
,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 1 / 61

Javacard Virtual Machine on

MultiApp V4.0.1 Platform

Common Criteria / ISO 15408

Security Target – Public version

EAL7

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 2 / 61

TABLE OF CONTENTS

1 SECURITY TARGET INTRODUCTION ... 5

1.1 SECURITY TARGET REFERENCE ... 5
1.2 TOE REFERENCE .. 5
1.3 SECURITY TARGET OVERVIEW ... 5
1.4 REFERENCES .. 6

1.4.1 External References .. 6
1.4.2 Internal References [IR] ... 7

1.5 ACRONYMS AND GLOSSARY .. 7
2 TOE OVERVIEW .. 8

2.1 TOE TYPE ... 8
2.2 PRODUCT ARCHITECTURE ... 8
2.3 TOE BOUNDARIES ... 9
2.4 TOE DESCRIPTION ... 10

2.4.1 The linker .. 10
2.4.2 The interpreter .. 10
2.4.3 The native Java Card API ... 11

2.5 TOE INTENDED USAGE .. 12
2.6 ACTORS OF THE TOE ... 12
2.7 TOE SECURITY FEATURES .. 13
2.8 NON-TOE HW/SW/FW AVAILABLE TO THE TOE .. 13

3 CONFORMANCE CLAIMS ... 14

3.1 CC CONFORMANCE CLAIM ... 14
3.2 PP CLAIM ... 14
3.3 PACKAGE CLAIM .. 17

4 SECURITY ASPECTS ... 18

4.1 CONFIDENTIALITY ... 18
4.2 INTEGRITY ... 18
4.3 UNAUTHORIZED EXECUTIONS .. 18
4.4 BYTECODE VERIFICATION .. 19

4.4.1 CAP file Verification ... 19
4.4.2 Integrity and Authentication ... 19
4.4.3 Linking and Verification ... 20

4.5 CARD MANAGEMENT ... 20
4.6 SERVICES ... 21

5 SECURITY PROBLEM DEFINITION.. 23

5.1 ASSETS .. 23
5.1.1 User data .. 23
5.1.2 TSF data .. 23

5.2 THREATS ... 24
5.2.1 Confidentiality .. 24
5.2.2 Integrity ... 24
5.2.3 Identity usurpation .. 25
5.2.4 Unauthorized execution .. 25
5.2.5 Denial of Service ... 25
5.2.6 Card management ... 25
5.2.7 Services ... 25
5.2.8 Miscellaneous ... 26

5.3 ORGANIZATIONAL SECURITY POLICIES ... 26
5.3.1 Java Card System Protection Profile – Open Configuration .. 26
5.3.2 TOE additional OSP ... 26

5.4 ASSUMPTIONS .. 26
5.4.1 Assumptions extracted from [PP-JCS-Open] ... 26
5.4.2 Additional assumptions ... 27

5.5 COMPATIBILITY WITH SECURITY ENVIRONMENTS [ST-IC] .. 28

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 3 / 61

5.5.1 Compatibility between threats .. 28
5.5.2 Compatibility between OSP .. 28
5.5.3 Compatibility between assumptions .. 28

6 SECURITY OBJECTIVES ... 29

6.1 SECURITY OBJECTIVES FOR THE TOE .. 29
6.1.1 Execution .. 29
6.1.2 Services ... 29
6.1.3 Applet Management .. 30

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT .. 30
6.2.1 Objectives for the operational environment extracted from [PP-JCS-Open] ... 30
6.2.2 Additional security objectives for the operational environment ... 31

6.2.2.1 Identification ... 31
6.2.2.2 Execution .. 31
6.2.2.3 Services ... 32
6.2.2.4 Object deletion .. 32
6.2.2.5 Applet management .. 32
6.2.2.6 Additional objectives .. 33

6.3 SECURITY OBJECTIVES RATIONALE .. 33
6.3.1 Threats .. 34

6.3.1.1 Confidentiality .. 34
6.3.1.2 Integrity .. 35
6.3.1.3 Identity usurpation .. 37
6.3.1.4 Unauthorized execution .. 37
6.3.1.5 Denial of service ... 37
6.3.1.6 Card management ... 37
6.3.1.7 Services ... 38
6.3.1.8 Miscellaneous ... 38

6.3.2 Organizational Security Policies .. 38
6.3.2.1 Java Card System Protection Profile – Open Configuration ... 38
6.3.2.2 Additional ... 38

6.3.3 Assumptions .. 38
6.3.3.1 Java Card System Protection Profile – Open Configuration ... 38
6.3.3.2 Additional ... 38

6.3.4 Compatibility with the objectives of [ST-IC] .. 39
6.3.4.1 Compatibility between objectives for the TOE ... 39
6.3.4.2 Compatibility between objectives for the environment ... 39

7 SECURITY REQUIREMENTS .. 40

7.1 SECURITY FUNCTIONAL REQUIREMENTS ... 40
7.1.1 CoreG_LC Security Functional Requirements ... 42

7.1.1.1 Firewall Policy .. 42
7.1.1.2 Application Programming Interface .. 47
7.1.1.3 Card Security Management ... 47
7.1.1.4 AID Management ... 48

7.1.2 INSTG Security Functional Requirements .. 49
7.2 SECURITY ASSURANCE REQUIREMENTS .. 50
7.3 SECURITY REQUIREMENTS RATIONALE ... 50

7.3.1 Objectives ... 50
7.3.1.1 Security objectives for the TOE .. 51

7.3.2 Dependencies .. 52
7.3.2.1 SFRs DEPENDENCIES ... 52
7.3.2.2 SARs DEPENDENCIES .. 53

7.3.3 Rationale for the security assurance requirements ... 53
7.3.3.1 EAL7: Formally verified design and tested .. 53
7.3.3.2 ADV_SPM.1 Formal TOE security policy model .. 54
7.3.3.3 ADV_FSP.6 Complete semi-formal functional specification with additional formal specification 54
7.3.3.4 ADV_TDS.6 Complete semi-formal modular design with formal high-level design presentation 55
7.3.3.5 ADV_IMP.2 Complete mapping of the implementation representation of the TSF ... 55
7.3.3.6 ADV_INT.3 Minimally complex internals ... 55
7.3.3.7 ATE_DPT.4. Testing: implementation representation .. 56
7.3.3.8 ATE_COV.3. Rigorous analysis of coverage ... 56
7.3.3.9 ATE_FUN.2. Ordered Functional Testing .. 56
7.3.3.10 ALC_CMC.5 Advanced support .. 56
7.3.3.11 ALC_LCD.2 Measurable life-cycle model ... 56
7.3.3.12 ALC_TAT.3 Compliance with implementation standards – all parts ... 56
7.3.3.13 AVA_VAN.5 Advanced methodical vulnerability analysis ... 56

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 4 / 61

7.3.3.14 ALC_DVS.2 Sufficiency of security measures .. 57
7.3.3.15 Other Security Assurance Requirements .. 57

7.3.4 Compatibility with SFR of [ST-IC] ... 57
8 TOE SUMMARY SPECIFICATION ... 58

8.1 TOE SECURITY FUNCTIONS ... 58
8.1.1 Security functions provided by MultiApp V4 platform .. 58

8.1.1.1 SF.FW: Firewall ... 58
8.1.1.2 SF.CSM: Card Security Management ... 59
8.1.1.3 SF.AID: AID Management ... 60
8.1.1.4 SF.INST: Installer ... 60

8.2 TOE SUMMARY SPECIFICATION RATIONALE .. 60
8.2.1 TOE security functions rationale .. 60

FIGURES

Figure 1: MultiApp V4 smartcard architecture ..9
Figure 2: TOE boundaries ... 10
Figure 3: JCS (TOE) Life Cycle within Product Life Cycle .. 11

TABLES

Table 1 - Refinement of SFR of PP JCS Open .. 16
Table 2 - Compatibility study .. 17
Table 3: Objective vs. SFR .. 51
Table 4: Rationale table of functional requirements and security functions ... 61

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 5 / 61

1 SECURITY TARGET INTRODUCTION

1.1 SECURITY TARGET REFERENCE

Title : Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Version : 1.8p

ST Reference : D1391107

Origin : Gemalto and Trusted Labs

Authors : Maria Christofi, Quang-Huy Nguyen

IT Security Evaluation
scheme :

Serma Technologies

IT Security
Certification scheme :

Agence Nationale de la Sécurité des Systèmes d’Information (ANSSI)

1.2 TOE REFERENCE

Product Name : MultiApp V4

Security Controllers : M7892

TOE Name :
MultiApp V4 Java Card Virtual Machine

TOE Reference : 4.0.1

TOE documentation : Guidance [AGD]

The TOE identification is provided by the Tag identity and CPLC data.These data are available by executing
a dedicated command. Information and values to identified TOE are described chapter 1.5 of [AGD-OPE]
document.

The TOE and the product differ. Actually, the TOE is the Java Card Virtual Machine of the MultiApp V4 product.

1.3 SECURITY TARGET OVERVIEW

The main objectives of this ST are:

 To introduce TOE;

 To describe the TOE components, the components in the TOE environment, the product type,
the TOE environment and life cycle and the limits of the TOE;

 To define the scope of the TOE and its security features;

 To describe the security environment of the TOE, including the assets to be protected and the
threats to be countered by the TOE and its environment during the product development,
production and usage;

 To describe the organizational security policies and the assumptions;

 To describe the security objectives of the TOE and its environment supporting in terms of
integrity and confidentiality of application data and programs and of protection of the TOE;

 To specify the security requirements which includes the TOE security functional requirements,
the TOE assurance requirements, the TOE security functions and the associated rationales.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 6 / 61

1.4 REFERENCES

1.4.1 External References

[CC] Common Criteria references

[CC-1] Common Criteria for Information Technology Security Evaluation

Part 1: Introduction and general model,

CCMB-2009-07-001, version 3.1 rev 4, September 2012

[CC-2] Common Criteria for Information Technology Security Evaluation

Part 2: Security functional components,

CCMB-2009-07-002, version 3.1 rev 4, September 2012

[CC-3] Common Criteria for Information Technology Security Evaluation

Part 3: Security assurance components,

CCMB-2009-07-003, version 3.1 rev 4 September 2012

[CEM] Common Methodology for Information Technology Security Evaluation

Methodology

CCMB-2009-07-004, version 3.1 rev 4 September 2012

[PP] Protection profiles

[PP-IC-0084] Security IC Platform Protection Profile with augmentation Packages– BSI-CC-PP-0084-
2014

[PP-JCS-Open] Java Card System Protection Profile – Open Configuration

ANSSI-PP-2010-03M01, Version 3.0, May 2012

[IFX] Infineon References

[ST-IC] [ST-IC-M7892]

[ST-IC-M7892] Security Target Common Criteria EAL6 augmented / EAL6+ M7892 Design Steps D11
and G12 Revision 1.7 as of 2016-11-16

[CR-IC] [CR-IC-M7892]

[CR-IC-M7892] Certification Report, M7892 D11 & G12 BSI-DSZ-CC-0891-V2-2016

[GP] Global Platform references

[GP221] GlobalPlatform Card Technology Secure Channel Protocol 03

Card Specification v 2.2 – Amendment D Version 1.0

 Public Release April 2009

[GP221 Id Config] Global Platform – ID Configuration v1.0.

[GP221 Com] Global Platform – Common Configuration v1.0.

[JCS] Javacard references

[JAVASPEC] The Java Language Specification. Third Edition, May 2005. Gosling, Joy, Steele and
Bracha. ISBN 0-321-24678-0.

[JVM] The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.

[JCBV] Java Card Platform, version 2.2 Off-Card Verifier. June 2002. White paper. Published
by Sun Microsystems, Inc.

[JCRE222] Java Card 2.2.2 Runtime Environment (JCRE) Specification – 15 March 2006 -
Published by Sun Microsystems, Inc.

[JCVM222] Java Card 2.2.2 Virtual Machine (JCVM) Specification – 15 March 2006 - Published by
Sun Microsystems, Inc.

[JCAPI222] Java Card 2.2.2 Application Programming Interface - March 2006 - Published by Sun
Microsystems, Inc.

[JCRE304] Java Card 3.0.4 Runtime Environment (JCRE) Specification, Classic Edition –
September 2011 – Published by Oracle

[JCVM304] Java Card 3.0.4 Virtual Machine (JDVM) Specification, Classic Edition-– September
2011 – Published by Oracle

[JCAPI304] Java Card 3.0.4 Application Programming Interface (API) Specification, Classic Edition-
– September 2011 – Published by Oracle

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 7 / 61

1.4.2 Internal References [IR]

[AGD] [AGD-PRE], [AGD-OPE], [AGD-USR], [AGD-VERIF], [AGD-GD-DEV]

[AGD-PRE]
MultiApp V4.0.1 – AGD_PRE document – Javacard Platform

Ref: D1431347, Version 1.0

[AGD-OPE]
MultiApp V4.0.1 Javacard Platform – AGD_OPE document

Ref: D1432683, Version 1.2

[AGD-USR]
MultiApp ID Operating System Reference Manual

Ref: D1392687, Revision E

[AGD-VERIF]

Verification process of Gemalto non sensitive applet – Qualification level

Ref: D1484874, Version 1.0

Verification process of Third Party non sensitive applet – Qualification level

Ref: D1484875, Version 1.2

[AGD-GD-DEV]

Guidance for secure application development on Multiapp platforms

Ref: D1390326, Version A01, March 2018

Rules for applications on Multiapp certified product – Qualification level

Ref: D1484823, Version 1.2

[ALC-DVS] SUFFICIENCY OF SECURITY MEASURES (D1402691)

[ST_MultiAppv4]
MultiApp V4.0.1 Javacard Platform – Security Target

Ref: D1430789, Version 1.2

1.5 ACRONYMS AND GLOSSARY

APDU Application Protocol Data Unit

API Application Programming Interface

CAD Card Acceptance Device

CC Common Criteria

CPU Central Processing Unit

EAL Evaluation Assurance Level

EEPROM Electrically-Erasable Programmable Read-Only Memory

ES Embedded Software

GP Global Platform

IC Integrated Circuit

IT Information Technology

JCRE JavaCard Runtime Environment

JCS JavaCard System

JCVM JavaCard Virtual Machine

NVM Non-Volatile Memory

OP Open Platform

PIN Personal Identification Number

PP Protection Profile

RMI Remote Method Invocation

RNG Random Number Generator

ROM Read-Only Memory

SAR Security Assurance Requirement

SC Smart Card

SCP Secure Channel Protocol

SFP Security Function Policy

SFR Security Functional Requirement

ST Security Target

TOE Target Of Evaluation

TSF TOE Security Functionality

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 8 / 61

2 TOE OVERVIEW

2.1 TOE TYPE

The Java Card technology combines a subset of the Java programming language with a runtime environment
optimized for smart cards and similar small-memory embedded devices [JCVM304]. The Java Card platform
is a smart card platform enabled with Java Card technology (also called a “Java card”). This technology allows
for multiple applications to run on a single card and provides facilities for secure interoperability of applications.
Applications for the Java Card platform (“Java Card applications”) are called applets.

This security target defines the requirements of the Java Card Virtual Machine as a subset of the Java Card
System, and corresponds to an extension of the evaluation of the full TOE of the product, described in the
security target MultiAppV4: JCS Security Target [ST_MultiAppv4]. This security target restricts the security
target [ST_MultiAppv4] to the virtual machine, in charge of the secure execution of the applets after their
loading on the card.

More precisely, the TOE in this security target is made of:

 The linker

 The interpreter

 A (native) subset of the JC API

The TOE is a subset of the Java Card System whose configuration is defined in [PP-JCS-Open] Java Card
System protection profile Open Configuration.

2.2 PRODUCT ARCHITECTURE

The TOE is part of the MultiApp V4 smartcard product. This smartcard contains the software dedicated to the
operation of:

 The MultiApp V4 Platform, which supports the execution of the personalized applets and
provides the smartcard administration services. It is conformant to Java Card 3.0.4 and GP 2.2
standards [GP221]. (id configuration [GP221 Id Config] or GP configuration [GP221 Com])

 The identity applets: IAS V4.4, eTravel 2.2, Pure 2.1, Plug&Play, BioPin Management, MPCOS,
OATH, e-ID, e-Sign (These applications could be removed based on the customer needs).

 Additionally, other applets – not determined at the moment of the present evaluation – may be
loaded on the smartcard before or after issuance.

Therefore, the architecture of the smartcard software and application data can be represented as follows:

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 9 / 61

Figure 1: MultiApp V4 smartcard architecture

The applets and the MultiApp v4 Java Card platform, are located in flash code area.
All the data (related to the applets or to the Java Card platform) are located in flash data area. The separation
between these data is ensured by the Java Card firewall as specified in [JCRE304].

MultiApp V4 product is a modular product where some features could be removed, based on the customer
needs. (See identification and configuration option).

2.3 TOE BOUNDARIES

The Target of Evaluation (TOE) is the Java Card Virtual Machine that is embedded in Smart Card Integrated
Circuit in operation and in accordance to its functional specifications. Other smart card product items and other
embedded software (such as OS, Secure API, etc) are outside the scope of this evaluation.

Java Card RMI is not implemented in the TOE.

Figure 2 shows the TOE boundaries (presented in the red boxes).

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 10 / 61

Figure 2: TOE boundaries

2.4 TOE DESCRIPTION

The present TOE is a subset (identified by the red boxes in Figure 2) of the Java Card System. This subset
ensures the secure execution of an applet that has been byte code verified and loaded on the product. This
execution is processed in two phases:

Phase 1: the (static) link of the loaded CAP file (done once)
Phase 2: the (dynamic) interpretation of the linked byte-codes (done as many as necessary)

The TOE is composed of the following components:

 The linker (used for CAP file preparing for interpretation),

 The interpreter (used for bytecode interpreting), and

 The firewall-related native Java Card API (to ensure that it provides no means to bypass the

firewall access control)

All these components have the same version as the embedded software evaluated in [ST_MultiAppv4].

2.4.1 The linker

The linker is in charge of the rearrangement of the data structures contained in the Converted APplet (CAP)
file in order to speed up the execution of the applet. The linker first performs a resolution step that is, resolves
the external and internal references of a CAP file and replaces them by direct ones. Then it performs the
preparation step, allocating the static field image and the static arrays. The later ones are also initialized, thus
giving rise to the configuration that will constitute the corresponding initial state of the (JC) interpreter.

The linker contributes to the installation of post-issuance applets. The linker is invoked after the loading process

by the JCRE to link the CAP file using the existing packages. Then, the API method Applet.install is

invoked to instantiate the new application using a fresh AID. The other application management functionalities,
such as the load process, the CAD communication, are out of the scope of the TOE.

During its lifetime, an applet can be updated by new packages to be loaded on the TOE. These (Java) updates
may replace part of the original applet or extend it. The Java updates are also ensured by the linker.

2.4.2 The interpreter

Once an application is installed, registered and selected, its execution is carried out by the embedded
interpreter. The interpreter mainly consists of a loop that computes the next bytecode to be executed and
dispatches the appropriate interpretation functions. Such function modifies the runtime data areas of the JCVM
(the heap, the static field images, the frame stack, etc) according to the semantics of the byte code interpreted.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 11 / 61

2.4.3 The native Java Card API

The byte code interpretation done by the interpreter depends in turn on the behavior of methods of the API.
The Java Card APIs consist of a set of customized classes for programming smart card applications according
to the ISO 7816 model.

Native API methods are usually written in C and are considered as parts of the Java Card platform. The native
methods participate in enforcing several essential TOE security features such as firewall. Consequently, the

native methods of the package javacard.framework are then included in the TOE. The package

javacard.framework.service that is mainly used for the JCRMI functionality is not included.

The packages javacardx.crypto and javacard.security are not included as they are beyond the TOE

Life-cycle
The Java Card System (the TOE) life cycle is part of the product life cycle, i.e. the Java Card platform with
applications, which goes from product development to its usage by the final user.

The Java Card System (i.e. the TOE) life-cycle itself can be decomposed in four stages:

- Development

- Storage, pre-personalization and testing

- Personalization and testing

- Final usage

The JCS storage is not necessarily a single step in the life cycle since it can be stored in parts. The JCS
delivery occurs before storage and may take place more than once if the TOE is delivered in parts.
These four stages map to the product life cycle phases as shown in Figure 6.

JCS Development

Phase 1

Smartcard Embedded Software

Development

Phase 2

IC Development

JCS Storage, Preperso,

Testing

Phase 3

IC Manufacturing & Testing

Phase 4

IC Packaging & Testing

Phase 5

Smartcard Prepersonalization

& Testing

JCS Storage, Preperso &

Testing

Phase 6

Smartcard Personalization &

Testing

JCS Personalization &

Testing

Phase 7

Smartcard End-Usage
JCS End-Usage

J
C

S
 D

e
li
v

e
ry

TOE Delivery

T
O

E
 d

e
v

e
lo

p
m

e
n

t
a

n
d

 m
a

n
u

fa
c

tu
ri

n
g

TOE usage for

administrators

TOE end-usage

C
o

v
e

re
d

 b
y

 A
L

C

A
s

s
u

ra
n

c
e

 f
a

m
il
ie

s

C
o

v
e

re
d

 b
y

 A
G

D

A
s

s
u

ra
n

c
e

 f
a

m
il
ie

s

Figure 3: JCS (TOE) Life Cycle within Product Life Cycle

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 12 / 61

JCS Development is performed during Phase 1. This includes JCS conception, design, implementation, testing
and documentation. The JCS development shall fulfill requirements of the final product, including conformance
to Java Card Specifications, and recommendations of the SCP user guidance. The JCS development shall
occur in a controlled environment that avoids disclosure of source code, data and any critical documentation
and that guarantees the integrity of these elements. The present evaluation includes the JCS development
environment.

In Phase 3, the IC Manufacturer may store, initialize the JCS and potentially conduct tests on behalf of the
JCS developer. The IC Manufacturing environment shall protect the integrity and confidentiality of the JCS and
of any related material, for instance test suites. The present evaluation includes the whole IC Manufacturing
environment, in particular those locations where the JCS is accessible for installation or testing. As the Security
IC has already been certified against [PP-IC-0084] there is no need to perform the evaluation again.

In Phase 5, the SC Pre-Personalizer may store, pre-personalize the JCS and potentially conduct tests on
behalf of the JCS developer. The SC Pre-Personalization environment shall protect the integrity and
confidentiality of the JCS and of any related material, for instance test suites.

(Part of) JCS storage in Phase 5 implies a TOE delivery after Phase 5. Hence, the present evaluation includes
the SC Pre-Personalization environment. The TOE delivery point is placed at the end of Phase 5, since the
entire TOE is then built and embedded in the Security IC.

The JCS is personalized in Phase 6, if necessary. The SC Personalization environment is not included in the
present evaluation. Appropriate security recommendations are provided to the SC Personalizer through the
[AGD] documentation.

The JCS final usage environment is that of the product where the JCS is embedded in. It covers a wide
spectrum of situations that cannot be covered by evaluations. The JCS and the product shall provide the full
set of security functionalities to avoid abuse of the product by untrusted entities.

Note: Potential applications loaded in pre-issuance will be verified using dedicated evaluated verification
process. Applications loaded in post-issuance will need to follow dedicated development rules.

2.5 TOE INTENDED USAGE

The TOE is intended to be used as the Virtual Machine in a Java Card System. The intended usage of the
latter is described in [ST_MultiAppv4].

2.6 ACTORS OF THE TOE

In the following table, we can see several entities participating in the system.

Actors Identification

Integrated Circuit (IC) Developer IFX

Embedded Software Developer Gemalto (Meudon, Singapore, Vantaa)

Integrated Circuit (IC) Manufacturer IFX

Initializer Gemalto (Gemenos, Singapore, Vantaa, Tczew, Curitiba,
Montgomery, PA)

Pre-personalizer Gemalto (Gemenos, Singapore, Tczew, Curitiba, Vantaa,
Montgomery, PA)

Personalization Agent The agent who is acting on the behalf of the issuing State
or Organization and personalize the MRTD for the holder
by activities establishing the identity of the holder with
biographic data.

Card Holder The rightful holder of the card for whom the issuer
personalizes it.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 13 / 61

2.7 TOE SECURITY FEATURES

The principal security feature of the TOE is the correct and secure execution of applications (i.e. Java Card
applets).

While the Java Card virtual machine (JCVM) is responsible for ensuring language-level security, the JCRE
provides additional security features for the product. The basic runtime security feature imposed by the JCRE
enforces isolation of applets using the Java Card firewall. It prevents objects created by one applet from being
used by another applet without explicit sharing. This prevents unauthorized access to the fields and methods
of class instances, as well as the length and contents of arrays.

The firewall is an important security feature which enables complete isolation between applets or controlled
communication through additional mechanisms that allow them to share objects when needed. The JCRE
allows such sharing using the concept of “shareable interface objects” (SIO) and static public variables. The
JCVM should ensure that the only way for applets to access any resources are either through the JCRE or
through the native API.
Among the security services provided by the platform to the applications to protect their data and assets, the
TOE of this security target is in charge of:

 Confidentiality and integrity of application data among applications. Applications belonging to different
contexts are isolated from each other. Application data are not accessible by a normal or abnormal
execution of another basic or secure application.

 Application code execution integrity. The Java Card VM and the “applications isolation” property
guarantee that the application code is operating as specified in absence of perturbations.

Other security services are ensured by the product and described in [ST_MultiAppv4].

2.8 NON-TOE HW/SW/FW AVAILABLE TO THE TOE

The TOE does not include the following SW components (that are part of the MultiAppv4 smartcard product):
o Part of the JCRE and JCAPI: Applet selection/deletion/loading, Object deletion,

Cryptographic API;
o Native environment layer

The TOE does not include the following HW components (that are part of the MultiAppv4 smartcard product):

o Integrated Circuit and the FW (i.e. drivers)

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 14 / 61

3 CONFORMANCE CLAIMS

3.1 CC CONFORMANCE CLAIM

Common criteria Version:
This ST conforms to CC Version 3.1 [CC-1] [CC-2] [CC-3]

Conformance to CC part 2 and 3:
- CC part 2 conformant
- CC part 3 conformant

The Common Methodology for Information Technology Security Evaluation, Evaluation Methodology; [CEM]
has to be taken into account.

The assurance requirement of this security target is EAL7.

3.2 PP CLAIM

This security target does not claim conformance to any Protection Profile, but it is based on the SPD and SFRs
from the Protection Profile “JavaCard System – Open configuration” [PP-JCS-Open] with adaptations due to
the reduced scope.

The security target is a composite security target, including the IC security target [ST-IC]. However the security
problem definition, the objectives, and the SFR of the IC are not described in this document.

The TOE is part of the embedded software of the MultiAppV4 product evaluated in the [ST_MultiAppv4] that
has a “demonstrable” conformance to [PP-JCS-Open].

Because the TOE is a subset of the reference TOE defined in [PP-JCS-Open], only a subset of its SFRs are
enforced in this evaluation. Table 1 explains how the SFRs of PP are refined and used in this ST.
Consequently, only a subset of the security objectives defined in PP are satisfied in this ST (because of the
limited TOE security functions). The other objectives are put in the environment. Table 2 resumes the
modifications done by this ST with respect to the [PP-JCS-Open].

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 15 / 61

Functional requirements Refined in [PP-JCS] Refined in this ST

FDP_ACC.2/FIREWALL Yes No

FDP_ACF.1/FIREWALL Yes Yes

FDP_IFC.1/JCVM Yes No

FDP_IFF.1/JCVM Yes Yes

FDP_RIP.1/OBJECTS Yes Not used

FMT_MSA.1/JCRE Yes Yes

FMT_MSA.1/JCVM Yes No

FMT_MSA.2/FIREWALL_JCVM Yes No

FMT_MSA.3/FIREWALL Yes No

FMT_MSA.3/JCVM Yes No

FMT_SMF.1 Yes No

FMT_SMR.1 Yes No

FCS_CKM.1 Yes Not used

FCS_CKM.2 Yes Not used

FCS_CKM.3 Yes Not used

FCS_CKM.4 Yes Not used

FCS_COP.1 Yes Not used

FDP_RIP.1/ABORT Yes Not used

FDP_RIP.1/APDU Yes Not used

FDP_RIP.1/bArray Yes Not used

FDP_RIP.1/KEYS Yes Not used

FDP_RIP.1/TRANSIENT Yes Not used

FDP_ROL.1/FIREWALL Yes No

FAU_ARP.1 Yes Yes

FDP_SDI.2 Yes Not used

FPR_UNO.1 Yes Not used

FPT_FLS.1 Yes No

FPT_TDC.1 Yes No

FIA_ATD.1/AID Yes No

FIA_UID.2/AID Yes Not used

FIA_USB.1/AID Yes Not used

FMT_MTD.1/JCRE Yes No

FMT_MTD.3/JCRE Yes No

FDP_ITC.2/Installer Yes Not used

FMT_SMR.1/Installer Yes Not used

FPT_FLS.1/Installer Yes Yes

FPT_RCV.3/Installer Yes Yes

FDP_ACC.2/ADEL Yes Not used

FDP_ACF.1/ADEL Yes Not used

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 16 / 61

Functional requirements Refined in [PP-JCS] Refined in this ST

FDP_RIP.1/ADEL Yes Not used

FMT_MSA.1/ADEL Yes Not used

FMT_MSA.3/ADEL Yes Not used

FMT_SMF.1/ADEL Yes Not used

FMT_SMR.1/ADEL Yes Not used

FPT_FLS.1/ADEL Yes Not used

FDP_ACC.2/JCRMI Yes Not used

FDP_ACF.1/JCRMI Yes Not used

FDP_IFC.1/JCRMI Yes Not used

FDP_IFF.1/JCRMI Yes Not used

FMT_MSA.1/EXPORT Yes Not used

FMT_MSA.1/REM_REFS Yes Not used

FMT_MSA.3/JCRMI Yes Not used

FMT_REV.1/JCRMI Yes Not used

FMT_SMF.1/JCRMI Yes Not used

FMT_SMR.1/JCRMI Yes Not used

FDP_RIP.1/ODEL Yes Not used

FPT_FLS.1/ODEL Yes Not used

FCO_NRO.2/CM Yes Not used

FDP_IFC.2/CM Yes Not used

FDP_IFF.1/CM Yes Not used

FDP_UIT.1/CM Yes Not used

FIA_UID.1/CM Yes Not used

FMT_MSA.1/CM Yes Not used

FMT_MSA.3/CM Yes Not used

FMT_SMF.1/CM Yes Not used

FMT_SMR.1/CM Yes Not used

FTP_ITC.1/CM Yes Not used

Table 1 - Refinement of SFR of PP JCS Open

PP JCS elements Modification in ST

Assets Not changed

Threats Not changed

Assumptions Augmented

OSP Not changed

Security objectives Reduced

Security objective for the operational environment Augmented

Security functional requirements Reduced

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 17 / 61

Security assurance requirements Augmented
Table 2 - Compatibility study

3.3 PACKAGE CLAIM

This ST is conforming to assurance package EAL7.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 18 / 61

4 SECURITY ASPECTS

This chapter describes the main security issues of the Java Card System and its environment addressed in
this ST, called “security aspects”, in a CC-independent way. In addition to this, they also give a semi-formal
framework to express the CC security environment and objectives of the TOE. They can be instantiated as
assumptions, threats, objectives (for the TOE and the environment) or organizational security policies. For
instance, we will define hereafter the following aspect:

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions.

(2) The TOE must also return to a well-defined valid state before a service request in case of
failure during its operation.

TSFs must be continuously active in one way or another; this is called “OPERATE”.

4.1 CONFIDENTIALITY

#.CONFID-APPLI-
DATA

Application data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain read access to other
application’s data.

#.CONFID-JCS-CODE Java Card System code must be protected against unauthorized disclosure.
Knowledge of the Java Card System code may allow bypassing the TSF. This
concerns logical attacks at runtime in order to gain a read access to executable
code, typically by executing an application that tries to read the memory area
where a piece of Java Card System code is stored.

#.CONFID-JCS-DATA Java Card System data must be protected against unauthorized disclosure. This
concerns logical attacks at runtime in order to gain a read access to Java Card
System data. Java Card System data includes the data managed by the Java
Card RE, the Java Card VM and the internal data of Java Card platform API
classes as well.

4.2 INTEGRITY

#.INTEG-APPLI-CODE Application code must be protected against unauthorized modification. This
concerns logical attacks at runtime in order to gain write access to the memory
zone where executable code is stored. In post-issuance application loading, this
threat also concerns the modification of application code in transit to the card.

#.INTEG-APPLI-DATA Application data must be protected against unauthorized modification. This
concerns logical attacks at runtime in order to gain unauthorized write access to
application data. In post-issuance application loading, this threat also concerns
the modification of application data contained in a package in transit to the card.
For instance, a package contains the values to be used for initializing the static
fields of the package.

#.INTEG-JCS-CODE Java Card System code must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to
executable code.

#.INTEG-JCS-DATA Java Card System data must be protected against unauthorized modification.
This concerns logical attacks at runtime in order to gain write access to Java Card
System data. Java Card System data includes the data managed by the Java
Card RE, the Java Card VM and the internal data of Java Card API classes as
well.

4.3 UNAUTHORIZED EXECUTIONS

#.EXE-APPLI-CODE Application (byte)code must be protected against unauthorized execution. This
concerns (1) invoking a method outside the scope of the accessibility rules provided

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 19 / 61

by the access modifiers of the Java programming language ([JAVASPEC]§6.6); (2)
jumping inside a method fragment or interpreting the contents of a data memory
area as if it was executable code.;

#.EXE-JCS-CODE Java Card System bytecode must be protected against unauthorized execution.
Java Card System bytecode includes any code of the Java Card RE or API. This
concerns (1) invoking a method outside the scope of the accessibility rules provided
by the access modifiers of the Java programming language ([JAVASPEC]§6.6); (2)
jumping inside a method fragment or interpreting the contents of a data memory area
as if it was executable code. Note that execute access to native code of the Java
Card System and applications is the concern of #.NATIVE.

#.FIREWALL The Firewall shall ensure controlled sharing of class instances, and isolation of their
data and code between packages (that is, controlled execution contexts) as well as
between packages and the JCRE context. An applet shall neither read, write nor
compare a piece of data belonging to an applet that is not in the same context, nor
execute one of the methods of an applet in another context without its authorization.

#.NATIVE Because the execution of native code is outside of the JCS TSF scope, it must be
secured so as to not provide ways to bypass the TSFs of the JCS. Loading of native
code, which is as well outside the TSFs, is submitted to the same requirements.
Should native software be privileged in this respect, exceptions to the policies must
include a rationale for the new security framework they introduce.

4.4 BYTECODE VERIFICATION

#.VERIFICATION All bytecode must be verified prior to being executed. Bytecode verification includes
(1) how well-formed CAP file is and the verification of the typing constraints on the
bytecode, (2) binary compatibility with installed CAP files and the assurance that the
export files used to check the CAP file correspond to those that will be present on
the card when loading occurs.

4.4.1 CAP file Verification

Bytecode verification includes checking at least the following properties: (1) bytecode instructions represent a
legal set of instructions used on the Java Card platform; (2) adequacy of bytecode operands to bytecode
semantics; (3) absence of operand stack overflow/underflow; (4) control flow confinement to the current
method (that is, no control jumps to outside the method); (5) absence of illegal data conversion and reference
forging; (6) enforcement of the private/public access modifiers for class and class members; (7) validity of any
kind of reference used in the bytecodes (that is, any pointer to a bytecode, class, method, object, local variable,
etc actually points to the beginning of piece of data of the expected kind); (8) enforcement of rules for binary
compatibility (full details are given in [JCVM222], [JVM], [JCBV]). The actual set of checks performed by the
verifier is implementation-dependent, but shall at least enforce all the “must clauses” imposed in [JCVM222]
on the bytecodes and the correctness of the CAP files’ format.
As most of the actual Java Card VMs do not perform all the required checks at runtime, mainly because smart
cards lack memory and CPU resources, CAP file verification prior to execution is mandatory. On the other
hand, there is no requirement on the precise moment when the verification shall actually take place, as far as
it can be ensured that the verified file is not modified thereafter. Therefore, the bytecodes can be verified either
before the loading of the file on to the card or before the installation of the file in the card or before the execution,
depending on the card capabilities, in order to ensure that each bytecode is valid at execution time. This
Security Target assumes bytecode verification is performed off-card.

Another important aspect to be considered about bytecode verification and application downloading is, first,
the assurance that every package required by the loaded applet is indeed on the card, in a binary-compatible
version (binary compatibility is explained in [JCVM222] §4.4), second, that the export files used to check and
link the loaded applet have the corresponding correct counterpart on the card.

4.4.2 Integrity and Authentication

Verification off-card is useless if the application package is modified afterwards. The usage of cryptographic
certifications coupled with the verifier in a secure module is a simple means to prevent any attempt of
modification between package verification and package installation.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 20 / 61

Once a verification authority has verified the package, it signs it and sends it to the card. Prior to the installation
of the package, the card verifies the signature of the package, which authenticates the fact that it has been
successfully verified. In addition to this, a secured communication channel is used to communicate it to the
card, ensuring that no modification has been performed on it.

Alternatively, the card itself may include a verifier and perform the checks prior to the effective installation of
the applet or provide means for the bytecodes to be verified dynamically. On-card bytecode verifier is out of
the scope of this Security Target.

4.4.3 Linking and Verification

Beyond functional issues, the installer ensures at least a property that matters for security: the loading order
shall guarantee that each newly loaded package references only packages that have been already loaded on
the card. The linker can ensure this property because the Java Card platform does not support dynamic
downloading of classes.

4.5 CARD MANAGEMENT

#.CARD-MANAGEMENT (1) The card manager (CM) shall control the access to card management
functions such as the installation, update or deletion of applets. (2) The card
manager shall implement the card issuer’s policy on the card.

#.INSTALL (1) The TOE must be able to return to a safe and consistent state should the
installation of a package or an applet fail or be cancelled (whatever the
reasons). (2) Installing an applet must have no effect on the code and data of
already installed applets. The installation procedure should not be used to
bypass the TSFs. In short, it is an atomic operation, free of harmful effects on
the state of the other applets. (3) The procedure of loading and installing a
package shall ensure its integrity and authenticity.

#.SID (1) Users and subjects of the TOE must be identified. (2) The identity of sensitive
users and subjects associated with administrative and privileged roles must be
particularly protected; this concerns the Java Card RE, the applets registered
on the card, and especially the default applet and the currently selected applet
(and all other active applets in Java Card System 2.2). A change of identity,
especially standing for an administrative role (like an applet impersonating the
Java Card RE), is a severe violation of the Security Functional Requirements
(SFR). Selection controls the access to any data exchange between the TOE
and the CAD and therefore, must be protected as well. The loading of a package
or any exchange of data through the APDU buffer (which can be accessed by
any applet) can lead to disclosure of keys, application code or data, and so on.

#OBJ-DELETION (1) Deallocation of objects should not introduce security holes in the form of
references pointing to memory zones that are no longer in use, or have been
reused for other purposes. Deletion of collection of objects should not be
maliciously used to circumvent the TSFs. (2) Erasure, if deemed successful,
shall ensure that the deleted class instance is no longer accessible.

#DELETION (1) Deletion of installed applets (or packages) should not introduce security
holes in the form of broken references to garbage collected code or data, nor
should they alter integrity or confidentiality of remaining applets. The deletion
procedure should not be maliciously used to bypass the TSFs. (2) Erasure, if
deemed successful, shall ensure that any data owned by the deleted applet is
no longer accessible (shared objects shall either prevent deletion or be made
inaccessible). A deleted applet cannot be selected or receive APDU
commands. Package deletion shall make the code of the package no longer
available for execution. (3) Power failure or other failures during the process
shall be taken into account in the implementation so as to preserve the SFRs.
This does not mandate, however, the process to be atomic. For instance, an

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 21 / 61

interrupted deletion may result in the loss of user data, as long as it does not
violate the SFRs.

The deletion procedure and its characteristics (whether deletion is either
physical or logical, what happens if the deleted application was the default
applet, the order to be observed on the deletion steps) are implementation-
dependent. The only commitment is that deletion shall not jeopardize the TOE
(or its assets) in case of failure (such as power shortage).

Deletion of a single applet instance and deletion of a whole package are
functionally different operations and may obey different security rules. For
instance, specific packages can be declared to be undeletable (for instance, the
Java Card API packages), or the dependency between installed packages may
forbid the deletion (like a package using super classes or super interfaces
declared in another package).

4.6 SERVICES

#.ALARM The TOE shall provide appropriate feedback upon detection of a potential
security violation. This particularly concerns the type errors detected by the
bytecode verifier, the security exceptions thrown by the Java Card VM, or any
other security-related event occurring during the execution of a TSF.

#.OPERATE (1) The TOE must ensure continued correct operation of its security functions.
(2) In case of failure during its operation, the TOE must also return to a well-
defined valid state before the next service request.

#.RESOURCES The TOE controls the availability of resources for the applications and enforces
quotas and limitations in order to prevent unauthorized denial of service or
malfunction of the TSFs. This concerns both execution (dynamic memory
allocation) and installation (static memory allocation) of applications and
packages.

#.CIPHER The TOE shall provide a means to the applications for ciphering sensitive data,
for instance, through a programming interface to low-level, highly secure
cryptographic services. In particular, those services must support cryptographic
algorithms consistent with cryptographic usage policies and standards.

#.KEY-MNGT The TOE shall provide a means to securely manage cryptographic keys. This
includes: (1) Keys shall be generated in accordance with specified
cryptographic key generation algorithms and specified cryptographic key sizes,
(2) Keys must be distributed in accordance with specified cryptographic key
distribution methods, (3) Keys must be initialized before being used, (4) Keys
shall be destroyed in accordance with specified cryptographic key destruction
methods.

#.PIN-MNGT The TOE shall provide a means to securely manage PIN objects. This includes:
(1) Atomic update of PIN value and try counter, (2) No rollback on the PIN-
checking function, (3) Keeping the PIN value (once initialized) secret (for
instance, no clear-PIN-reading function), (4) Enhanced protection of PIN’s
security attributes (state, try counter…) in confidentiality and integrity.

#.SCP The smart card platform must be secure with respect to the SFRs. Then: (1)
After a power loss, RF signal loss or sudden card removal prior to completion
of some communication protocol, the SCP will allow the TOE on the next power
up to either complete the interrupted operation or revert to a secure state. (2) It
does not allow the SFRs to be bypassed or altered and does not allow access
to other low-level functions than those made available by the packages of the

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 22 / 61

Java Card API. That includes the protection of its private data and code (against
disclosure or modification) from the Java Card System. (3) It provides secure
low-level cryptographic processing to the Java Card System. (4) It supports the
needs for any update to a single persistent object or class field to be atomic,
and possibly a low-level transaction mechanism. (5) It allows the Java Card
System to store data in “persistent technology memory” or in volatile memory,
depending on its needs (for instance, transient objects must not be stored in
non-volatile memory). The memory model is structured and allows for low–level
control accesses (segmentation fault detection). (6) It safely transmits low–level
exceptions to the TOE (arithmetic exceptions, checksum errors), when
applicable. Finally, it is required that (7) the IC is designed in accordance with
a well-defined set of policies and standards (for instance, those specified in [PP-
IC-0035]), and will be tamper resistant to actually prevent an attacker from
extracting or altering security data (like cryptographic keys) by using commonly
employed techniques (physical probing and sophisticated analysis of the chip).
This especially matters to the management (storage and operation) of
cryptographic keys.

#.TRANSACTION The TOE must provide a means to execute a set of operations atomically. This
mechanism must not jeopardise the execution of the user applications. The
transaction status at the beginning of an applet session must be closed (no
pending updates).

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 23 / 61

5 SECURITY PROBLEM DEFINITION

5.1 ASSETS

The assets of the TOE are those defined in [PP-JCS-Open]. The assets of [PP-SC] are studied in [ST-IC].

Assets are security-relevant elements to be directly protected by the TOE. Confidentiality of assets is always
intended with respect to un-trusted people or software, as various parties are involved during the first stages
of the smart card product life-cycle; details are given in threats hereafter.

Assets may overlap, in the sense that distinct assets may refer (partially or wholly) to the same piece of
information or data. For example, a piece of software may be either a piece of source code (one asset) or a
piece of compiled code (another asset), and may exist in various formats at different stages of its development
(digital supports, printed paper). This separation is motivated by the fact that a threat may concern one form
at one stage, but be meaningless for another form at another stage.

The assets to be protected by the TOE are listed below. They are grouped according to whether it is data
created by and for the user (User data) or data created by and for the TOE (TSF data). For each asset it is
specified the kind of dangers that weigh on it.

5.1.1 User data

D.APP_CODE
The code of the applets and libraries loaded on the card.
To be protected from unauthorized modification.

D.APP_C_DATA

Confidential sensitive data of the applications, like the data contained in an object, a static field of a
package, a local variable of the currently executed method, or a position of the operand stack.
To be protected from unauthorized disclosure.

D.APP_I_DATA

Integrity sensitive data of the applications, like the data contained in an object, a static field of a package,
a local variable of the currently executed method, or a position of the operand stack.
To be protected from unauthorized modification.

D.APP_KEYs

Cryptographic keys owned by the applets.
To be protected from unauthorized disclosure and modification.

D.PIN

Any end-user's PIN.
To be protected from unauthorized disclosure and modification.

5.1.2 TSF data

D.API_DATA
Private data of the API, like the contents of its private fields.
To be protected from unauthorized disclosure and modification.

D.CRYPTO

Cryptographic data used in runtime cryptographic computations, like a seed used to generate a key.
To be protected from unauthorized disclosure and modification.

D.JCS_CODE

The code of the Java Card System.
To be protected from unauthorized disclosure and modification.

D.JCS_DATA

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 24 / 61

The internal runtime data areas necessary for the execution of the Java Card VM, such as, for instance,
the frame stack, the program counter, the class of an object, the length allocated for an array, any pointer
used to chain data-structures.
To be protected from monopolization and unauthorized disclosure or modification.

D.SEC_DATA

The runtime security data of the Java Card RE, like, for instance, the AIDs used to identify the installed
applets, the currently selected applet, the current context of execution and the owner of each object.
To be protected from unauthorized disclosure and modification.

5.2 THREATS

This section introduces the threats to the assets against which specific protection within the TOE or its
environment is required. The threats are classified in several groups.

5.2.1 Confidentiality

T.CONFID-APPLI-DATA
The attacker executes an application to disclose data belonging to another application. See #.CONFID-
APPLI-DATA for details.
Directly threatened asset(s): D.APP_C_DATA, D.PIN, and D.APP_KEYs.

T.CONFID-JCS-CODE

The attacker executes an application to disclose the Java Card System code. See #.CONFID-JCS-CODE
for details.
Directly threatened asset(s): D.JCS_CODE.

T.CONFID-JCS-DATA

The attacker executes an application to disclose data belonging to the Java Card System. See #.CONFID-
JCS-DATA for details.
Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, and D.CRYPTO.

5.2.2 Integrity

T.INTEG-APPLI-CODE
The attacker executes an application to alter (part of) its own code or another application's code. See
#.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE

T.INTEG-APPLI-CODE.LOAD

The attacker modifies (part of) its own or another application code when an application package is
transmitted to the card for installation. See #.INTEG-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.INTEG-APPLI-DATA

The attacker executes an application to alter (part of) another application's data. See #.INTEG-APPLI-
DATA for details.
Directly threatened asset(s): D.APP_I_DATA, D.PIN, and D.APP_KEYs.

T.INTEG-APPLI-DATA.LOAD

The attacker modifies (part of) the initialization data contained in an application package when the
package is transmitted to the card for installation. See #.INTEG-APPLI-DATA for details.
Directly threatened asset(s): D.APP_I_DATA and D_APP_KEYs.

T.INTEG-JCS-CODE

The attacker executes an application to alter (part of) the Java Card System code. See #.INTEG-JCS-
CODE for details.
Directly threatened asset(s): D.JCS_CODE.

T.INTEG-JCS-DATA

The attacker executes an application to alter (part of) Java Card System or API data. See #.INTEG-JCS-
DATA for details.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 25 / 61

Directly threatened asset(s): D.API_DATA, D.SEC_DATA, D.JCS_DATA, and D.CRYPTO.

Other attacks are in general related to one of the above, and aimed at disclosing or modifying on-card
information. Nevertheless, they vary greatly on the employed means and threatened assets, and are thus
covered by quite different objectives in the sequel. That is why a more detailed list is given hereafter.

5.2.3 Identity usurpation

T.SID.1
An applet impersonates another application, or even the Java Card RE, in order to gain illegal access to
some resources of the card or with respect to the end user or the terminal. See #.SID for details.
Directly threatened asset(s): D.SEC_DATA (other assets may be jeopardized should this attack succeed,
for instance, if the identity of the JCRE is usurped), D.PIN and D.APP_KEYs.

T.SID.2

The attacker modifies the TOE's attribution of a privileged role (e.g. default applet and currently selected
applet), which allows illegal impersonation of this role. See #.SID for further details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack
succeed, depending on whose identity was forged).

5.2.4 Unauthorized execution

T.EXE-CODE.1
An applet performs an unauthorized execution of a method. See #.EXE-JCS-CODE and #.EXE-APPLI-
CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.EXE-CODE.2

An applet performs an execution of a method fragment or arbitrary data. See #.EXE-JCS-CODE and
#.EXE-APPLI-CODE for details.
Directly threatened asset(s): D.APP_CODE.

T.NATIVE

An applet executes a native method to bypass a security function such as the firewall. See #.NATIVE for
details.
Directly threatened asset(s): D.JCS_DATA.

5.2.5 Denial of Service

T.RESOURCES
An attacker prevents correct operation of the Java Card System through consumption of some resources
of the card: RAM or NVRAM. See #.RESOURCES for details.
Directly threatened asset(s): D.JCS_DATA.

5.2.6 Card management

T.DELETION
The attacker deletes an applet or a package already in use on the card, or uses the deletion functions to
pave the way for further attacks (putting the TOE in an insecure state). See #.DELETION (p 343) for
details).
Directly threatened asset(s): D.SEC_DATA and D.APP_CODE.

T.INSTALL

The attacker fraudulently installs post-issuance of an applet on the card. This concerns either the
installation of an unverified applet or an attempt to induce a malfunction in the TOE through the installation
process. See #.INSTALL for details.
Directly threatened asset(s): D.SEC_DATA (any other asset may be jeopardized should this attack
succeed, depending on the virulence of the installed application).

5.2.7 Services

T.OBJ-DELETION

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 26 / 61

The attacker keeps a reference to a garbage collected object in order to force the TOE to execute an
unavailable method, to make it to crash, or to gain access to a memory containing data that is now being
used by another application. See #.OBJ-DELETION for further details.
Directly threatened asset(s): D.APP_C_DATA, D.APP_I_DATA and D.APP_KEYs.

5.2.8 Miscellaneous

T.PHYSICAL
The attacker discloses or modifies the design of the TOE, its sensitive data or application code by physical
(opposed to logical) tampering means. This threat includes IC failure analysis, electrical probing,
unexpected tearing, and DPA. That also includes the modification of the runtime execution of Java Card
System or SCP software through alteration of the intended execution order of (set of) instructions through
physical tampering techniques.
This threatens all the identified assets.
This threat refers to the point (7) of the security aspect #.SCP, and all aspects related to confidentiality
and integrity of code and data.

5.3 ORGANIZATIONAL SECURITY POLICIES

5.3.1 Java Card System Protection Profile – Open Configuration

This section describes the organizational security policies to be enforced with respect to the TOE environment.

OSP.VERIFICATION

This policy shall ensure the consistency between the export files used in the verification and those used
for installing the verified file. The policy must also ensure that no modification of the file is performed in
between its verification and the signing by the verification authority. See #.VERIFICATION for details.
If the application development guidance provided by the platform developer contains recommendations
related to the isolation property of the platform, this policy shall also ensure that the verification authority
checks that these recommendations are applied in the application code.

5.3.2 TOE additional OSP

OSP.SpecificAPI

The TOE must contribute to ensure that application can optimize control on its sensitive operations using
a dedicated API provided by TOE. TOE will provide services for secure array management and to detect
loss of data integrity and inconsistent execution flow and react against tearing or fault induction.

OSP.RND

This policy shall ensure the entropy of the random numbers provided by the TOE to applet using
[JCAPI304] is sufficient. Thus attacker is not able to predict or obtain information on generated numbers.

5.4 ASSUMPTIONS

This section introduces the assumptions made on the environment of the TOE.

5.4.1 Assumptions extracted from [PP-JCS-Open]

A.APPLET

Applets loaded post-issuance do not contain native methods. The Java Card specification explicitly
"does not include support for native methods" ([JCVM222], §3.3) outside the API.

A.DELETION

Deletion of applets, if available through the card manager, is secure. Refer to #.DELETION for details on
this assumption.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 27 / 61

The rationale for this latter assumption is that even a Java Card System 2.1.1 TOE could be installed on
a product that includes applet deletion features. This assumes that these functions are secure with respect
to the SFRs herein.

A.VERIFICATION

All the bytecodes are verified at least once, before the loading, before the installation or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution
time.

5.4.2 Additional assumptions

A.SID
Any applet and package are uniquely identified.

A.FIREWALL-ENV

The applet selection/deletion/loading, the object deletion, and the JCRMI ensure the controlled sharing of
data.

A.GLOBAL_ARRAYS_CONFID

The APDU buffer that is shared by all applications is always cleaned upon applet selection.
The global byte array used for the invocation of the install method of the selected applet is always cleaned
after the return from the install method.

A.OPERATE-ENV

The applet selection/deletion/loading and the object deletion ensure the continued correct operation of the
TOE security functions.

A.REALLOCATION

The re-allocation of a memory block for the runtime areas of the Java Card VM does not disclose any
information that was previously stored in that block.

A.RESOURCES

The availability of resources for the applications is controlled. See #.RESOURCES for details.

A.ALARM-ENV

The applet deletion/loading and the object deletion ensure the appropriate feedback information upon
detection of a potential security violation. See #.ALARM for details.

A.CIPHER

Sensitive data for applications are ciphered in a secure way. See #.CIPHER for details.

A.KEY-MNGT

Cryptographic means are securely managed. This concerns the correct generation, distribution, access
and destruction of cryptographic keys. See #.KEY-MNGT.

A.PIN-MNGT

PIN objects are securely managed. See #.PIN-MNGT for details.

A.TRANSACTION

A set of operations are executed atomically. See #.TRANSACTION for details.

A.OBJ-DELETION

The object deletion shall not break references to objects. See #.OBJ-DELETION for further details.

A.DELETION

Both applet and package deletion shall be performed as expected. (See #.DELETION for details).

A.LOAD

The loading of a package into the card is safe. For codes loaded post-issuance, the TOE verifies the
integrity and authenticity evidences generated during the verification of the application package by the
verification authority. This verification by the TOE occurs during the load or late during the install process.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 28 / 61

A.INSTALL-ENV

The applet deletion/loading and the object deletion the installation of an applet to be performed as expected.

5.5 COMPATIBILITY WITH SECURITY ENVIRONMENTS [ST-IC]

5.5.1 Compatibility between threats

T.CONFID-JCS-CODE, T.CONFID-APPLI-DATA, and T.CONFID-JCS-DATA are included in T.Phys-Probing,
T.Leak-Inherent and T.Leak-Forced.

T.SID.2 is partly included in T.Phys-Manipulation and T.Malfunction.

T.PHYSICAL is included in T.Phys-Probing, T.Leak-Inherent, T.Phys-Manipulation, T.Malfunction and T.Leak-
Forced.

T.INTEG-APPLI-CODE T.INTEG-JCS-CODE T.INTEG-APPLI-DATA DATA T.INTEG-JCS-DATA T.INTEG-
APPLI-CODE.LOAD T.INTEG-APPLI-DATA.LOAD T.SID.1 T.EXE-CODE.1 T.EXE-CODE.2 T.NATIVE
T.RESOURCES T.INSTALL T.DELETION T.OBJ-DELETION are threats specific to the Java Card platform
and they do no conflict with the threats of [ST-IC].

5.5.2 Compatibility between OSP

OSP.VERIFICATION is an OSP specific to the Java Card platform and it does no conflict with the OSP of [ST-
IC].

OSP.SpecificAPI has been added to this ST in order to manage Specific API and it does no conflict with the
OSP of [ST-IC].

OSP.RND has been added to this ST in order to manage RNG and it does no conflict with the OSP of [ST-IC].

We can therefore conclude that the OSP for the environment of this ST and [ST-IC] are consistent.

5.5.3 Compatibility between assumptions

A.VERIFICATION, A.DELETION, and A.APPLET are assumptions specific to the Java Card platform and they
do no conflict with the assumptions of [ST-IC].

A.SID, A.FIREWALL-ENV, A.GLOBAL_ARRAYS_CONFID, A.OPERATE-ENV, A.REALLOCATION,
A.RESOURCES, A.ALARM-ENV, A.CIPHER, A.KEY-MNGT, A.PIN-MNGT, A.TRANSACTION, A.OBJ-
DELETION, A.DELETION, A.LOAD and A.INSTALL-ENV are assumptions added in order to manage the
corresponding OSP.

We can therefore conclude that the assumptions for the environment of this ST and [ST-IC] are consistent.

Regarding the assumptions of [ST-IC], the TOE is part of the JCS defined in [ST_MultiAppV4] which is
composed with the IC defined in [ST-IC]. The compatibility is hence justified in [ST_MultiAppV4].

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 29 / 61

6 SECURITY OBJECTIVES

6.1 SECURITY OBJECTIVES FOR THE TOE

This section defines the security objectives to be achieved by the TOE.

6.1.1 Execution

O.FIREWALL
The TOE shall ensure controlled sharing of data containers owned by applets of different packages, or
the JCRE and between applets and the TSFs. See #.FIREWALL for details.

Application note:

With respect to [PP-JCS-Open], this objective is for the components of the JCS included in this TOE, i.e.
interpreter, linker and Native API. This objective is not for the following out-of-TOE components of the JCS:

 Applet selection/deletion/loading

 Object deletion

 JCRMI

that are part of the TOE environment.

O.GLOBAL_ARRAYS_INTEG
The TOE shall ensure that only the currently selected applications may have a write access to the APDU
buffer and the global byte array used for the invocation of the install method of the selected applet.

O.NATIVE

The only means that the Java Card VM shall provide for an application to execute native code is the
invocation of a method of the Java Card API, or any additional API. See #.NATIVE for details.

O.OPERATE

The card manager must ensure continued correct operation of its security functions. See #.OPERATE for
details.

Application note:
With respect to [PP-JCS-Open], this objective is for the components of the JCS included in this TOE, i.e.
interpreter, linker and Native API. This objective is not for the following out-of-TOE components of the JCS:

 Applet selection/deletion/loading

 Object deletion

that are part of the TOE environment.

6.1.2 Services

O.ALARM

The TOE shall provide appropriate feedback information upon detection of a potential security violation.
See #.ALARM for details.

Application note:
With respect to [PP-JCS], this objective is for the components of the JCS included in this TOE, i.e.
interpreter, linker and Native API. This objective is not for the following out-of-TOE components of the JCS:

 Applet selection/deletion/loading

 Object deletion

that are part of the TOE environment.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 30 / 61

6.1.3 Applet Management

O.INSTALL

The TOE shall ensure that the installation of an applet performs as expected. See #.INSTALL (in [PP-JCS])
for details.

Application note:
With respect to [PP-JCS], this objective is for the components of the JCS included in this TOE, i.e.
interpreter, linker and Native API. This objective is not for the following out-of-TOE components of the JCS:

 Applet selection/deletion/loading

 Object deletion

that are part of the TOE environment.

6.2 SECURITY OBJECTIVES FOR THE OPERATIONAL ENVIRONMENT

6.2.1 Objectives for the operational environment extracted from [PP-JCS-Open]

This section introduces the security objectives to be achieved by the environment and extracted from [PP-
JCS-Open].

OE.VERIFICATION

All the bytecodes shall be verified at least once, before the loading, before the installation or before the
execution, depending on the card capabilities, in order to ensure that each bytecode is valid at execution
time. See #.VERIFICATION for details.
Additionally the applet shall follow all recommendations, if any, mandated in the platform guidance for
maintaining the isolation property of the platform.
Application Note:
Constraints to maintain the isolation property of the platform are provided by the platform developer in
application development guidance. The constraints apply to all application code loaded in the platform.

OE.APPLET

No applet loaded post-issuance shall contain native methods.

OE.CODE-EVIDENCE

For application code loaded pre-issuance, evaluated technical measures implemented by the TOE or
audited organizational measures must ensure that loaded application has not been changed since the
code verifications required in OE.VERIFICATION.
For application code loaded post-issuance and verified off-card according to the requirements of
OE.VERIFICATION, the verification authority shall provide digital evidence to the TOE that the application
code has not been modified after the code verification and that he is the actor who performed code
verification.
For application code loaded post-issuance and partially or entirely verified on-card, technical measures
must ensure that the verification required in OE.VERIFICATION are performed. On-card bytecode verifier
is out of the scope of this Protection Profile.
Application Note:
For application code loaded post-issuance and verified off-card, the integrity and authenticity evidence
can be achieved by electronic signature of the application code, after code verification, by the actor who
performed verification.

OE.SCP.RECOVERY

If there is a loss of power, or if the smart card is withdrawn from the CAD while an operation is in progress,
the SCP must allow the TOE to eventually complete the interrupted operation successfully, or recover to
a consistent and secure state.
This security objective for the environment refers to the security aspect #.SCP.1: The smart card platform
must be secure with respect to the SFRs. Then after a power loss or sudden card removal prior to
completion of some communication protocol, the SCP will allow the TOE on the next power up to either
complete the interrupted operation or revert to a secure state.

OE.SCP.SUPPORT

This security objective for the environment refers to the security aspect #.SCP.2-5:

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 31 / 61

(2) It does not allow the TSFs to be bypassed or altered and does not allow access to other low-level
functions than those made available by the packages of the API. That includes the protection of its private
data and code (against disclosure or modification) from the Java Card System.
(3) It provides secure low-level cryptographic processing to the Java Card System.
(4) It supports the needs for any update to a single persistent object or class field to be atomic, and
possibly a low-level transaction mechanism.
(5) It allows the Java Card System to store data in "persistent technology memory" or in volatile memory,
depending on its needs (for instance, transient objects must not be stored in non-volatile memory). The
memory model is structured and allows for low-level control accesses (segmentation fault detection).

OE.SCP.IC

The SCP shall provide all IC security features against physical attacks.
This security objective for the environment refers to the point (7) of the security aspect #.SCP:
It is required that the IC is designed in accordance with a well-defined set of policies and Standards (likely
specified in another protection profile), and will be tamper resistant to actually prevent an attacker from
extracting or altering security data (like cryptographic keys) by using commonly employed techniques
(physical probing and sophisticated analysis of the chip). This especially matters to the management
(storage and operation) of cryptographic keys.

OE.CARD-MANAGEMENT

The card manager shall control the access to card management functions such as the installation, update
or deletion of applets. It shall also implement the card issuer's policy on the card.
The card manager is an application with specific rights, which is responsible for the administration of the
smart card. This component will in practice be tightly connected with the TOE, which in turn shall very
likely rely on the card manager for the effective enforcing of some of its security functions. Typically the
card manager shall be in charge of the life cycle of the whole card, as well as that of the installed
applications (applets). The card manager should prevent that card content management (loading,
installation, deletion) is carried out, for instance, at invalid states of the card or by non-authorized actors.
It shall also enforce security policies established by the card issuer.

6.2.2 Additional security objectives for the operational environment

6.2.2.1 Identification

OE.SID
The Applet selection component shall uniquely identify every subject (applet, or package) before granting
it access to any service.

6.2.2.2 Execution

OE.FIREWALL-ENV

The controlled sharing of data containers owned by applets of different packages, or the JCRE and between
applets and the TSFs shall be ensured by the following components:

 Applet selection/deletion/loading

 Object deletion

 JCRMI

OE.GLOBAL_ARRAYS_CONFID

The Applet selection/deselection component shall ensure that the APDU buffer that is shared by all
applications is always cleaned upon applet selection.
The TOE shall ensure that the global byte array used for the invocation of the install method of the selected
applet is always cleaned after the return from the install method.

OE.OPERATE-ENV
The continued correct operation of the TOE security functions shall be ensured in the following (out-of-
TOE) components:

 Applet selection/deletion/loading

 Object deletion

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 32 / 61

OE.REALLOCATION
The corresponding part of the JCS shall ensure that the re-allocation of a memory block for the runtime
areas of the Java Card VM does not disclose any information that was previously stored in that block.

Application note:
To be made unavailable means to be physically erased with a default value. Except for local variables
that do not correspond to method parameters, the default values to be used are specified in [JCVM222].

OE.RESOURCES

The JCS shall control the availability of resources for the applications. See #.RESOURCES for details.

6.2.2.3 Services

OE.ALARM-ENV
The appropriate feedback information upon detection of a potential security violation shall be provided in
the following (out-of-TOE) components:

 Applet deletion/loading

 Object deletion

OE.CIPHER

The cryptographic API shall provide a means to cipher sensitive data for applications in a secure way. In
particular, the TOE must support cryptographic algorithms consistent with cryptographic usage policies
and standards. See #.CIPHER for details.

OE.KEY-MNGT

The cryptographic API shall provide a means to securely manage cryptographic keys. This concerns the
correct generation, distribution, access and destruction of cryptographic keys. See #.KEY-MNGT.

Application note:
OE.KEY-MNGT, OE.PIN-MNGT, OE.TRANSACTION and OE.CIPHER are actually provided to applets
in the form of Java Card APIs. Vendor-specific libraries can also be present on the card and made
available to applets; those may be built on top of the Java Card API or independently. Depending on
whether they contain native code or not, these proprietary libraries will need to be evaluated together with
the TOE or not (see #.NATIVE). In any case, they are not included in the Java Card System for the
purpose of the present document.

OE.PIN-MNGT

The JCS shall provide a means to securely manage PIN objects. See #.PIN-MNGT for details.
Application note:
PIN objects may play key roles in the security architecture of client applications. The way they are stored
and managed in the memory of the smart card must be carefully considered, and this applies to the whole
object rather than the sole value of the PIN. For instance, the try counter's value is as sensitive as that of
the PIN.

OE.TRANSACTION

The JCS must provide a means to execute a set of operations atomically. See #.TRANSACTION for
details.

6.2.2.4 Object deletion

OE.OBJ-DELETION
The Object Deletion component shall ensure the object deletion shall not break references to objects. See
#.OBJ-DELETION for further details.

6.2.2.5 Applet management

OE.DELETION
The Applet deletion component shall ensure that both applet and package deletion perform as expected.
(See #.DELETION for details).

OE.LOAD

The Applet loading component shall ensure that the loading of a package into the card is safe.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 33 / 61

Besides, for codes loaded post-issuance, the TOE shall verify the integrity and authenticity evidences
generated during the verification of the application package by the verification authority. This verification
by the TOE shall occur during the load or late during the install process.

OE.INSTALL-ENV

The installation of an applet shall be performed as expected in the following (out-of-TOE) components:

 Applet deletion/loading

 Object deletion

6.2.2.6 Additional objectives

OE.SpecificAPI

The JCS shall provide to application a specific API means to optimize control on sensitive operations
performed by application.
JCS shall provide services for secure array management and to detect loss of data integrity and
inconsistent execution flow and react against tearing or fault induction.

OE.RND

The JCS must contribute to ensure that random numbers shall not be predictable and shall have sufficient
entropy.

6.3 SECURITY OBJECTIVES RATIONALE

O
.F

IR
E

W
A

L
L

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T
E

G

O
.N

A
T

IV
E

O
.O

P
E

R
A

T
E

O
.A

L
A

R
M

O
.I
N

S
T

A
L
L

O
E

.V
E

R
IF

IC
A

T
IO

N

O
E

.A
P

P
L
E

T

O
E

;C
O

D
E

_
E

V
ID

E
N

C
E

O
E

.S
C

P
.R

E
C

O
V

E
R

Y

O
E

.S
C

P
.S

U
P

P
O

R
T

O
E

.S
C

P
.I
C

O
E

.C
A

R
D

_
M

A
N

A
G

E
M

E
N

T

O
E

.S
ID

O
E

.F
IR

E
W

A
L
L
-E

N
V

O
E

.G
L
O

B
A

L
_

A
R

R
A

Y
S

_
C

O
N

F
ID

O
E

.O
P

E
R

A
T

E
-E

N
V

O
E

.R
E

A
L

L
O

C
A

T
IO

N

O
E

.R
E

S
O

U
R

C
E

S

O
E

.A
L
A

R
M

-E
N

V

O
E

.C
IP

H
E

R

O
E

.K
E

Y
-M

N
G

T

O
E

.P
IN

-M
N

G
T

O
E

.T
R

A
N

S
A

C
T

IO
N

O
E

.O
B

J
-D

E
L
E

T
IO

N

O
E

.D
E

L
E

T
IO

N

O
E

.L
O

A
D

O
E

.I
N

S
T

A
L

L
-E

N
V

O
E

.S
p
e
c
if
ic

A
P

I

O
E

.R
N

D

T.CONFID-JCS-CODE X X X

T.CONFID-APPLI-DATA X X X X X X X X X X X X X X

T.CONFID-JCS-DATA X X X X X X X X

T.INTEG-APPLI-CODE X X X X

T.INTEG-JCS-CODE X X X X

T.INTEG-APPLI-DATA X X X X X X X X X X X X X X X

T.INTEG-JCS-DATA X X X X X X X X X

T.INTEG-APPLI-CODE.LOAD X X X

T.INTEG-APPLI-DATA.LOAD X X X

T.SID.1 X X X X X X

T.SID.2 X X X X X X

T.EXE-CODE.1 X X

T.EXE-CODE.2 X

T.NATIVE X X X

T.RESOURCES X X X X X

T.INSTALL X X X

T.DELETION X X

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 34 / 61

O
.F

IR
E

W
A

L
L

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T
E

G

O
.N

A
T

IV
E

O
.O

P
E

R
A

T
E

O
.A

L
A

R
M

O
.I
N

S
T

A
L
L

O
E

.V
E

R
IF

IC
A

T
IO

N

O
E

.A
P

P
L
E

T

O
E

;C
O

D
E

_
E

V
ID

E
N

C
E

O
E

.S
C

P
.R

E
C

O
V

E
R

Y

O
E

.S
C

P
.S

U
P

P
O

R
T

O
E

.S
C

P
.I
C

O
E

.C
A

R
D

_
M

A
N

A
G

E
M

E
N

T

O
E

.S
ID

O
E

.F
IR

E
W

A
L
L
-E

N
V

O
E

.G
L
O

B
A

L
_

A
R

R
A

Y
S

_
C

O
N

F
ID

O
E

.O
P

E
R

A
T

E
-E

N
V

O
E

.R
E

A
L

L
O

C
A

T
IO

N

O
E

.R
E

S
O

U
R

C
E

S

O
E

.A
L
A

R
M

-E
N

V

O
E

.C
IP

H
E

R

O
E

.K
E

Y
-M

N
G

T

O
E

.P
IN

-M
N

G
T

O
E

.T
R

A
N

S
A

C
T

IO
N

O
E

.O
B

J
-D

E
L
E

T
IO

N

O
E

.D
E

L
E

T
IO

N

O
E

.L
O

A
D

O
E

.I
N

S
T

A
L

L
-E

N
V

O
E

.S
p
e
c
if
ic

A
P

I

O
E

.R
N

D

T.OBJ-DELETION X

T.PHYSICAL X

OSP.VERIFICATION X X

OSP.SpecificAPI X

OSP.RND X

A.APPLET X

A.DELETION X

A.VERIFICATION X X

A.SID X

A.FIREWALL-ENV X

A.GLOBAL_ARRAYS_CONFI
D

 X

A.OPERATE-ENV X

A.REALLOCATION X

A.RESOURCES X

A.ALARM-ENV X

A.CIPHER X

A.KEY-MNGT X

A.PIN-MNGT X

A.TRANSACTION X

A.OBJ-DELETION X

A.DELETION X

A.LOAD X

A.INSTALL-ENV X

6.3.1 Threats

6.3.1.1 Confidentiality

T.CONFID-JCS-CODE This threat is countered by the list of properties described in the (#.VERIFICATION)

security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform
is used for its intended purpose and in the intended scope of accessibility. As none of those instructions
enables reading a piece of code, no Java Card applet can therefore be executed to disclose a piece of
code. Native applications are also harmless because of the objective (O.NATIVE), so no application can
be run to disclose a piece of code.
The (#.VERIFICATION) security aspect is addressed in this ST by the objective for the environment
OE.VERIFICATION.
The environmental objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 35 / 61

T.CONFID-APPLI-DATA This threat is countered by the security objective for the operational environment
regarding bytecode verification (OE.VERIFICATION). It is also covered by the isolation commitments stated
in the (O.FIREWALL) objective. It relies in its turn on the correct identification of applets stated in (OE.SID).
Moreover, as the firewall is dynamically enforced, it shall never stop operating, as stated in the
(O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The environmental objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The environmental objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these
latter objectives contribute to counter.
As applets may need to share some data or communicate with the CAD, cryptographic functions are
required to actually protect the exchanged information (OE.CIPHER). Remark that even if the TOE shall
provide access to the appropriate TSFs, it is still the responsibility of the applets to use them. Keys, PIN's
are particular cases of an application's sensitive data (the Java Card System may possess keys as well)
that ask for appropriate management (OE.KEY-MNGT, OE.PIN-MNGT, OE.TRANSACTION). If the PIN
class of the Java Card API is used, the objective (O.FIREWALL) shall contribute in covering this threat by
controlling the sharing of the global PIN between the applets.
Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a resource
shared by all applications. The disclosure of such data is prevented by the
(OE.GLOBAL_ARRAYS_CONFID) environmental security objective.
Finally, any attempt to read a piece of information that was previously used by an application but has been
logically deleted is countered by the OE.REALLOCATION environmental objective. That objective states
that any information that was formerly stored in a memory block shall be cleared before the block is reused.

T.CONFID-JCS-DATA This threat is covered by bytecode verification (OE.VERIFICATION) and the isolation

commitments stated in the (O.FIREWALL) security objective. This latter objective also relies in its turn on
the correct identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it
shall never stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The environmental objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The environmental objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these
latter objectives contribute to counter.

6.3.1.2 Integrity

T.INTEG-APPLI-CODE This threat is countered by the list of properties described in the (#.VERIFICATION)
security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform
is used for its intended purpose and in the intended scope of accessibility. As none of these instructions
enables modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of
code. Native applications are also harmless because of the environmental objective (O.NATIVE), so no
application can be run to modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the
environment OE.VERIFICATION.
The environmental objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this
threat by controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that integrity and
authenticity evidences exist for the application code loaded into the platform.

T.INTEG-JCS-CODE This threat is countered by the list of properties described in the (#.VERIFICATION)

security aspect. Bytecode verification ensures that each of the instructions used on the Java Card platform
is used for its intended purpose and in the intended scope of accessibility. As none of these instructions
enables modifying a piece of code, no Java Card applet can therefore be executed to modify a piece of
code. Native applications are also harmless because of the objective (O.NATIVE), so no application can
be run to disclose or modify a piece of code.
The (#.VERIFICATION) security aspect is addressed in this configuration by the objective for the
environment OE.VERIFICATION.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 36 / 61

The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity.

T.INTEG-APPLI-DATA This threat is countered by bytecode verification (OE.VERIFICATION) and the

isolation commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on
the correct identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it
shall never stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and

authenticity. The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these
latter objectives contribute to counter.
Concerning the confidentiality and integrity of application sensitive data, as applets may need to share
some data or communicate with the CAD, cryptographic functions are required to actually protect the
exchanged information (OE.CIPHER). Remark that even if the TOE shall provide access to the appropriate
TSFs, it is still the responsibility of the applets to use them. Keys and PIN's are particular cases of an
application's sensitive data (the Java Card System may possess keys as well) that ask for appropriate
management (OE.KEY-MNGT, OE.PIN-MNGT, OE.TRANSACTION). If the PIN class of the Java Card API
is used, the objective (O.FIREWALL) is also concerned.
Other application data that is sent to the applet as clear text arrives to the APDU buffer, which is a resource
shared by all applications. The integrity of the information stored in that buffer is ensured by the
(OE.GLOBAL_ARRAYS_INTEG) objective.
Finally, any attempt to read a piece of information that was previously used by an application but has been
logically deleted is countered by the OE.REALLOCATION objective. That objective states that any
information that was formerly stored in a memory block shall be cleared before the block is reused.

T.INTEG-JCS-DATA This threat is countered by bytecode verification (OE.VERIFICATION) and the isolation

commitments stated in the (O.FIREWALL) objective. This latter objective also relies in its turn on the correct
identification of applets stated in (OE.SID). Moreover, as the firewall is dynamically enforced, it shall never
stop operating, as stated in the (O.OPERATE) objective.
As the firewall is a software tool automating critical controls, the objective O.ALARM asks for it to provide
clear warning and error messages, so that the appropriate counter-measure can be taken.
The objectives OE.CARD_MANAGEMENT and OE.VERIFICATION contribute to cover this threat by
controlling the access to card management functions and by checking the bytecode, respectively.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity.
The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the O.OPERATE
and O.ALARM objectives of the TOE, so they are indirectly related to the threats that these latter objectives
contribute to counter.

T.INTEG-APPLI-CODE.LOAD This threat is countered by the security objective OE.LOAD which ensures that

the loading of packages is done securely and thus preserves the integrity of packages code.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity. By controlling the access to card management functions such as the installation, update or
deletion of applets the objective OE.CARD_MANAGEMENT contributes to cover this threat.

T.INTEG-APPLI-DATA.LOAD This threat is countered by the security objective OE.LOAD which ensures that

the loading of packages is done securely and thus preserves the integrity of applications data.
The objective OE.CODE-EVIDENCE contributes to cover this threat by ensuring that the application code
loaded into the platform has not been changed after code verification, which ensures code integrity and
authenticity by controlling the access to card management functions such as the installation, update or
deletion of applets the objective OE.CARD_MANAGEMENT contributes to cover this threat.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 37 / 61

6.3.1.3 Identity usurpation

T.SID.1 As impersonation is usually the result of successfully disclosing and modifying some assets, this threat
is mainly countered by the objectives concerning the isolation of application data (like PINs), ensured by
the (O.FIREWALL). Uniqueness of subject-identity (OE.SID) also participates to face this threat. It should
be noticed that the AIDs, which are used for applet identification, are TSF data.
In this configuration, usurpation of identity resulting from a malicious installation of an applet on the card is
covered by the objective O.INSTALL.
The installation parameters of an applet (like its name) are loaded into a global array that is also shared by
all the applications. The disclosure of those parameters (which could be used to impersonate the applet) is
countered by the objective (OE.GLOBAL_ARRAYS_CONFID) and (O.GLOBAL_ARRAYS_INTEG).
The objective OE.CARD_MANAGEMENT contributes, by preventing usurpation of identity resulting from a
malicious installation of an applet on the card, to counter this threat.

T.SID.2 This is covered by integrity of TSF data, subject-identification (OE.SID), the firewall (O.FIREWALL)

and its good working order (O.OPERATE).
The objective O.INSTALL contributes to counter this threat by ensuring that installing an applet has no
effect on the state of other applets and thus can't change the TOE's attribution of privileged roles.
The objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the O.OPERATE
objective of the TOE, so they are indirectly related to the threats that this latter objective contributes to
counter.

6.3.1.4 Unauthorized execution

T.EXE-CODE.1 Unauthorized execution of a method is prevented by the objective OE.VERIFICATION. This
threat particularly concerns the point (8) of the security aspect #VERIFICATION (access modifiers and
scope of accessibility for classes, fields and methods). The O.FIREWALL objective is also concerned,
because it prevents the execution of non-shareable methods of a class instance by any subject apart from
the class instance owner.

T.EXE-CODE.2 Unauthorized execution of a method fragment or arbitrary data is prevented by the objective

OE.VERIFICATION. This threat particularly concerns those points of the security aspect related to control
flow confinement and the validity of the method references used in the bytecodes.

T.NATIVE This threat is countered by O.NATIVE which ensures that a Java Card applet can only access native

methods indirectly that is, through an API. OE.APPLET also covers this threat by ensuring that no native
applets shall be loaded in post-issuance. In addition to this, the bytecode verifier also prevents the program
counter of an applet to jump into a piece of native code by confining the control flow to the currently executed
method (OE.VERIFICATION).

6.3.1.5 Denial of service

T.RESOURCES This threat is directly countered by objectives on resource-management (OE.RESOURCES)
for runtime purposes and good working order (O.OPERATE) in a general manner.
Consumption of resources during installation and other card management operations are covered, in case
of failure, by O.INSTALL.
It should be noticed that, for what relates to CPU usage, the Java Card platform is single-threaded and it is
possible for an ill-formed application (either native or not) to monopolize the CPU. However, a smart card
can be physically interrupted (card removal or hardware reset) and most CADs implement a timeout policy
that prevent them from being blocked should a card fails to answer. That point is out of scope of this Security
Target, though.
Finally, the objectives OE.SCP.RECOVERY and OE.SCP.SUPPORT are intended to support the
O.OPERATE and OE.RESOURCES objectives of the TOE, so they are indirectly related to the threats that
these latter objectives contribute to counter.

6.3.1.6 Card management

T.INSTALL This threat is covered by the security objective O.INSTALL which ensures that the installation of
an applet performs as expected and the security objectives OE.LOAD which ensures that the loading of a
package into the card is safe.
The objective OE.CARD_MANAGEMENT controls the access to card management functions and thus
contributes to cover this threat.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 38 / 61

T.DELETION This threat is covered by the OE.DELETION security objective which ensures that both applet
and package deletion perform as expected.
The objective OE.CARD_MANAGEMENT controls the access to card management functions and thus
contributes to cover this threat.

6.3.1.7 Services

T.OBJ-DELETION This threat is covered by the OE.OBJ-DELETION security objective which ensures that
object deletion shall not break references to objects.

6.3.1.8 Miscellaneous

T.PHYSICAL Covered by OE.SCP.IC. Physical protections rely on the underlying platform and are therefore
an environmental issue.

6.3.2 Organizational Security Policies

6.3.2.1 Java Card System Protection Profile – Open Configuration

OSP.VERIFICATION This policy is upheld by the security objective of the environment OE.VERIFICATION
which guarantees that all the bytecodes shall be verified at least once, before the loading, before the
installation or before the execution in order to ensure that each bytecode is valid at execution time.

This policy is also upheld by the security objective of the environment OE.CODE-EVIDENCE which ensures
that evidences exist that the application code has been verified and not changed after verification.

6.3.2.2 Additional

OSP.SpecificAPI This OSP is enforced by the TOE security objective OE.SpecificAPI.

OSP.RND This OSP is enforced by the TOE security objective OE.RND.

6.3.3 Assumptions

6.3.3.1 Java Card System Protection Profile – Open Configuration

A.APPLET This assumption is upheld by the security objective for the operational environment OE.APPLET
which ensures that no applet loaded post-issuance shall contain native methods.

A.DELETION This assumption is upheld by the environmental objective OE.CARD_MANAGEMENT which

controls the access to card management functions such as deletion of applets.

A.VERIFICATION This assumption is upheld by the security objective on the operational environment

OE.VERIFICATION which guarantees that all the bytecodes shall be verified at least once, before the
loading, before the installation or before the execution in order to ensure that each bytecode is valid at
execution time.
This assumption is also upheld by the security objective of the environment OE.CODE-EVIDENCE which
ensures that evidences exist that the application code has been verified and not changed after verification.

6.3.3.2 Additional

A.SID This assumption is upheld by the environmental objective OE.SID.

A.FIREWALL-ENV This assumption is upheld by OE.FIREWALL-ENV.

A.GLOBAL_ARRAYS_CONFID This assumption is upheld by the environmental objective
OE.GLOBAL_ARRAYS_CONFID.

A.OPERATE-ENV This assumption is upheld by the environmental objective OE.OPERATE-ENV.

A.REALLOCATION This assumption is upheld by the environmental objective OE.REALLOCATION.

A.RESOURCES This assumption is upheld by the environmental objective OE.RESOURCES.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 39 / 61

A.ALARM-ENV This assumption is upheld by the environmental objective OE.ALARM-ENV.

A.CIPHER This assumption is upheld by the environmental objective OE.CIPHER.

A.KEY-MNGT This assumption is upheld by the environmental objective OE.KEY-MNGT.

A.PIN-MNGT This assumption is upheld by the environmental objective OE.PIN-MNGT.

A.TRANSACTION This assumption is upheld by the environmental objective OE.TRANSACTION.

A.OBJ-DELETION This assumption is upheld by the environmental objective OE.OBJ-DELETION.

A.DELETION This assumption is upheld by the environmental objective OE.DELETION.

A.LOAD This assumption is upheld by the environmental objective OE.LOAD.

A.INSTALL-ENV This assumption is upheld by the environmental objective OE.INSTALL-ENV.

6.3.4 Compatibility with the objectives of [ST-IC]

6.3.4.1 Compatibility between objectives for the TOE

O.SID, O.OPERATE, O.RESOURCES, O.FIREWALL, O.NATIVE, O.REALLOCATION,
O.GLOBAL_ARRAYS_CONFID, O.GLOBAL_ARRAYS_INTEG, O.ALARM; O.TRANSACTION, O.PIN-
MNGT, O.KEY-MNGT, O.OBJ-DELETION, O.INSTALL, O.LOAD, O.DELETION, O.CARD-MANAGEMENT,
and O.SCP.RECOVERY are objectives specific to the Java Card platform and they do no conflict with the
objectives of [ST-IC].
O.SpecificAPI is objective added to this platform it does no conflict with the objectives of [ST-IC].
O.RND added to this platform is included in the following objectives of [ST-IC]: O.RND
O.CIPHER is included in the following objectives of [ST-IC]: O.RND and O.Add-Functions.
O.SCP.SUPPORT is partially included in the following objectives of [ST-IC]: O.RND and O.Add-Functions.
O.SCP.IC is included in the following objectives of [ST-IC]: O.Phys-Manipulation, O.Phys-Probing,
O.Malfunction O.Leak-Inherent O.Leak-Forced O.Abuse-Func.

We can therefore conclude that the objectives for the TOE of this ST and [ST-IC] are consistent.

6.3.4.2 Compatibility between objectives for the environment

OE.VERIFICATION, OE.CODE-EVIDENCE and OE.Applet are objectives specific to the Java Card platform
and they do no conflict with the objectives of [ST-IC].
We can therefore conclude that the objectives for the environment of this ST and [ST-IC] are consistent

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 40 / 61

7 SECURITY REQUIREMENTS

7.1 SECURITY FUNCTIONAL REQUIREMENTS

This section states the security functional requirements for the TOE.

Group Description

Core with Logical
Channels (CoreG_LC)

The CoreG_LC contains the requirements concerning the runtime environment of the
Java Card System implementing logical channels. This includes the firewall policy and
the requirements related to the Java Card API. Logical channels are a Java Card
specification version 2.2 feature. This group is the union of requirements from the Core
(CoreG) and the Logical channels (LCG) groups defined in [PP/0305].

(cf Java Card Sysytem Protection Profile Collection [PP JCS]).

Installation (InstG) The InstG contains the security requirements concerning the installation of post-issuance
applications. It does not address card management issues in the broad sense, but only
those security aspects of the installation procedure that are related to applet execution.

The SFRs refer to all potentially applicable subjects, objects, information, operations and security attributes.

Subjects are active components of the TOE that (essentially) act on the behalf of users. The users of the TOE
include people or institutions (like the applet developer, the card issuer, the verification authority), hardware
(like the CAD where the card is inserted or the PCD) and software components (like the application packages
installed on the card). Some of the users may just be aliases for other users. For instance, the verification
authority in charge of the bytecode verification of the applications may be just an alias for the card issuer.
Subjects (prefixed with an "S") are described in the following table:

Subject Description

S.JCRE

S.JCVM The bytecode interpreter that enforces the firewall at runtime.

S.LOCAL Operand stack of a JCVM frame, or local variable of a JCVM frame containing an
object or an array of references.

S.MEMBER Any object's field, static field or array position.

S.PACKAGE A package is a namespace within the Java programming language that may contain
classes and interfaces, and in the context of Java Card technology, it defines either a
user library, or one or several applets.

S.APPLET Any applet instance.

Objects (prefixed with an "O") are described in the following table:

Object Description

O.APPLET Any installed applet, its code and data.

O.JAVAOBJECT Java class instance or array. It should be noticed that KEYS, PIN, arrays and applet
instances are specific objects in the Java programming language.

Information (prefixed with an "I") is described in the following table:

Information Description

I.DATA JCVM Reference Data: objectref addresses of APDU buffer, JCRE-owned instances
of APDU class and byte array for install method

Security attributes linked to these subjects, objects and information are described in the following table with
their values (used in enforcing the SFRs):

Security attribute Description/Value

Active Applets The set of the active applets' AIDs. An active applet is an applet that is selected on
at least one of the logical channels.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 41 / 61

Security attribute Description/Value

Applet Selection Status "Selected" or "Deselected"

Applet's version number The version number of an applet (package) indicated in the export file

Class Identifies the implementation class of the remote object.

Context Package AID, or "Java Card RE"

Currently Active Context Package AID, or "Java Card RE"

Dependent package AID Allows the retrieval of the Package AID and Applet's version number ([JCVM222],
§4.5.2).

ExportedInfo Boolean (Indicates whether the remote object is exportable or not).

Identifier The Identifier of a remote object or method is a number that uniquely identifies a
remote object or method, respectively.

LC Selection Status Multiselectable, Non-multiselectable or "None".

LifeTime CLEAR_ON_DESELECT or PERSISTENT (*).

Owner The Owner of an object is either the applet instance that created the object or the
package (library) where it has been defined (these latter objects can only be arrays
that initialize static fields of the package). The owner of a remote object is the applet
instance that created the object.

Package AID The AID of each package indicated in the export file

Registered applets The set of AID of the applet instance registered on the card

ResidentPackages The set of AIDs of the packages already loaded on the card

Selected Applet Context Package AID, or "None"

Sharing Standards, SIO, Java Card RE entry point, or global array

Static References Static fields of a package may contain references to objects. The Static References
attribute records those references.

(*) Transient objects of type CLEAR_ON_RESET behave like persistent objects in that they can be accessed
only when the Currently Active Context is the object's context.
Operations (prefixed with "OP") are described in the following table. Each operation has a specific number of
parameters given between brackets, among which there is the "accessed object", the first one, when
applicable. Parameters may be seen as security attributes that are under the control of the subject performing
the operation.

Operation Description

OP.ARRAY_ACCESS(O.JAVAOBJECT, field) Read/Write an array component.

OP.INSTANCE_FIELD(O.JAVAOBJECT, field) Read/Write a field of an instance of a class in the Java
programming language

OP.INVK_VIRTUAL(O.JAVAOBJECT, method, arg1,...) Invoke a virtual method (either on a class instance or
an array object)

OP.INVK_INTERFACE(O.JAVAOBJECT, method,
arg1,...)

Invoke an interface method.

OP.JAVA(...) Any access in the sense of [JCRE222], §6.2.8. It stands
for one of the operations OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD,

OP.INVK_VIRTUAL, OP.INVK_INTERFACE,
OP.THROW, OP.TYPE_ACCESS.

OP.PUT(S1,S2,I) Transfer a piece of information I from S1 to S2.

OP.THROW(O.JAVAOBJECT) Throwing of an object (athrow, see
[JCRE222],§6.2.8.7)

OP.TYPE_ACCESS(O.JAVAOBJECT, class) Invoke checkcast or instanceof on an object in order to
access to classes (standard or shareable interfaces
objects).

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 42 / 61

Operation Description

OP.CREATE(Sharing, LifeTime) (*) Creation of an object (new or makeTransient call).

OP.PUT(S1,S2,I) Transfer a piece of information I from S1 to S2.

(*) For this operation, there is no accessed object. This rule enforces that shareable transient objects are not
allowed. For instance, during the creation of an object, the JavaCardClass attribute's value is chosen by the
creator.

7.1.1 CoreG_LC Security Functional Requirements

This group is focused on the main security policy of the Java Card System, known as the firewall. This policy
essentially concerns the security of installed applets. The policy focuses on the execution of bytecodes.

7.1.1.1 Firewall Policy

FDP_ACC.2/FIREWALL Complete access control

FDP_ACC.2.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP on S.PACKAGE,

S.JCRE, S.JCVM, O.JAVAOBJECT and all operations among subjects and objects covered by the SFP.

Refinement:
The operations involved in the policy are:

 OP.CREATE,

 OP.INVK_INTERFACE,

 OP.INVK_VIRTUAL,

 OP.JAVA,

 OP.THROW,

 OP.TYPE_ACCESS.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject controlled by the
TSF and any object controlled by the TSF are covered by an access control SFP.
Application note:
Accessing array's components of a static array, and more generally fields and methods of static objects,
is an access to the corresponding O.JAVAOBJECT.

FDP_ACF.1/FIREWALL Security attribute based access control

FDP_ACF.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to objects based on

the following:

Subject/Object Attributes

S.PACKAGE LC Applet Selection Status

S.JCVM ActiveApplets, Currently Active Context

S.JCRE Selected Applet Context

O.JAVAOBJECT Sharing, Context, LifeTime

FDP_ACF.1.2/FIREWALL The TSF shall enforce the following rules to determine if an operation among

controlled subjects and controlled objects is allowed:

 R.JAVA.1 ([JCRE222], §6.2.8) An S.PACKAGE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE, OP.THROW or
OP.TYPE_ACCESS upon any O.JAVAOBJECT whose Sharing attribute has value "JCRE entry point"
or "global array".

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 43 / 61

 R.JAVA.2 ([JCRE222], §6.2.8) An S.PACKAGE may freely perform any of OP.ARRAY_ACCESS,
OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE or OP.THROW upon any
O.JAVAOBJECT whose Sharing attribute has value "Standard" and whose Lifetime attribute has value
"PERSISTENT" only if O.JAVAOBJECT's Context attribute has the same value as the active context.

 R.JAVA.3 ([JCRE222]§6.2.8.10) An S.PACKAGE may perform OP.TYPE_ACCESS upon an
O.JAVAOBJECT whose Sharing attribute has value "SIO" only if O.JAVAOBJECT is being cast into
(checkcast) or is being verified as being an instance of (instanceof) an interface that extends the
Shareable interface.

 R.JAVA.4 ([JCRE222], §6.2.8.6,) An S.PACKAGE may perform OP.INVK_INTERFACE upon an
O.JAVAOBJECT whose Sharing attribute has the value "SIO", and whose Context attribute has the
value "Package AID", only if the invoked interface method extends the Shareable interface and one of
the following applies:

(a) The value of the attribute Selection Status of the package whose AID is "Package AID" is
"Multiselectable»,

(b) The value of the attribute Selection Status of the package whose AID is "Package AID' is "Non-
multiselectable», and either "Package AID" is the value of the currently selected applet or
otherwise "Package AID" does not occur in the attribute ActiveApplets.

 R.JAVA.5 An S.PACKAGE may perform an OP.CREATE only if the value of the Sharing parameter(*)
is "Standard".

FDP_ACF.1.3/FIREWALL The TSF shall explicitly authorize access of subjects to objects based on the

following additional rules:

1) The subject S.JCRE can freely perform OP.JAVA(...) and OP.CREATE, with the exception
given in FDP_ACF.1.4/FIREWALL, provided it is the Currently Active Context.

2) The only means that the subject S.JCVM shall provide for an application to execute native
code is the invocation of a Java Card API method (through OP.INVK_INTERFACE or
OP.INVK_VIRTUAL).

FDP_ACF.1.4/FIREWALL The TSF shall explicitly deny access of subjects to objects based on the following

additional rules:

1) Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute has value
"CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is not the same as the
Selected Applet Context.

2) Any subject attempting to create an object by the means of OP.CREATE and a
"CLEAR_ON_DESELECT" LifeTime parameter if the active context is not the same as the
Selected Applet Context.

Application note:
In the case of an array type, fields are components of the array ([JVM], §2.14, §2.7.7), as well as the
length; the only methods of an array object are those inherited from the Object class.
The Sharing attribute defines four categories of objects:

 • Standard ones, whose both fields and methods are under the firewall policy,
 • Shareable interface Objects (SIO), which provide a secure mechanism for inter-applet

communication,
 • JCRE entry points (Temporary or Permanent), who have freely accessible methods but protected

fields,
 • Global arrays, having both unprotected fields (including components; refer to JavaCardClass

discussion above) and methods.

When a new object is created, it is associated with the Currently Active Context. But the object is owned
by the applet instance within the Currently Active Context when the object is instantiated ([JCRE222],
§6.1.3). An object is owned by an applet instance, by the JCRE or by the package library where it has
been defined (these latter objects can only be arrays that initialize static fields of packages).

([JCRE222], Glossary) Selected Applet Context. The Java Card RE keeps track of the currently selected
Java Card applet. Upon receiving a SELECT command with this applet's AID, the Java Card RE makes

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 44 / 61

this applet the Selected Applet Context. The Java Card RE sends all APDU commands to the Selected
Applet Context.
While the expression "Selected Applet Context" refers to a specific installed applet, the relevant aspect
to the policy is the context (package AID) of the selected applet. In this policy, the "Selected Applet
Context" is the AID of the selected package.
([JCRE222], §6.1.2.1) At any point in time, there is only one active context within the Java Card VM (this
is called the Currently Active Context).

The invocation of static methods (or access to a static field) is not considered by this policy, as there are
no firewall rules. They have no effect on the active context as well and the "acting package" is not the one
to which the static method belongs to in this case.

The Java Card platform, version 2.2.x introduces the possibility for an applet instance to be selected on
multiple logical channels at the same time, or accepting other applets belonging to the same package
being selected simultaneously. These applets are referred to as multiselectable applets. Applets that
belong to a same package are either all multiselectable or not ([JCVM222], §2.2.5). Therefore, the
selection mode can be regarded as an attribute of packages. No selection mode is defined for a library
package.

An applet instance will be considered an active applet instance if it is currently selected in at least one
logical channel. An applet instance is the currently selected applet instance only if it is processing the
current command. There can only be one currently selected applet instance at a given time. ([JCRE222],
§4).

FDP_IFC.1/JCVM Subset information flow control

FDP_IFC.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP on S.JCVM, S.LOCAL,
S.MEMBER, I.DATA and OP.PUT (S1, S2, I).

Application note:
References of temporary Java Card RE entry points, which cannot be stored in class variables, instance
variables or array components, are transferred from the internal memory of the Java Card RE (TSF data) to
some stack through specific APIs (Java Card RE owned exceptions) or Java Card RE invoked methods (such
as the process (APDU apdu)); these are causes of OP.PUT (S1, S2, I) operations as well.

FDP_IFF.1/JCVM Simple security attributes

FDP_IFF.1.1/JCVM The TSF shall enforce the JCVM information flow control SFP based on the following
types of subject and information security attributes:

Subject / Information Description

S.JCVM Currently active context.

FDP_IFF.1.2/JCVM The TSF shall permit an information flow between a controlled subject and controlled
information via a controlled operation if the following rules hold:

 An operation OP.PUT (S1, S.MEMBER, I) is allowed if and only if the active context is "Java
Card RE";

 Other OP.PUT operations are allowed regardless of the Currently Active Context's value.

FDP_IFF.1.3/JCVM The TSF shall enforce no additional information flow control SFP rules.

FDP_IFF.1.4/JCVM The TSF shall explicitly authorize an information flow based on the following rules: no
additional information flow control SFP rules.

FDP_IFF.1.5/JCVM The TSF shall explicitly deny an information flow based on the following rules: no
additional information flow control SFP rules.

Application note:

The storage of temporary Java Card RE-owned objects references is runtime-enforced ([JCRE22], §6.2.8.1-
3).

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 45 / 61

It should be noticed that this policy essentially applies to the execution of bytecode. Native methods, the Java
Card RE itself and possibly some API methods can be granted specific rights or limitations through the
FDP_IFF.1.3/JCVM to FDP_IFF.1.5/JCVM elements. The way the Java Card virtual machine manages the
transfer of values on the stack and local variables (returned values, uncaught exceptions) from and to internal
registers is implementation-dependent. For instance, a returned reference, depending on the implementation
of the stack frame, may transit through an internal register prior to being pushed on the stack of the invoker.
The returned bytecode would cause more than one OP.PUT operation under this scheme.

FMT_MSA.1/JCRE Management of security attributes

FMT_MSA.1.1/JCRE The TSF shall enforce the FIREWALL access control SFP to restrict the ability to
modify the security attributes the selected applet Context security attribute to the Java Card RE (S.JCRE).
Application note:
The modification of the Selected Applet Context is performed in accordance with the rules given in [JCRE222],
§4 and [JCVM222], §3.4.

FMT_MSA.1/JCVM Management of security attributes

FMT_MSA.1.1/JCVM The TSF shall enforce the FIREWALL access control SFP and the JCVM information
flow control SFP to restrict the ability to modify the security attributes the currently active context and the
Active Applets security attributes to the Java Card VM (S.JCVM).
Application note:
The modification of the Selected Applet Context is performed in accordance with the rules given in [JCRE222],
§4 and [JCVM222], §3.4.

FMT_MSA.2/FIREWALL_JCVM Secure security attributes

FMT_MSA.2.1/FIREWALL_JCVM The TSF shall ensure that only secure values are accepted for all the
security attributes of subjects and objects defined in the FIREWALL access control SFP and the JCVM
information flow control SFP.

Application note:

The following rules are given as examples only. For instance, the last two rules are motivated by the fact that
the Java Card API defines only transient arrays factory methods. Future versions may allow the creation of
transient objects belonging to arbitrary classes; such evolution will naturally change the range of "secure
values" for this component.

 The Context attribute of an O.JAVAOBJECT must correspond to that of an installed applet or be "Java
Card RE".

 An O.JAVAOBJECT whose Sharing attribute is a Java Card RE entry point or a global array necessarily
has "Java Card RE" as the value for its Context security attribute.

 An O.JAVAOBJECT whose Sharing attribute value is a global array necessarily has "array of primitive
type" as a JavaCardClass security attribute's value.

 Any O.JAVAOBJECT whose Sharing attribute value is not "Standard" has a PERSISTENT-LifeTime
attribute's value.

 Any O.JAVAOBJECT whose LifeTime attribute value is not PERSISTENT has an array type as
JavaCardClass attribute's value.

FMT_MSA.3/FIREWALL Static attribute initialization

FMT_MSA.3.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/FIREWALL The TSF shall not allow any role to specify alternative initial values to override the
default values when an object or information is created.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 46 / 61

Application note:

FMT_MSA.3.1/FIREWALL

Objects' security attributes of the access control policy are created and initialized at the creation of the
object or the subject. Afterwards, these attributes are no longer mutable. At the creation of an object
(OP.CREATE), the newly created object, assuming that the FIREWALL access control SFP permits the
operation, gets its Lifetime and Sharing attributes from the parameters of the operation; on the contrary,
its Context attribute has a default value, which is its creator's Context attribute and AID respectively
([JCRE22], §6.1.3). There is one default value for the Selected Applet Context that is the default applet
identifier's Context, and one default value for the Currently Active Context that is "Java Card RE".

The knowledge of which reference corresponds to a temporary entry point object or a global array and
which does not is solely available to the Java Card RE (and the Java Card virtual machine).

FMT_MSA.3.2/FIREWALL

The intent is that none of the identified roles has privileges with regard to the default values of the security
attributes. It should be noticed that creation of objects is an operation controlled by the FIREWALL
access control SFP. The operation shall fail anyway if the created object would have had security
attributes whose value violates FMT_MSA.2.1/FIREWALL_JCVM.

FMT_MSA.3/JCVM Static attribute initialization

FMT_MSA.3.1/JCVM The TSF shall enforce the JCVM information flow control SFP to provide restrictive
default values for security attributes that are used to enforce the SFP.

FMT_MSA.3.2/JCVM The TSF shall not allow any role to specify alternative initial values to override the
default values when an object or information is created.

Application note:

FMT_MSA.3.1/FIREWALL

Objects' security attributes of the access control policy are created and initialized at the creation of the
object or the subject. Afterwards, these attributes are no longer mutable. At the creation of an object
(OP.CREATE), the newly created object, assuming that the FIREWALL access control SFP permits the
operation, gets its Lifetime and Sharing attributes from the parameters of the operation; on the contrary,
its Context attribute has a default value, which is its creator's Context attribute and AID respectively
([JCRE22], §6.1.3). There is one default value for the Selected Applet Context that is the default applet
identifier's Context, and one default value for the Currently Active Context that is "Java Card RE".

The knowledge of which reference corresponds to a temporary entry point object or a global array and
which does not is solely available to the Java Card RE (and the Java Card virtual machine).

FMT_MSA.3.2/FIREWALL

The intent is that none of the identified roles has privileges with regard to the default values of the security
attributes. It should be noticed that creation of objects is an operation controlled by the FIREWALL
access control SFP. The operation shall fail anyway if the created object would have had security
attributes whose value violates FMT_MSA.2.1/FIREWALL_JCVM.

FMT_SMR.1/JCRE Security roles

FMT_SMR.1.1/JCRE The TSF shall maintain the roles:

 the Java Card RE (JCRE).

 the Java Card VM (JCVM).

FMT_SMR.1.2/JCRE The TSF shall be able to associate users with roles.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 47 / 61

FMT_SMF.1/CORE_LC Specification of Management Functions

FMT_SMF.1.1/Core_LC The TSF shall be capable of performing the following management functions:

modify the Currently Active Context, the Selected Applet Context, and the Active Applets

7.1.1.2 Application Programming Interface

The following SFRs are related to the Java Card API.
The execution of the additional native code is not within the TSF. Nevertheless, access to API native methods
from the Java Card System is controlled by TSF because there is no difference between native and interpreted
methods in the interface or the invocation mechanism.

FDP_ROL.1/FIREWALL Basic rollback

FDP_ROL.1.1/FIREWALL The TSF shall enforce the FIREWALL access control SFP and the JCVM

information flow control SFP to permit the rollback of the operations OP.JAVA and OP.CREATE on
the O.JAVAOBJECTs.

FDP_ROL.1.2/FIREWALL The TSF shall permit operations to be rolled back within the scope of a select(),

deselect(), process(), install() or uninstall() call, notwithstanding the restrictions given in
[JCRE222], §7.7, within the bounds of the Commit Capacity ([JCRE222], §7.8), and those described
in [JCAPI222].

Application note:

FDP_ROL.1.2/FIREWALL Transactions are a service offered by the APIs to applets. It is also used by some
APIs to guarantee the atomicity of some operation. This mechanism is either implemented in Java Card
platform or relies on the transaction mechanism offered by the underlying platform. Some operations of
the API are not conditionally updated, as documented in [JCAPI22] (see for instance, PIN-blocking, PIN-
checking, update of Transient objects). It should be noticed that the rollback within the scope of the
uninstall() method only applies to Java Card platform, version 2.2.1 compliant TOEs.

7.1.1.3 Card Security Management

FAU_ARP.1 Security alarms

FAU_ARP.1.1 The TSF shall take the following actions:

 throw an exception,

 or lock the card session

 or reinitialize the Java Card System and its data
upon detection of a potential security violation.

Refinement:
The TOE detects the following potential security violation:

 Abortion of a transaction in an unexpected context (see abortTransaction(), [JCAPI222] and
([JCRE222], §7.6.2)

 Violation of the Firewall or JCVM SFPs

 Unavailability of resources

 Array overflow

Application note:

The developer shall provide the exhaustive list of actual potential security violations the TOE reacts to. For
instance, other runtime errors related to applet's failure like uncaught exceptions.

The bytecode verification defines a large set of rules used to detect a "potential security violation". The
actual monitoring of these "events" within the TOE only makes sense when the bytecode verification is
performed on-card.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 48 / 61

Depending on the context of use and the required security level, there are cases where the card manager
and the TOE must work in cooperation to detect and appropriately react in case of potential security
violation. This behavior must be described in this component. It shall detail the nature of the feedback
information provided to the card manager (like the identity of the offending application) and the
conditions under which the feedback will occur (any occurrence of the java.lang.SecurityException
exception).

The "locking of the card session" may not appear in the policy of the card manager. Such measure should
only be taken in case of severe violation detection; the same holds for the re-initialization of the Java
Card System. Moreover, the locking should occur when "clean" re-initialization seems to be impossible.

The locking may be implemented at the level of the Java Card System as a denial of service (through some
systematic "fatal error" message or return value) that lasts up to the next "RESET" event, without
affecting other components of the card (such as the card manager). Finally, because the installation of
applets is a sensitive process, security alerts in this case should also be carefully considered herein.

FPT_FLS.1/JCS Failure with preservation of secure state

FPT_FLS.1.1/JCS The TSF shall preserve a secure state when the following types of failures occur: those
associated to the potential security violations described in FAU_ARP.1.

Application note:

 The Java Card RE Context is the Current context when the Java Card VM begins running after a card
reset ([JCRE222], §6.2.3) or after a proximity card (PICC) activation sequence ([JCRE222]). Behavior
of the TOE on power loss and reset is described in [JCRE222], §3.6, and §7.1. Behavior of the TOE
on RF signal loss is described in [JCRE222], §3.6.2.

FPT_TDC.1 Inter-TSF basic TSF data consistency

FPT_TDC.1.1 The TSF shall provide the capability to consistently interpret the CAP files, the bytecode and
its data argument, when shared between the TSF and another trusted IT product.

FPT_TDC.1.2 The TSF shall use

 The rules defined in [JCVM222] specification;

 The API tokens defined in the export files of reference implementation

 The rules defined in ISO 7816-6

 The rules defined in [GP221] specification
when interpreting the TSF data from another trusted IT product.

Application note:

FPT_TDC.1.1:

Concerning the interpretation of data between the TOE and the underlying Java Card platform, it is
assumed that the TOE is developed consistently with the SCP functions, namely concerning memory
management, I/O functions, cryptographic functions, and so on.

7.1.1.4 AID Management

FIA_ATD.1/AID User attribute definition

FIA_ATD.1.1/AID The TSF shall maintain the following list of security attributes belonging to individual users:

 package AID

 Applet's version number

 registered applet's AID

 applet selection status ([JCVM222], §6.5).

Application note:

 "Individual users" stands for applets.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 49 / 61

FMT_MTD.1/JCRE Management of TSF data

FMT_MTD.1.1/JCRE The TSF shall restrict the ability to modify the list of registered applets' AIDs to the
JCRE.

Application note:

The installer and the Java Card RE manage other TSF data such as the applet life cycle or CAP files, but
this management is implementation specific. Objects in the Java programming language may also try to
query AIDs of installed applets through the lookupAID(...) API method.

The installer may be granted the right to modify the list of registered applets' AIDs in specific
implementations (possibly needed for installation and deletion; see #.DELETION and #.INSTALL).

FMT_MTD.3/JCRE Secure TSF data

FMT_MTD.3.1/JCRE The TSF shall ensure that only secure values are accepted for the AIDs of registered
applets.

7.1.2 INSTG Security Functional Requirements

This group combines the SFRs related to the installation of the applets, which addresses security aspects
outside the runtime. The installation of applets is a critical phase, which lies partially out of the boundaries of
the firewall, and therefore requires specific treatment. In this ST, loading a package or installing an applet
modeled as an importation of user data (that is, user application's data) with its security attributes (such as the
parameters of the applet used in the firewall rules).

FPT_FLS.1/Installer Failure with preservation of secure state

FPT_FLS.1.1/Installer The TSF shall preserve a secure state when the following types of failures occur: the
installer fails to load/install a package/applet in the following cases:

 the applet package as identified by the package AID is already resident on the card.

 the applet package contains an applet with the same Java Card name as that of another applet
already resident on the card.

 the applet package references a package that is not resident on the card.

The other error cases mentioned in [JCRE222] §11.1.4 are not in the scope of the TOE.

Application note:

The TOE may provide additional feedback information to the card manager in case of potential security
violations (see FAU_ARP.1).

FPT_RCV.3/Installer Automated recovery without undue loss

FPT_RCV.3.1/Installer When automated recovery from [none] is not possible, the TSF shall enter a
maintenance mode where the ability to return to a secure state is provided.
Application note:

 The TOE has no maintenance mode.

FPT_RCV.3.2/Installer For [Failure during applet loading, installation and deletion; sensitive data
loading], the TSF shall ensure the return of the TOE to a secure state using automated procedures.
FPT_RCV.3.3/Installer The functions provided by the TSF to recover from failure or service discontinuity shall
ensure that the secure initial state is restored without exceeding [none] for loss of TSF data or objects under
the control of the TSF.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 50 / 61

FPT_RCV.3.4/Installer The TSF shall provide the capability to determine the objects that were or were not
capable of being recovered.

Application note:

FPT_RCV.3.1/Installer:

This element is not within the scope of the Java Card specification, which only mandates the behavior of
the Java Card System in good working order. Further details on the "maintenance mode" shall be
provided in specific implementations. The following is an excerpt from [CC-2], p298: In this maintenance
mode normal operation might be impossible or severely restricted, as otherwise insecure situations
might occur. Typically, only authorized users should be allowed access to this mode but the real details
of who can access this mode is a function of FMT: Security management. If FMT: Security management
does not put any controls on who can access this mode, then it may be acceptable to allow any user to
restore the system if the TOE enters such a state. However, in practice, this is probably not desirable
as the user restoring the system has an opportunity to configure the TOE in such a way as to violate the
SFRs.

FPT_RCV.3.2/Installer:

Should the installer fail during loading/installation of a package/applet, it has to revert to a "consistent and
secure state". The Java Card RE has some clean up duties as well; see [JCRE22], §11.1.5 for possible
scenarios. Precise behavior is left to implementers. This component shall include among the listed
failures the deletion of a package/applet. See ([JCRE22], 11.3.4) for possible scenarios. Precise
behavior is left to implementers.

Other events such as the unexpected tearing of the card, power loss, and so on, are partially handled by
the underlying hardware platform (see [PP0035]) and, from the TOE's side, by events "that clear
transient objects" and transactional features.

FPT_RCV.3.3/Installer:

The quantification is implementation dependent, but some facts can be recalled here. First, the SCP
ensures the atomicity of updates for fields and objects, and a power-failure during a transaction or the
normal runtime does not create the loss of otherwise-permanent data, in the sense that memory on a
smart card is essentially persistent with this respect (EEPROM). Data stored on the RAM and subject
to such failure is intended to have a limited lifetime anyway (runtime data on the stack, transient objects'
contents). According to this, the loss of data within the TSF scope should be limited to the same
restrictions of the transaction mechanism.

7.2 SECURITY ASSURANCE REQUIREMENTS

The security assurance requirement level is EAL7.

7.3 SECURITY REQUIREMENTS RATIONALE

7.3.1 Objectives

O
.O

P
E

R
A

T
E

O
.F

IR
E

W
A

L
L

O
.N

A
T

IV
E

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T

E
G

O
.A

L
A

R
M

O
.I

N
S

T
A

L
L

FDP_ACC.2/FIREWALL X X

FDP_ACF.1/FIREWALL X X X

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 51 / 61

O
.O

P
E

R
A

T
E

O
.F

IR
E

W
A

L
L

O
.N

A
T

IV
E

O
.G

L
O

B
A

L
_
A

R
R

A
Y

S
_
IN

T

E
G

O
.A

L
A

R
M

O
.I

N
S

T
A

L
L

FDP_IFC.1/JCVM X X

FDP_IFF.1/JCVM X X

FMT_MSA.1/JCRE X

FMT_MSA.1/JCVM X

FMT_MSA.2/FIREWALL_JCVM X

FMT_MSA.3/FIREWALL X

FMT_MSA.3/JCVM X

FMT_SMR.1/JCRE X

FMT_SMF.1/CORE_LC X

FDP_ROL.1/FIREWALL X

FAU_ARP.1 X X

FPT_FLS.1/JCS X X

FPT_TDC.1 X

FIA_ATD.1/AID X

FMT_MTD.1/JCRE X

FMT_MTD.3/JCRE X

FPT_FLS.1/Installer X X X

FPT_RCV.3/Installer X X

Table 3: Objective vs. SFR

7.3.1.1 Security objectives for the TOE

7.3.1.1.1 EXECUTION

O.FIREWALL This objective is met by the FIREWALL access control policy (FDP_ACC.2/FIREWALL and

FDP_ACF.1/FIREWALL), the JCVM information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM).
The functional requirements of the class FMT (FMT_MTD.1/JCRE, FMT_MTD.3/JCRE,
FMT_SMR.1/JCRE, FMT_SMF.1/CORE_LC, FMT_MSA.2/FIREWALL_JCVM, FMT_MSA.3/FIREWALL,
FMT_MSA.3/JCVM, and FMT_MSA.1/JCRE) also indirectly contribute to meet this objective.

O.GLOBAL_ARRAYS_CONFID Only arrays can be designated as global, and the only global arrays required

in the Java Card API are the APDU buffer and the byte array input parameter (bArray) to an applet's install
method. The JCVM information flow control policy (FDP_IFF.1/JCVM, FDP_IFC.1/JCVM) prevents an
application from keeping a pointer to a shared buffer, which could be used to read its contents when the
buffer is being used by another application.

O.NATIVE This security objective is covered FDP_ACF.1/FIREWALL that the only means that the subject
S.JCVM shall provide for an application to execute native code is the invocation of a Java Card API method.
This objective mainly relies on the environmental OE.APPLET, which upholds the assumption A.APPLET.

OE.OPERATE The TOE is protected in various ways against applets' actions (FPT_TDC.1), the FIREWALL
access control policy (FDP_ACC.2/FIREWALL and FDP_ACF.1/FIREWALL), and is able to detect and
block various failures or security violations during usual working (FPT_FLS.1/Installer, FAU_ARP.1). Its
security-critical parts and procedures are also protected: safe recovery from failure is ensured

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 52 / 61

(FPT_RCV.3/Installer), applets' installation may be cleanly aborted (FDP_ROL.1/FIREWALL),
FIA_ATD.1/AID) to prevent alteration of TSF data (also protected by components of the FPT class).

Almost every objective and/or functional requirement indirectly contributes to this one too.

7.3.1.1.2 SERVICES

O.ALARM This security objective is met by FPT_FLS.1/Installer, FPT_FLS.1 which guarantee that a secure
state is preserved by the TSF when failures occur, and FAU_ARP.1 which defines TSF reaction upon
detection of a potential security violation.

7.3.1.1.3 APPLET MANAGEMENT

O.INSTALL This security objective specifies that installation of applets must be secure. In partocular, the TSFs
are protected against possible failures of the installer (FPT_FLS.1/Installer, FPT_RCV.3/Installer). Note
that the security of the applet loading/deleting is not included in this objective.

7.3.2 Dependencies

7.3.2.1 SFRs DEPENDENCIES

Requirements CC dependencies Satisfied dependencies

FAU_ARP.1 FAU_SAA.1 Unsupported

FDP_ACC.2/FIREWALL FDP_ACF.1 FDP_ACF.1/FIREWALL

FDP_ACF.1/FIREWALL FDP_ACC.1, FMT_MSA.3 FDP_ACC.2/FIREWALL,
FMT_MSA.3/FIREWALL

FDP_IFC.1/JCVM FDP_IFF.1 FDP_IFF.1/JCVM

FDP_IFF.1/JCVM FDP_IFC.1, FMT_MSA.3 FDP_IFC.1/JCVM,
FMT_MSA.3/JCVM

FDP_ROL.1/FIREWALL
(FDP_ACC.1 or FDP_IFC.1)

FDP_ACC.2/FIREWALL,
FDP_IFF.1/JCVM

FIA_ATD.1/AID none

FMT_MSA.1/JCVM (FDP_ACC.1 or FDP_IFC.1),
FMT_SMF.1, FMT_SMR.1

FDP_ACC.2/FIREWALL,
FDP_IFC.1/JCVM,
FMT_SMF.1/CORE_LC,
FMT_SMR.1/JCRE

FMT_MSA.2/FIREWALL_JCVM

(FDP_ACC.1 or FDP_IFC.1),
FMT_MSA.1, FMT_SMR.1

FDP_ACC.2/FIREWALL,

FDP_IFC.1/JCVM,
FMT_MSA.1/JCRE,

FMT_SMR.1/JCRE

FMT_MSA.3/FIREWALL
FMT_MSA.1, FMT_SMR.1

FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM,
FMT_SMR.1/JCRE

FMT_MSA.3/JCVM
FMT_MSA.1, FMT_SMR.1

FMT_MSA.1/JCVM,
FMT_SMR.1/JCRE

FMT_MTD.1/JCRE
FMT_SMF.1, FMT_SMR.1

FMT_SMR.1/JCRE,
FMT_SMF.1/CORE_LC

FMT_MTD.3/JCRE FMT_MTD.1 FMT_MTD.1/JCRE

FMT_SMR.1/JCRE FIA_UID.1 FIA_UID.2/AID

FMT_SMF.1/CORE_LC none

FPT_FLS.1/JCS none

FPT_FLS.1/Installer none

FPT_RCV.3/Installer AGD_OPE.1 AGD_OPE.1

FPT_TDC.1 none

7.3.2.1.1 RATIONALE FOR THE EXCLUSION OF DEPENDENCIES

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 53 / 61

The dependency FAU_SAA.1 of FAU_ARP.1 is unsupported. Potential violation analysis is used to specify
the set of auditable events whose occurrence or accumulated occurrence held to indicate a potential violation
of the SFRs, and any rules to be used to perform the violation analysis. The dependency of FAU_ARP.1 on
this functional requirement assumes that a "potential security violation" is an audit event indicated by the
FAU_SAA.1 component. The events listed in FAU_ARP.1 are, on the contrary, merely self-contained ones
(arithmetic exception, ill-formed bytecodes, access failure) and ask for a straightforward reaction of the TSFs
on their occurrence at runtime. The JCVM or other components of the TOE detect these events during their
usual working order. Thus, in principle there would be no applicable audit recording in this framework.
Moreover, no specification of one such recording is provided elsewhere. Therefore no set of auditable events
could possibly be defined.

7.3.2.2 SARs DEPENDENCIES

Requirements CC dependencies Satisfied dependencies

ADV_ARC.1 ADV_FSP.1; ADV_TDS.1 ADV_FSP.6; ADV_TDS.6

ADV_SPM.1 ADV_FSP.4 ADV_FSP.6

ADV_FSP.6 ADV_TDS.1 ADV_TDS.6

ADV_IMP.2
ADV_TDS.3; ALC_TAT.1 and
ALC_CMC.5

ADV_TDS.6; ALC_TAT.3, ALC_CMC.5

ADV_INT.3 ADV_IMP.1; ADV_TDS.3; ALC_TAT.1 ADV_IMP.2; ADV_TDS.6; ALC_TAT.3

ADV_TDS.6 ADV_FSP.6 ADV_FSP.6

AGD_OPE.1 ADV_FSP.1 ADV_FSP.6

AGD_PRE.1 No dependencies N/A

ALC_CMC.5 ALC_CMS.1; ALC_DVS.2; ALC_LCD.1 ALC_CMS.5; ALC_DVS.2; ALC_LCD.1

ALC_CMS.5 No dependencies N/A

ALC_DEL.1 No dependencies N/A

ALC_DVS.2 No dependencies N/A

ALC_LCD.2 No dependencies N/A

ALC_TAT.3 ADV_IMP.1 ADV_IMP.2

ASE_CCL.1 (ASE_ECD.1) and (ASE_INT.1) and
(ASE_REQ.1)

ASE_ECD.1, ASE_INT.1, ASE_REQ.2

ASE_ECD.1 No dependencies N/A

ASE_INT.1 No dependencies N/A

ASE_OBJ.2 (ASE_SPD.1) ASE_SPD.1

ASE_REQ.2 (ASE_ECD.1) and (ASE_OBJ.2) ASE_ECD.1, ASE_OBJ.2

ASE_SPD.1 No dependencies

ASE_TSS.1 (ADV_FSP.1) and (ASE_INT.1) and
(ASE_REQ.1)

ADV_FSP.6, ASE_INT.1, ASE_REQ.2

ATE_COV.3 ADV_FSP.2; ATE_FUN.1 ADV_FSP.6; ATE_FUN.2

ATE_DPT.4
ADV_ARC.1; ADV_TDS.4; ADV_IMP.1;
ATE_FUN.1

ADV_ARC.1; ADV_TDS.4; ADV_IMP.2;
ATE_FUN.1

ATE_FUN.2 ATE_COV.1 ATE_COV.3

ATE_IND.3
ADV_FSP.4; AGD_OPE.1; AGD_PRE.1;
ATE_COV.1; ATE_FUN.1

ADV_FSP.6; AGD_OPE.1; AGD_PRE.1;
ATE_COV.3; ATE_FUN.2

AVA_VAN.5
ADV_ARC.1; ADV_FSP.4; ADV_TDS.3;
ADV_IMP.1; AGD_OPE.1; AGD_PRE.1;
ATE_DPT.1

ADV_ARC.1; ADV_FSP.6; ADV_TDS.6;
ADV_IMP.2; AGD_OPE.1; AGD_PRE.1;
ATE_DPT.4

7.3.3 Rationale for the security assurance requirements

7.3.3.1 EAL7: Formally verified design and tested

EAL7 is required for this type of TOE and product since it is intended to defend against sophisticated attacks.
This evaluation assurance level allows a developer to gain maximum assurance from positive security
engineering based on good practices. In order to provide a meaningful level of assurance that the TOE and its
embedding product provide an adequate level of defense against such attacks: the evaluators should have

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 54 / 61

access to the low level design and source code. Additionally the formal model of select TOE security policies
and the semiformal presentation of the functional specification and TOE design, provided by EAL7, gives a
more structured presentation of the implementation and a thus more assurance on the TOE.

This product is intended to be used in an open environment where sensitive and non-sensitive but hostile
applications will co-exist on the product. One of the most sensitive functions of the embedded software of this
product, providing the property of isolation between applications is the firewall. To provide assurance on the
correct behavior of this security function, this security target provides formal assurances on its development
from the EAL7 level. The formal assurances provide evidence that this function has been implemented
correctly with respect to the specification.

7.3.3.2 ADV_SPM.1 Formal TOE security policy model

The formally modelled security policies consist of:

1. Firewall security policy that controls the sharing of data containers owned by applets of different

packages, or the JCRE, and between applets and the TSFs (cf. O.FIREWALL objective);

2. Typing security policy that supposes that all the bytecodes are verified before being
loaded/installed/executed on the TSF (cf. A.VERIFICATION assumption);

3. (Static) information access security policy that ensures that an external reference is accessible in the
current package only of this reference is exported by its package and that package is imported by the

current package (part of O.INSTALL objective).

The SPM component is fulfilled by the following evident elements.

Requirement Title Type

TOE Security Policy

Interpreter Document

Linker (static access control) Document

BCV/Typing Document

ADV_SPM.1.1C

SPM formal model Coq code

Model of the JC virtual machine Document

Model of the Firewall policy Document

Model of the Typing policy Document

Model of Java Card API Document

Correspondence between ISP and TSP model Document

ADV_SPM.1.2C

FWVM state machine and JCVM/FWVM proof Coq code

Proof of O.Firewall: confidentiality Document

TYVM state machine and JCVM/TYVM proof Coq code

Proof of the safe execution of a CAP file Document

Proof of OT.GLOBAL_ARRAYS_INTEG Coq code

Proof of O.FIREWALL: integrity Coq code

ADV_SPM.1.3C
ADV_SPM.1.4C
ADV_SPM.1.5C

Correspondence proof between the FSP and the TSP formal
models (linker, interpreter, API)

Coq code

Linker: Correspondence between FSP and TSP models
Document

Interpreter: Correspondence between FSP and TSP models
Document

Native API: Correspondence between the FSP and the TSP
formal models

Document

It depends on ADV_FSP.6 that is satisfied by this evaluation.

7.3.3.3 ADV_FSP.6 Complete semi-formal functional specification with
additional formal specification

This requirement is fulfilled by the following evident elements.

Requirement Title Type

ADV_FSP.6 Linker: FSP model Coq code

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 55 / 61

Interpreter: FSP model

API (native): FSP model

Functional Spec of the Linker Document

Functional Spec of the Interpreter Document

Functional Spec of the native API Document

Correspondence between ST (SFRs) and
FSP model Document

It depends on ADV_TDS.6 that is satisfied by this evaluation.

7.3.3.4 ADV_TDS.6 Complete semi-formal modular design with formal
high-level design presentation

This requirement is fulfilled by the following evident elements.

Requirement Title Type

ADV_TDS.6
(subsystem)

Linker: HLD model

Coq code Embedded interpreter: HLD model

Native API: HLD model

Linker: High-Level Design Document

Interpreter: High-Level Design Document

Native API: High-Level Design Document

ADV_TDS.6
(proofs for

subsystems)

Correspondence between the HLD and the
FSP formal models (linker, interpreter, API) Coq code

Linker: FSP-HLD correspondence Document

Interpreter: FSP-HLD correspondence Document

Native API: FSP-HLD correspondence Document

ADV_TDS.6
(modules)

Interpreter and API: LLD model Coq code

Linker: Low-Level Design Document

Interpreter: Low-Level Design Document

Native API: Low-Level Design Document

ADV_TDS.6
(proofs for
module)

Correspondence between the LLD and the
HLD formal models (interpreter, API) Coq code

Correspondence between the LLD and the
HLD formal models (interpreter) Document

Correspondence between the LLD and the
HDL formal models (Native API) Document

It depends on the ADV_FSP.6 that is satisfied by this evaluation.

7.3.3.5 ADV_IMP.2 Complete mapping of the implementation
representation of the TSF

This requirement is fulfilled by the following evident elements.

Title Type

TSF source code (in HTML format) HTML

It depends on ADV_TDS.6, ALC_TAT.3, ALC_CMC.5 that are satisfied by this evaluation

7.3.3.6 ADV_INT.3 Minimally complex internals

This requirement is fulfilled by the following evident elements.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 56 / 61

Requirement Title Type

ADV_INT.3 Minimally complex internals Document

It depends on ADV_IMP.2, ADV_TDS.6 and ALC_TAT.3. that are all satisfied by this evaluation.

7.3.3.7 ATE_DPT.4. Testing: implementation representation

It depends on ADV_ARC.1, ADV_TDS.4, ADV_IMP.1 and ATE_FUN.1 that are all satisfied by this evaluation.
This component is fulfilled by the following evident elements.

Requirement Title Type

ATE_DPT.4 Additional Rationale on Tests Document

7.3.3.8 ATE_COV.3. Rigorous analysis of coverage

It depends on ADV_FSP.2 and ATE_FUN.1 that are all satisfied by this evaluation.
This component is fulfilled by the following evident elements.

Requirement Title Type

ATE_COV.3 Additional Rationale on Tests Document

7.3.3.9 ATE_FUN.2. Ordered Functional Testing

It depends on ATE_COV.1 that is satisfied by this evaluation.
This component is fulfilled by the following evident elements.

Requirement Title Type

ATE_FUN.2 Additional Rational on Tests Document

7.3.3.10 ALC_CMC.5 Advanced support

This requirement is fulfilled by the following evident elements:

Requirement Title Type

ALC_CMC.5
Evidence elements for ADV_CMC.5,

ALC_LCD.2 and ALC_TAT.3 Document

It depends on ALC_CMS.1, ALC_DVS.2 and ALC_LCD.1 that are all satisfied by this evaluation.

7.3.3.11 ALC_LCD.2 Measurable life-cycle model

This component has no dependency and is fulfilled by the following evident elements.

Requirement Title Type

ADV_LCD.2
Evidence elements for ADV_CMC.5, ALC_LCD.2 and
ALC_TAT.3 Document

7.3.3.12 ALC_TAT.3 Compliance with implementation standards – all parts

It depends on ADV_IMP.1 that is satisfied by this evaluation.
This component is fulfilled by the following evident elements.

Requirement Title Type

ADV_TAT.3
Evidence elements for ADV_CMC.5, ALC_LCD.2 and
ALC_TAT.3 Document

7.3.3.13 AVA_VAN.5 Advanced methodical vulnerability analysis

The TOE is intended to operate in hostile environments. AVA_VAN.5 "Advanced methodical vulnerability
analysis" is considered as the expected level for Java Card technology-based products hosting sensitive
applications, in particular in payment and identity areas.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 57 / 61

7.3.3.14 ALC_DVS.2 Sufficiency of security measures

Development security is concerned with physical, procedural, personnel and other technical measures that
may be used in the development environment to protect the TOE and the embedding product.

7.3.3.15 Other Security Assurance Requirements

The other EAL7 security assurance requirements satisfied by this evaluation are fulfilled by evidences provided
in the EAL5+ evaluation of the MultiApp V4 JCS [ST_MultiAppv4].

7.3.4 Compatibility with SFR of [ST-IC]

FDP_IFC.1/JCVM, FDP_IFF.1/JCVM, FDP_RIP.1/OBJECTS, FMT_MSA.2/FIREWALL_JCVM,
FMT_MSA.3/FIREWALL, FMT_MSA.3/JCVM, FMT_SMR.1/JCRE, FMT_SMF.1/CORE_LC, FCS_CKM.2,
FCS_CKM.3, FCS_CKM.4, FDP_RIP.1/APDU, FDP_RIP.1/bArray, FDP_RIP.1/ABORT, FDP_RIP.1/KEYS,
FDP_ROL.1/FIREWALL, FAU_ARP.1, FPT_TDC.1, FPT_FLS.1/JCS, FPR_UNO.1, FMT_MTD.1/JCRE,
FMT_MTD.3/JCRE, FIA_ATD.1/AID, FIA_UID.2/AID, FIA_USB.1/AID, FDP_ITC.2/Installer,
FMT_SMR.1/Installer, FPT_FLS.1/Installer, FPT_RCV.3/Installer, FMT_MSA.1/ADEL, FMT_MSA.3/ADEL,
FMT_SMR.1/ADEL, FMT_SMF.1/ADEL, FDP_ACC.2/ADEL, FDP_ACF.1/ADEL, FDP_RIP.1/ADEL,
FPT_FLS.1/ADEL, FDP_ACC.2/FIREWALL, FDP_ACF.1/FIREWALL, FMT_MSA.1/JCRE,
FMT_MSA.1/JCVM, FDP_RIP.1/TRANSIENT, FDP_RIP.1/ODEL, FPT_FLS.1/ODEL, FMT_MSA.1/CM,
FMT_MSA.3/CM, FMT_SMR.1/CM, FMT_SMF.1/CM, FCO_NRO.2/CM, FIA_UAU.1/CM, FIA_UID.1/CM,
FDP_IFC.2/CM, FDP_IFF.1/CM, FDP_UIT.1/CM, FTP_ITC.1/CM, FPT_TST.1/SCP, FPT_RCV.4/SCP,
FDP_ACC.1/CMGR, FDP_ACF.1/CMGR, FMT_MSA.1/CMGR, and FMT_MSA.3/CMGR are SFR specific to
the Java Card platform and they do no conflict with the SFR of [ST-IC].
FPT_FLS.1/SpecificAPI, FPT_ITT.1/SpecificAPI, FPR_UNO.1/SpecificAPI are SFR added to this ST
regarding API security and they do no conflict with the SFR of [ST-IC].
FCS_CKM.1, FCS_COP.1 and FCS_RND.1 of this ST are supported by FCS_CKM.1, FCS_COP.1 of [ST-IC].
FDP_SDI.2 of this ST is supported by FDP_SDI.1 and FDP_SDI.2 of [ST-IC].
FPT_PHP.3/SCP of this ST is supported by FPT_PHP.3 of [ST-IC].
We can therefore conclude that the SFR of this ST and [ST-IC] are consistent.

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 58 / 61

8 TOE SUMMARY SPECIFICATION

8.1 TOE SECURITY FUNCTIONS

TOE Security Functions are provided by the TOE embedded software (including the optional NVM ES) and by
the chip.

8.1.1 Security functions provided by MultiApp V4 platform

8.1.1.1 SF.FW: Firewall

The JCRE firewall enforces applet isolation. The JCRE shall allocate and manage a context for each applet or
package installed respectively loaded on the card and its own JCRE context. Applet cannot access each
other's objects unless they are defined in the same package (they share the same context) or they use the
object sharing mechanism supported by JCRE.

An operation OP.PUT (S1, S.MEMBER, I) is allowed if and only if the active context
is "JCRE"; other OP.PUT operations are allowed regardless of the active context's
value.

FDP_IFC.1/JCVM
FDP_IFF.1/JCVM

Only the S.JCRE can modify the security attributes the active context, the selected
applet context security attributes.

FMT_MSA.1/JCRE

Only the S.JCVM can modify the security attributes the active context, the currently
active Context and the Active Applets security attributes.

FMT_MSA.1/JCVM

only secure values are accepted for all the security attributes of subjects and objects
defined in the FIREWALL access control SFP and the JCVM information flow control
SFP.

FMT_MSA.2/FIREWALL_
JCVM

provide restrictive default values for security attributes that are used to enforce the
SFP.

FMT_MSA.3/FIREWALL

The TSF shall maintain the roles: the Java Card RE, the Java Card VM. The TSF
shall be able to associate users with roles.

FMT_SMR.1/JCRE

The TSF shall be capable of performing the following management functions:

 Modify the active context and the SELECTed applet Context.

 Modify the list of registered applets' AID

FMT_SMF.1/CORE_LC

([JCRE222]§6.2.8) An S.PACKAGE may freely perform any of
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE, OP.THROW or OP.TYPE_ACCESS upon any
O.JAVAOBJECT whose Sharing attribute has value "JCRE entry point" or "global
array".

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

([JCRE222]§6.2.8) An S.PACKAGE may freely perform any of
OP.ARRAY_ACCESS, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL,
OP.INVK_INTERFACE or OP.THROW upon any O.JAVAOBJECT whose Sharing
attribute has value "Standard" and whose Lifetime attribute has value
"PERSISTENT" only if O.JAVAOBJECT's Context attribute has the same value as
the active context.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

([JCRE222]§6.2.8.10) An S.PACKAGE may perform OP.TYPE_ACCESS upon an
O.JAVAOBJECT whose Sharing attribute has value "SIO" only if O.JAVAOBJECT
is being cast into (checkcast) or is being verified as being an instance of (instanceof)
an interface that extends the Shareable interface.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

 ([JCRE222], §6.2.8.6,) An S.PACKAGE may perform
OP.INVK_INTERFACE upon an O.JAVAOBJECT whose Sharing attribute
has the value "SIO", and whose Context attribute has the value "Package
AID", only if one of the following applies:

(c) The value of the attribute Selection Status of the package whose AID is
"Package AID" is "Multiselectable",

(d) The value of the attribute Selection Status of the package whose AID is
"Package AID' is "Non-multiselectable", and either "Package AID" is the
value of the currently selected applet or otherwise "Package AID" does not
occur in the attribute ActiveApplets,

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 59 / 61

and in either of the cases above the invoked interface method extends the Shareable
interface

An S.PACKAGE may perform an OP.CREATE only if the value of the Sharing
parameter(*) is "Standard".

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

The subject S.JCRE can freely perform OP.JAVA(...) and OP.CREATE, with the
following two exceptions:

1. Any subject with OP.JAVA upon an O.JAVAOBJECT whose LifeTime attribute
has value "CLEAR_ON_DESELECT" if O.JAVAOBJECT's Context attribute is
not the same as the SELECTed applet Context.

2. Any subject with OP.CREATE and a "CLEAR_ON_DESELECT" LifeTime
parameter if the active context is not the same as the SELECTed applet Context.

FDP_ACC.2/FIREWALL
FDP_ACF.1/FIREWALL

The TSF shall permit the rollback of the operations OP.JAVA and OP.CREATE on
the O.JAVAOBJECTs.

FDP_ROL.1/FIREWALL

The TSF shall permit operations to be rolled back within the scope of a select(),
deselect(), process() or install() call, notwithstanding the restrictions given in
[JCRE222], §7.7, within the bounds of the Commit Capacity ([JCRE222], §7.8), and
those described in [JCAPI222].

FDP_ROL.1/FIREWALL

Only updates to persistent objects participate in the transaction. Updates to transient
objects and global arrays are never undone, regardless of whether or not they were
“inside a transaction.” [JCRE222], §7.7

FDP_ROL.1/FIREWALL

A TransactionException is thrown if the commit capacity is exceeded during a
transaction. [JCRE222], §7.8

FDP_ROL.1/FIREWALL

Transaction & PIN: When comparing a PIN, even if a transaction is in progress,
update of internal state - the try counter, the validated flag, and the blocking state,
do not participate in the transaction. [JCAPI222]

FDP_ROL.1/FIREWALL

8.1.1.2 SF.CSM: Card Security Management

The TSF shall take the following actions:

 throw an exception,

 or lock the card session

 or reinitialize the Java Card System and its data

upon detection of a potential security violation.

FAU_ARP.1

The TOE detects the following potential security violation:

 Abortion of a transaction in an unexpected context (see abortTransaction(),
[JCAPI222] and ([JCRE222], §7.6.2)

 Violation of the Firewall or JCVM SFPs

 Unavailability of resources

 Array overflow

FAU_ARP.1

In order to consistently interpret the CAP files, the bytecode and its data
argument, when shared between the TSF and another trusted IT product, the TSF

shall use:

 The rules defined in [JCVM222] specification;

 The API tokens defined in the export files of reference implementation

 The rules defined in ISO 7816-6

 The rules defined in [GP221] specification

FPT_TDC.1

The TSF shall preserve a secure state when the following types of failures occur:
those associated to the potential security violations described in FAU_ARP.1.

The Java Card RE Context is the Current context when the Java Card VM begins
running after a card reset ([JCRE222], §6.2.3) or after a proximity card (PICC)
activation sequence ([JCRE222] §4.1.2). Behavior of the TOE on power loss and
reset is described in [JCRE222], §3.6, and §7.1. Behavior of the TOE on RF signal
loss is described in [JCRE222], §3.6.2

FPT_FLS.1/JCS

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 60 / 61

8.1.1.3 SF.AID: AID Management

Only the JCRE can modify the list of registered applets' AIDs. FMT_MTD.1/JCRE

Only secure values are accepted for the AIDs of registered applets. FMT_MTD.3/JCRE

The TSF shall maintain the following list of security attributes belonging to individual
users:

 package AID

 Applet's version number

 registered applet's AID

 applet selection status ([JCVM222], §6.5)

FIA_ATD.1/AID

8.1.1.4 SF.INST: Installer

The TSF shall preserve a secure state when the following types of failures occur:
the installer fails to load/install a package/applet as described in [JCRE222]
§11.1.4

FPT_FLS.1/Installer

After Failure during applet loading, installation and deletion; sensitive data
loading, the TSF ensures the return of the TOE to a secure state using automated

procedures.

The TSF provides the capability to determine the objects that were or were not
capable of being recovered.

FPT_RCV.3/Installer

8.2 TOE SUMMARY SPECIFICATION RATIONALE

8.2.1 TOE security functions rationale

S
F

.F
W

S
F

.C
S

M

S
F

.A
ID

S
F

.I
N

S
T

FDP_ACC.2/FIREWALL X

FDP_ACF.1/FIREWALL X

FDP_IFC.1/JCVM X

FDP_IFF.1/JCVM X

FMT_MSA.1/JCRE X

FMT_MSA.1/JCVM X

FMT_MSA.2/FIREWALL_JCVM X

FMT_MSA.3/FIREWALL X

FMT_MSA.3/JCVM X

FMT_SMR.1/JCRE X

FMT_SMF.1/CORE_LC X

FDP_ROL.1/FIREWALL X

FAU_ARP.1 X

FPT_FLS.1/JCS X

FPT_TDC.1 X

FIA_ATD.1/AID X

FMT_MTD.1/JCRE X

FMT_MTD.3/JCRE X

,Javacard Virtual Machine on MultiApp V4.0.1 Platform – Security Target

Reference: D1391107 Revision : 1.8p Gemalto public Page : 61 / 61

S
F

.F
W

S
F

.C
S

M

S
F

.A
ID

S
F

.I
N

S
T

FPT_FLS.1/Installer X

FPT_RCV.3/Installer X

Table 4: Rationale table of functional requirements and security functions

END OF DOCUMENT

