pro-
vide safe conversion from integer to enumeration and may be use to safely convert an integer
(provided from a C enum) into a Rust enum.

7.1.5 Opaque types
Opacifying types is a good way to increase modularity in soware development. When doing
multilingual development, it is something very common.

34 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

......

R44

.

RECO - Use dedicated Rust types for foreign opaque types

.
In a secure Rust development, when binding foreign opaque types, one should use
pointers to dedicated opaque types rather than c_void pointers.

Currently the recommended way to make a foreign opaque type is like so:

.......

Rust

.

#[repr(C)]
pub struct Foo {_private: [u8; 0]}
extern "C" {

fn foo(arg: *mut Foo);
}

The not yet implemented RFC 1861 proposes to facilitate the coding by allowing to declare opaque
types in extern blocks.

......

R45

.

RECO - Use incomplete C/C++ struct pointers to make type opaque

.

In a secure Rust development, when interfacing with C or C++, Rust types that are
to be considered opaque in C/C++ should be translated as incomplete struct type
(i,e., declared without definition) and be provided with a dedicated constructor and
destructor.

Example of opaque Rust type:

.......

Rust

.

struct Opaque {
// (...) details to be hidden

}

#[no_mangle]
pub unsafe extern "C" fn new_opaque() -> *mut Opaque {

catch_unwind(|| // Catch panics, see below
Box::into_raw(Box::new(Opaque {

// (...) actual construction
}))

).unwrap_or(std::ptr::null_mut())
}

#[no_mangle]
pub unsafe extern "C" fn destroy_opaque(o: *mut Opaque) {

catch_unwind(||
if !o.is_null() {

drop(Box::from_raw(o))
}

); // Only needed if Opaque or one of its subfield is Drop
}

7.2 Memory and resource management
Programming languages handle memory in various ways. As a result, it is important to known
when transmitting data between Rust and another language which language is responsible for

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 35

..

https://rust-lang.github.io/rfcs/1861-extern-types.html

reclaiming the memory space for this data. The same is true for other kind of resources such as
sockets or files.

Rust tracks variable ownership and lifetime to determine at compilation time if and whenmemory
should be deallocated. Thanks to the Drop trait, one can exploit this system to reclaim other kind of
resources such as file or network access. Moving some piece of data fromRust to a foreign language
means also abandoning the possible reclamations associated with it.

......

R46

.

RULE - Do not use types that implement Drop at FFI boundary

.
In a secure Rust development, Rust codemust not implement Drop for any types that
are directly transmitted to foreign code (i.e. not through a pointer or reference).

In fact, it is advisable to only use Copy types. Note that *const T is Copy even if T is not.

However if not reclaiming memory and resources is bad, using reclaimed memory or reclaiming
twice some resources is worst from a security point of view. In order to correctly release a resource
only once, onemust known which language is responsible for allocating and deallocating memory.

......

R47

.

RULE - Ensure clear data ownership in FFI

.

In a secure Rust development, when data of some type passes without copy through
a FFI boundary, one must ensure that:

n A single language is responsible for both allocation and deallocation of data.
n The other language must not allocate or free the data directly but use dedicated

foreign functions provided by the chosen language.

Ownership is not enough. It remains to ensure the correct lifetime, mostly that no use occurs aer
reclamation. It is a lot more challenging. When the other language is responsible for the memory,
the best way is to provide a safe wrapper around the foreign type:

......

R48

.

RECO - Wrap foreign data in memory releasing wrapper

.

In a secure Rust development, any non-sensitive foreign piece of data that are allo-
cated and deallocated in the foreign language should be encapsulated in a Drop type
in such a way as to provide automatic deallocation in Rust, through an automatic
call to the foreing language deallocation routine.

A simple example of Rust wrapping over an external opaque type:

.......

Rust

.

/// Private “”raw opaque foreign type Foo
#[repr(C)]
struct RawFoo {

_private: [u8; 0],
}

/// Private “”raw C API
extern "C" {

36 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

....

fn foo_create() -> *mut RawFoo;
fn foo_do_something(this: *const RawFoo);
fn foo_destroy(this: *mut RawFoo);

}

/// Foo
pub struct Foo(*mut RawFoo);

impl Foo {
/// Create a Foo
pub fn new() -> Option<Foo> {

let raw_ptr = unsafe { foo_create() };
if raw_ptr.is_null() {

None
} else {

Some(Foo(raw_ptr))
}

}

/// Do something on a Foo
pub fn do_something(&self) {

unsafe { foo_do_something(self.0) }
}

}

impl Drop for Foo {
fn drop(&mut self) {

if !self.0.is_null() {
unsafe { foo_destroy(self.0) }

}
}

}

.......

Warning

.

Because panics may lead to not running the Drop::dropmethod this solution is not
sufficient for sensitive deallocation (such as wiping sensitive data) except if the code
is guaranteed to never panic.
For wiping sensitive data case, one could address the issue with a dedicated panic
handler.

When the foreign language is the one exploiting Rust allocated resources, it is a lot more difficult
to offer any guarantee.

In C for instance there is no easyway to check that the appropriate destructor is checked. A possible
approach is to exploit callbacks to ensure that the reclamation is done.

The following Rust code is a thread-unsafe example of a C-compatible API that provide callback
to ensure safe resource reclamation:

.......

Rust

.

pub struct XtraResource {/*fields */}

impl XtraResource {
pub fn new() -> Self {

XtraResource { /* ... */}
}
pub fn dosthg(&mut self) {

/*...*/
}

}

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 37

..

....

impl Drop for XtraResource {
fn drop(&mut self) {

println!("xtra drop");
}

}

pub mod c_api {
use super::XtraResource;
use std::panic::catch_unwind;

const INVALID_TAG: u32 = 0;
const VALID_TAG: u32 = 0xDEAD_BEEF;
const ERR_TAG: u32 = 0xDEAF_CAFE;

static mut COUNTER: u32 = 0;

pub struct CXtraResource {
tag: u32, // to detect accidental reuse
id: u32,
inner: XtraResource,

}

#[no_mangle]
pub unsafe extern "C" fn xtra_with(cb: extern "C" fn(*mut CXtraResource) -> ())

{
let inner = if let Ok(res) = catch_unwind(XtraResource::new) {

res
} else {

return;
};
let id = COUNTER;
let tag = VALID_TAG;

COUNTER = COUNTER.wrapping_add(1);
// Use heap memory and do not provide pointer to stack to C code!
let mut boxed = Box::new(CXtraResource { tag, id, inner });

cb(boxed.as_mut() as *mut CXtraResource);

if boxed.id == id && (boxed.tag == VALID_TAG || boxed.tag == ERR_TAG) {
boxed.tag = INVALID_TAG; // prevent accidental reuse

// implicit boxed drop
} else {

// (...) error handling (should be fatal)
boxed.tag = INVALID_TAG; // prevent reuse
std::mem::forget(boxed); // boxed is corrupted it should not be

}
}

#[no_mangle]
pub unsafe extern "C" fn xtra_dosthg(cxtra: *mut CXtraResource) {

let do_it = || {
if let Some(cxtra) = cxtra.as_mut() {

if cxtra.tag == VALID_TAG {
cxtra.inner.dosthg();
return;

}
}
println!("doing nothing with {:p}", cxtra);

};
if catch_unwind(do_it).is_err() {

if let Some(cxtra) = cxtra.as_mut() {
cxtra.tag = ERR_TAG;

}
};

}
}

A compatible C call:

38 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

.......

C

.

struct XtraResource;
void xtra_with(void (*cb)(XtraResource* xtra));
void xtra_sthg(XtraResource* xtra);

void cb(XtraResource* xtra) {
// (...) do anything with the proposed C API for XtraResource
xtra_sthg(xtra);

}

int main() {
xtra_with(cb);

}

7.3 Panics with foreign code
When calling Rust code from another language (e.g. C), the Rust code must be careful to never
panic. Stack unwinding from Rust code into foreign code results in undefined behavior.

......

R49

.

RULE - Handle panic! correctly in FFI

.

Rust code called from FFI must either ensure the function cannot panic,
or use a panic handling mechanism (such as std::panic::catch_unwind,
std::panic::set_hook, #[panic_handler]) to ensure the rust code will not abort
or return in an unstable state.

Note that catch_unwind will only catch unwinding panics, not those that abort the process.

.......

Rust

.

use std::panic::catch_unwind;

fn may_panic() {
if rand::random() {

panic!("panic happens");
}

}

#[no_mangle]
pub unsafe extern "C" fn no_panic() -> i32 {

let result = catch_unwind(may_panic);
match result {

Ok(_) => 0,
Err(_) => -1,

}
}

7.3.1 no_std
In the case of #![no_std] program, a panic handler (#[panic_handler])must be defined to ensure
security. The panic handler should be written with great care in order to ensure both the safety
and security of the program.

Another approach is to simply ensure that there is no use of panic! with the panic-never crate.
Like no-panic, panic-never relies on a linking trick: the linker fails if a non-trivially-dead branch
leads to panic!.

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 39

..

https://crates.io/crates/panic-never
https://crates.io/crates/no-panic
https://crates.io/crates/panic-never

7.4 Binding a foreign library in Rust

......

R50

.

RECO - Provide safe wrapping to foreign library

.

Interfacing a library written in another language in Rust should be done in two parts:

n a low-level, possibly hidden, module that closely translates the original C API into
extern blocks,

n a safe wrappingmodule that ensures memory safety and security invariants at the
Rust level.

If the low-level API is exposed to the world, it should be done in a dedicated crate
with a name of the form *-sys.

The crate rust-bindgen may be used to automatically generate the low-level part of the binding
from C header files.

7.5 Binding a Rust library in another language

......

R51

.

RECO - Expose dedicated C-compatible API only

.
In a secure Rust development, exposing a Rust library to a foreign language should
only be done through a dedicated C-compatible API.

The crate cbindgenmay be used to automatically generate C or C++ bindings to theRust C-compatible
API of a Rust library.

7.5.1 Minimal example of a C-exported Rust library
src/lib.rs:

.......

Rust

.

/// Opaque counter
pub struct Counter(u32);

impl Counter {
/// Create a counter (initially at 0)
fn new() -> Self {

Self(0)
}
/// Get the current value of the counter
fn get(&self) -> u32 {

self.0
}
/// Increment the value of the counter if there's no overflow
fn incr(&mut self) -> bool {

40 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

https://crates.io/crates/rust-bindgen
https://crates.io/crates/cbindgen

....

if let Some(n) = self.0.checked_add(1) {
self.0 = n;
true

} else {
false

}
}

}

// C-compatible API

#[no_mangle]
pub unsafe extern "C" fn counter_create() -> *mut Counter {

Box::into_raw(Box::new(Counter::new()))
}

#[no_mangle]
pub unsafe extern "C" fn counter_incr(counter: *mut Counter) -> std::os::raw::c_int

{
if let Some(counter) = counter.as_mut() {

if counter.incr() {
0

} else {
-1

}
} else {

-2
}

}

#[no_mangle]
pub unsafe extern "C" fn counter_get(counter: *const Counter) -> u32 {

if let Some(counter) = counter.as_ref() {
return counter.get();

}
return 0;

}

#[no_mangle]
pub unsafe extern fn counter_destroy(counter: *mut Counter) -> std::os::raw::c_int

{
if !counter.is_null() {

let _ = Box::from_raw(counter); // get box and drop
return 0;

}
return -1;

}

Using cbindgen ([cbindgen] -l c > counter.h), one can generate a consistent C header, counter.h:

.......

C

.

#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>

typedef struct Counter Counter;

Counter *counter_create(void);

int counter_destroy(Counter *counter);

uint32_t counter_get(const Counter *counter);

int counter_incr(Counter *counter);

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 41

..

https://crates.io/crates/cbindgen

counter_main.c:

.......

C

.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <inttypes.h>

#include "counter.h"

int main(int argc, const char** argv) {
if (argc < 2) {

return -1;
}
size_t n = (size_t)strtoull(argv[1], NULL, 10);

Counter* c = counter_create();
for (size_t i=0; i < n; i++) {

if (counter_incr(c) != 0) {
printf("overflow\n");
counter_destroy(c);
return -1;

}
}

printf("%" PRIu32 "\n", counter_get(c));
counter_destroy(c);

return 0;
}

42 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

Recommendation List
.. R1 RULE - Use a stable compilation toolchain 7

.. R2 RULE - Keep default values for critical variables in cargo profiles 8

.. R3 RULE - Keep default values for compiler environment variables when running cargo 8

.. R4 RULE - Use linter regularly 9

.. R5 RULE - Use Rust formatter (rustfmt) 9

.. R6 RULE - Manually check automatic fixes 10

.. R7 RULE - Check for outdated dependencies versions (cargo-outdated) 11

.. R8 RULE - Check for security vulnerabilities report on dependencies (cargo-audit) 11

.. R9 RULE - Respect naming conventions 12

.. R10 RULE - Don’t use unsafe blocks 13

.. R11 RULE - Use appropriate arithmetic operations regarding potential overflows 14

.. R12 RECO - Implement custom Error type wrapping all possible errors 14

.. R13 RECO - Use the ? operator and do not use the try! macro 14

.. R14 RULE - Don’t use functions that can cause panic! 15

.. R15 RULE - Test properly array indexing or use the getmethod 15

.. R16 RULE - Handle correctly panic! in FFI 15

.. R17 RULE - Do not use forget 16

.. R18 RECO - Use clippy lint to detect use of forget 16

.. R19 RULE - Do not leak memory 17

.. R20 RULE - Do release value wrapped in ManuallyDrop 17

.. R21 RULE - Always call from_raw on into_rawed value 17

.. R22 RULE - Do not use uninitialized memory 18

.. R23 RULE - Zero out memory of sensitive data aer use 18

.. R24 RECO - Justify Drop implementation 20

.. R25 RULE - Do not panic in Drop implementation 21

.. R26 RULE - Do not allow cycles of reference-counted Drop 21

.. R27 RECO - Do not rely only on Drop to ensure security 21

.. R28 RECO - Justify Send and Sync implementation 22

.. R29 RULE - Respect the invariants of standard comparison traits 24

.. R30 RECO - Use the default method implementation of standard comparison traits 24

.. R31 RECO - Derive comparison traits when possible 25

.. R32 RULE - Use only C-compatible types in FFI 28

.. R33 RULE - Use consistent types at FFI boundaries 28

.. R34 RECO - Use automatic binding generator tools 29

.. R35 RULE - Use portable aliases c_* when binding to platform-dependent types 30

.. R36 RULE - Do not use unchecked non-robust foreign values 30

.. R37 RECO - Check foreign values in Rust 31

.. R38 RECO - Do not use reference types but pointer types 32

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 43

..

.. R39 RULE - Do not use unchecked foreign references 32

.. R40 RULE - Check foreign pointers 32

.. R41 RULE - Mark function pointer types in FFI as extern and unsafe 33

.. R42 RULE - Check foreign function pointers 34

.. R43 RECO - Do not use incoming Rust enum at FFI boundary 34

.. R44 RECO - Use dedicated Rust types for foreign opaque types 35

.. R45 RECO - Use incomplete C/C++ struct pointers to make type opaque 35

.. R46 RULE - Do not use types that implement Drop at FFI boundary 36

.. R47 RULE - Ensure clear data ownership in FFI 36

.. R48 RECO - Wrap foreign data in memory releasing wrapper 36

.. R49 RULE - Handle panic! correctly in FFI 39

.. R50 RECO - Provide safe wrapping to foreign library 40

.. R51 RECO - Expose dedicated C-compatible API only 40

44 – PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST

..

PROGRAMMING RULES TO DEVELOP SECURE APPLICATIONS WITH RUST – 45

..

...

ANSSI-PA-074-EN
Version 1.0 - 06/09/2020
Licence ouverte/Open Licence (Étalab - v1)

.

AGENCE NATIONALE DE LA SÉCURITÉ DES SYSTÈMES D'INFORMATION

.

ANSSI - 51, boulevard de La Tour-Maubourg, 75700 PARIS 07 SP

www.ssi.gouv.fr / conseil.technique@ssi.gouv.fr

..

..

	Introduction
	Target Audience
	Contributions
	Structure of the Document

	Development environment
	Rustup
	Rust Editions
	Stable, nightly and beta toolchains

	Cargo
	Clippy
	Rustfmt
	Rustfix
	Others

	Libraries
	Cargo-outdated
	Cargo-audit

	Language generalities
	Naming
	Unsafe code
	Integer overflows
	Error handling
	Panics
	FFI and panics

	Memory management
	Forget and memory leaks
	Uninitialized memory
	Secure memory zeroing for sensitive information

	Type system
	Standard library traits
	Drop trait, the destructor
	Send and Sync traits
	Comparison traits (PartialEq, Eq, PartialOrd, Ord)

	Foreign Function Interface (FFI)
	Typing
	Data layout
	Type consistency
	Platform-dependent types
	Non-robust types: references, function pointers, enums
	Opaque types

	Memory and resource management
	Panics with foreign code
	no_std

	Binding a foreign library in Rust
	Binding a Rust library in another language
	Minimal example of a C-exported Rust library

	Recommendation List

