
A
N
SSI-PA

-073
24/03/2022

RULES FOR SECURE C LANGUAGE
SOFTWARE DEVELOPMENT

ANSSI GUIDELINES

TARGETED AUDIENCE:

Developers Administrators IT security managers IT managers Users

Information

Warning
This document, written by ANSSI, the French National Information Security Agency,
presents the “Rules for secure C language software development”. It is freely available
at www.ssi.gouv.fr/en/.
It is an original creation fromANSSI and it is placed under the “Open Licence v2.0” published
by the Etalab mission [ETALAB].
According to theOpen Licence v2.0, this guide can be freely reused, subject tomentionning its
paternity (source and date of last update). Reuse means the right to communicate, distribute,
redistribute, publish, transmit, reproduce, copy, adapt, modify, extract, transform and use,
including for commercial purposes
These recommendations are provided as is and are related to threats known at the publica-
tion time. Considering the information systems diversity, ANSSI cannot guarantee direct
application of these recommendations on targeted information systems. Applying the fol-
lowing recommendations shall be, at first, validated by IT administrators and/or IT security
managers.
This document is a courtesy translation of the initial French document “Règles de pro-
grammation pour le développement sécurisé de logiciels en langage C”, available at
www.ssi.gouv.fr. In case of conflicts between these two documents, the latter is considered
as the only reference.

Document changelog:
VERSION DATE CHANGELOG

1.4 24/03/2022 First English version

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 1

https://www.ssi.gouv.fr/en/best-practices/
 https://www.ssi.gouv.fr/fr/bonnes-pratiques/recommandations-et-guides/

Contents

1 Introduction 6

2 Coding convention 8

3 Undefined and unspecified behaviours 9

4 Preprocessor and macros 11
4.1 Inclusion of the necessary header files . 11
4.2 Non-inclusion of source files . 14
4.3 Format of a file inclusion directive . 15
4.4 Comment and definition of preprocessor blocks . 16
4.5 Using the preprocessor operators # and ## . 18
4.6 Specific naming of macros . 19
4.7 A macro must not end with a semicolon . 20
4.8 Give preference to static inline functions in “function type ” macros 21
4.9 Multi-statement macros . 22
4.10 Arguments and parameters of a macro . 23
4.11 Using the #undef directive . 25
4.12 Trigraph and double question mark . 25

5 Compilation 27
5.1 Mastery of the compilation phase . 27
5.2 Compilation without errors nor warnings . 28
5.3 Use of security features provided by compilers . 30
5.4 Debug and release modes . 36

6 Declaration, definition and initialisation 38
6.1 Multiple variable declarations . 38
6.2 Free declaration of variables . 39
6.3 Declaration of constants . 40
6.4 Limited use of global variables . 43
6.5 Use of the static keyword . 44
6.6 Use of the volatile keyword . 45
6.7 Implicit type declaration is prohibited . 46
6.8 Compound literals . 47
6.9 Enumerations . 48
6.10 Initialising variables before use . 50
6.11 Initialisation of structured variables . 51
6.12 Mandatory use of declarations . 53
6.13 Naming of variables for sensitive data . 54

7 Types and type conversions 57
7.1 Explicit size for integers . 57
7.2 Type alias . 58
7.3 Type conversions . 59

2 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

7.4 Type conversion of pointers to structured variables of different types 62

8 Pointers and arrays 64
8.1 Standardised access to the elements of an array . 64
8.2 Non-use of VLAs . 66
8.3 Explicit array size . 67
8.4 Systematic check for array overflow . 68
8.5 Do not dereference NULL pointers . 69
8.6 Assignment to NULL of deallocated pointers . 70
8.7 Use of the restrict type qualifier . 71
8.8 Limit on the number of pointer indirections . 73
8.9 Give preference to the use of the indirection operator -> 73
8.10 Pointer arithmetic . 74

9 Structures and unions 77
9.1 Declaration of structures . 77
9.2 Size of a structure . 78
9.3 bit-field . 79
9.4 Use of FAMs . 80
9.5 Do not use unions . 80

10 Expressions 82
10.1 Integer expressions . 82
10.2 Readability of arithmetic operations . 84
10.3 Use of parentheses to make explicit the order of the operators 85
10.4 No multiple comparison of variables without parentheses 86
10.5 Parentheses around elements of a boolean expression 87
10.6 Implicit comparison with 0 prohibited . 88
10.7 Bitwise operators . 90
10.8 Boolean assignment and expression . 91
10.9 Multiple assignment of variables prohibited . 92
10.10 Only one statement per line of code . 93
10.11 Use of floating-point numbers . 94
10.12 Complex numbers . 96

11 Conditional and iterative structures 97
11.1 Use of braces for conditionals and loops . 97
11.2 Correct construction and use of switch statements 98
11.3 Correct construction of for loops . 100
11.4 Changing of a for loop counter forbidden in the body of the loop 102

12 Jumps in the code 104
12.1 Do not use backward goto . 104
12.2 Limited use of forward goto . 105

13 Functions 107
13.1 Correct and consistent declaration and definition 107
13.2 Documentation of functions . 109
13.3 Validation of input parameters . 110

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 3

13.4 Use of the qualifier const for pointer-type function parameters 111
13.5 Using inline functions . 112
13.6 Redefining functions . 113
13.7 Mandatory use of the return value of a function . 113
13.8 Implicit return prohibited for non-void functions 114
13.9 No passing by value of a structure as function parameter 116
13.10 Passing an array as a parameter for a function . 117
13.11 Mandatory use in a function of all its parameters 118
13.12 Variadic functions . 119

14 Sensitive operators 121
14.1 Use of the comma prohibited for statement sequences 121
14.2 Using pre/postfix ++ and -- operators and compound assignment operators 122
14.3 No nested use of the ternary operator “?: ” . 123

15 Memory management 125
15.1 Dynamic memory allocation . 125
15.2 Use of the sizeof operator . 127
15.3 Mandatory verification of the success of a memory allocation 129
15.4 Isolation of sensitive data . 130

16 Error management 133
16.1 Correct use of errno . 133
16.2 Systematic consideration of errors returned by standard library functions 134
16.3 Documentation and structuring of error codes . 135
16.4 Return code of a C program depending on whether it executed successfully 136
16.5 Ending of a C program following an error . 137

17 Standard library 140
17.1 Prohibited standard library header files . 140
17.2 Not recommended standard libraries . 141
17.3 Prohibited standard library functions . 141
17.4 Choice between different versions of standard library functions 142

18 Analysis, evaluation of the code 144
18.1 Proofreading of the code . 144
18.2 Indentation of long expressions . 144
18.3 Identifying and removing any dead or unreachable code 145
18.4 Tool-based evaluation of the source code to limit the risk of execution errors 146
18.5 Limiting cyclomatic complexity . 146
18.6 Limiting the length of functions . 147
18.7 Do not use C++ keywords . 147

19 Miscellaneous 149
19.1 Comment format . 149
19.2 Implementation of a “canary ” mechanism . 149
19.3 Assertions of development and assertions of integrity 150
19.4 Last line of a non-empty file must end with a line break 151

4 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Appendix A Acronyms 152

Appendix B Further information on GCC and CLANG options 153
B.1 Definition of the C language standard in use . 153
B.2 Additional warnings . 153
B.3 CLANG and the -Weverything option . 156

Appendix C C++ reserved words 157

Appendix D Operator priority 158

Appendix E Example of development conventions 160
E.1 Files encoding . 160
E.2 Code layout and indentation . 160
E.3 Standard types . 161
E.4 Naming . 162
E.5 Documentation . 165

Index 168

List of rules, recommendations and good practices 170

Bibliography 176

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 5

1
Introduction

The C language offers great freedom to developers. However, it contains ambigu-
ous or risky constructions that may introduce errors during development. The
C language standard does not specify all the desired behaviours, and therefore
some remain undefined or unspecified 1. Developers of compilers, libraries or
operating systems are therefore free to make their own choices.

Restrictions must therefore be set on the use of C language in order to identify the
various risky or non-portable constructions and to limit or even prohibit their use.
The restrictions defined in this guide are intended to encourage the production of
more secure, safer, more robust software, and also to encourage their portability
from one system to another, whether PC type or embedded.

This guide defines a set of rules, recommendations and good practices dedicated to secure C lan-
guage development. In this document, we currently restrict ourselves to the 2 standards C90 2 and
C99, which are the most widely used.

When a rule is directly associated with one specific standard, this is clearly indicated to avoid any
confusion. If not specified, both standards are concerned.

Rule
A rule must always be respected; no exceptions are tolerated.

Recommendation
A recommendation should be respected except in certain exceptional cases, which
implies a clear and precise justification from the developer. Recommendations are
abbreviated to “RECO”.

This guide also contains good practices. These are often somewhat more subjective points like
coding conventions, such as the indentation of the code, for example.

1. These concepts are defined on page9.
2. N.B. the C90 standard is also referred to as C89 by the C community.

6 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Good practice
The good practices defined in this guide are highly recommended, but they can be
replaced by those already in place in the developer’s organisation or development
team if equivalent rules exist.

This guide has various objectives:

n increasing the security, quality and reliability of the source code produced, by identifying bad
or dangerous programming practices;

n facilitating the analysis of the source code during peer review or using static analysis tools;

n establishing a level of confidence in the security, reliability and robustness of a development;

n making software maintenance easier, as well as the addition of features.

The idea of this guide is not to reinvent the wheel, but rather to use existing documents (method-
ological guides, language standard references, etc.) to extract, modify and specify a set of recom-
mendations for the secure development of the C language. The reference documents used are as
follows:

n MISRA-C: 2012 Guidelines for the use of the C language in critical systems [Misra2012],

n C ANSI 90 [AnsiC90],

n C ANSI 99 [AnsiC99],

n GCC: Reference Documentation [GccRef],

n CLANG’S Documentation [ClangRef],

n SEI CERT C Coding Standard [Cert],

n ISO 17961 C Secure Coding Rules [IsoSecu],

n CWE MITRE Common Weakness Enumeration [Cwe].

This guide is not aimed at any particular application field and is not intended to replace the devel-
opment constraints imposed by any normative context (automotive, aeronautics, critical systems,
etc.). Its aim is to address precisely those secure C developments not covered by these normative
constraints.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 7

2
Coding convention

Above all, any development project of any kindmust follow a clear, precise and documented devel-
opment convention. This development convention must be known to all developers and applied
systematically.

Each developer has his or hers own programming habits, code layout and variable naming. How-
ever, when producing software, these different programming habits between developers result in
a heterogeneous set of source files, which are more difficult to audit and maintain.

RULE
1

RULE — Application of clear and explicit coding conventions
Coding conventions must be defined and documented at the software project level.
These conventions must define at least the following points: encoding of source files,
code layout and indentation, standard types to be used, naming (libraries, files, func-
tions, types, variables, etc.), documentation format.
These conventions must be followed by each developer.

This rule regarding development conventions is certainly obvious and the aimhere is not to impose,
for example, a choice of variable naming (such as snake-case versus camel-case), but to ensure that
a choice has indeed been made at the beginning of the development project and that it is explicit.

Appendix E provides examples of coding conventions that can be used or adapted as required.

[Misra2012] Dir. 4.5 Identifiers in the same name space with overlapping visibility should be typo-
graphically unambiguous.
[Cert] Rec. DCL02-C Use visually distinct identifiers.
[IsoSecu] Using Identifiers that are reserved for the implementation [resident].

8 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

3
Undefined and unspecified behaviours

As the remainder of this guide will frequently make use of the concepts of undefined behaviour and
unspecified behaviour, we recall them hereinbelow.

Undefined behaviour
An undefined behaviour is a behaviour for which nothing is imposed by the C stan-
dard, and which follows an error in the construction of the program, a non-portable
construction or an incorrect use of data. An example is a signed integer overflow.

Unspecified behaviour
An unspecified behaviour is a behaviour for which the C standard provides at least
two alternative behaviours that are accepted, but none of which are imposed. An
example is the order of evaluation of the operations # and ## during the substitution
of a macro.

Information
The exhaustive list of all the unspecified behaviours and all the undefined behaviours
is available in appendices G and J of standards C90 [AnsiC90] and C99 [AnsiC99].

This guide only considers a C coding environment compliant with the C90 or C99 standards.

Information
Concurrent programming is not covered in this version of the guide, but will be cov-
ered in a later version.

RULE
2

RULE — Only C coding in accordance with the standard is authorised
No violation of C constraints and syntax as defined in the C90 or C99 standards is
authorised.

References
[Misra2012] Rule 1.1 The program shall contain no violations of the standard C syntax and con-
straints and shall not exceed the implementation translation limits.
[Misra2012] Rule 1.2 Language extensions should not be used.
[Misra2012] Rule 1.3 There shall be no occurrence of undefined or critical unspecified behaviour.
[Cwe] CWE-710 Improper Adherence to coding standard.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 9

[Cwe] CWE-758 Reliance on undefined, unspecified or implementation-defined behavior.

10 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

4
Preprocessor and macros

4.1 Inclusion of the necessary header files
Only the necessary header files need to be included, but some additional rules need to be observed.
When a header file itself includes other header files, these declarations will be propagated to all
source or header files that include this first file. This C language mechanism results in the cascaded
inclusion of header files and declarations.

If the inclusion of header files is notminimised, this generates unnecessary dependencies, increases
compilation time, and makes the subsequent analysis of the code more complex (whether manual
or tool-based). In order to reduce dependencies and unnecessary propagation of declarations,
header file inclusions should be made in a “.c” file and not in a “.h” header file. However, in some
cases, such as typical type definition, the inclusion of header files from the standard library (such
as stddef.h and stdint.h) in another header file is justifiable.

RECO
3

RECOMMENDATION — Limit and justify header file inclusions in another
header file

Header files should be included as needed during development and not “automatically” by the
developer.

RULE
4

RULE — Only the necessary header files should be included

In addition, the header file inclusion mechanism can result in multiple inclusions of the same
header file, making proofreading of the code difficult at best. Defining a specific symbol for each
header file using the preprocessor directive (#define) and checking that this symbol has not already
been defined (#ifndef) avoids repeated inclusion of a header file. This is referred to as a multiple
include guard macro. Be sure to define a unique symbol for each file. The name of this symbol can
be constructed by taking the file name and substituting the “.” with a “_”.

RULE
5

RULE — Use multiple include guard macros for a file
A guard macro against multiple inclusions of a file should be used to prevent the
content of a header file from being included more than once:
// start of header file

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 11

#ifndef HEADER_H
#define HEADER_H
/* file content */
#endif
// end of header file

Warning
The use of the #pragma once directive is widespread but is not standardized. This
solution is therefore not recognised in this guide, although it is supported by most
compilers. Its use can be problematic since this directive is specific to each com-
piler (especially whenmanaging header files that are duplicated in multiple physical
sources or mount points).

Finally, for reasons of readability, the location of header file inclusions must comply with certain
specific rules.

RULE
6

RULE — Header file inclusions are grouped at the beginning of the file
All header file inclusions must be grouped at the beginning of the file or just after
preprocessor comments or directives, but always before the definition of global vari-
ables or functions.

RECO
7

RECOMMENDATION — System header file inclusions are made before user
header file inclusions

GOOD
PRACTICE

8

GOOD PRACTICE — Use alphabetical order in the inclusion of each type of
header files
To avoid any redundancy in system or user header file inclusions, the developer can
use the alphabetical order, which offers a deterministic inclusion order and facilitates
the code review.

Information
Although these last three rules, recommendations and good practices address a prob-
lem of readability and maintainability, and not directly a security problem in the
strict sense of the term, these first two aspects remain essential for any type of devel-
opment.

When the inclusion of a header file is omitted, the compiler may provide a warning about the use
of an implicitly declared function.

Information
Implicit function declarations are detected with GCC and CLANG using the option
-Wimplicit-function-declaration.

12 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
In the code below, the inclusion of string.h serves no purpose in file.h since the
only declaration of string.h used by file.c is the memcpy function. The inclusion
of string.h must therefore be moved to file.c with a multiple include guard in
file.h.
/* header.h */
#include <string.h> /* should only be included in file.c */

void foo(uint8_t* val, uint32_t length);

/* file.c */
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include "header.h"

#define BUFFER_LEN 8U

void foo(uint8_t *val, uint32_t length) {
uint8_t buffer[BUFFER_LEN];
if (NULL != val) {

memcpy(buffer, val, min(BUFFER_LEN, length));
...

}
}

Good example
The example below includes in the header file only the necessary definitions, and an
include guard is present. Be careful however, when using the include guard, not to
use an already reserved identifier as a name in the macro, which is a classic error
when using the include guard.
/* header.h */
#ifndef HEADER_H /* include guard to avoid ultiple inclusion */
#define HEADER_H

void foo(uint8_t *val, uint32_t length);

#endif /*HEADER_H*/

/* file.c */
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include "header.h"

#define BUFFER_LEN 8U

void foo(uint8_t *val, uint32_t length) {
uint8_t buffer[BUFFER_LEN];

if (NULL != val) {
memcpy(buffer, val, min(BUFFER_LEN, length));
...

}
}

4.1.1 References

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 13

[Misra2012] Dir. 4.10. Precautions shall be taken in order to prevent the contents of a header file
being included more than once.
[Misra2012] Rule 20.1. #include directives should only be preceded by preprocessor directives or
comments.
[Cert] Rec. PRE06-C Enclose header files in an include guard.

4.2 Non-inclusion of source files
The inclusion of a source file in another source file can generate problems with link editing (multi-
ple definitions of global variables or identical functions) or duplication of binary code (in the event
that the included elements have been declared with the keyword static). If a source file requires
the use of functions from another source file, a corresponding header file must be declared and
included in the source file that needs it. The codemust be broken down into independent modules
(“.c” files).

If the purpose of including one module within another is to take advantage of the compiler’s inter-
procedural optimizations (inlining, constant propagation, etc.), it is preferable to rely on Link Time
Optimization (LTO), for instance with GCC by using the -flto flag when compiling and at link time:
gcc -o binary -flto file1.c file2.c.

RULE
9

RULE — Do not include a source file in another source file
Only the inclusion of header files is authorised in a source file.

Bad example
In the following example, a source file inclusion is performed, which is prohibited.
/* file1.c */
#include <stdint.h>

void foo(uint16_t val) {
...

}

/* file2.c */
#include "file1.c" /* prohibited */

void bar() {
foo(MAGIC_VALUE);

}

Good example
The example below correctly breaks down the code into different modules.
/* header.h */
#ifndef HEADER_H
#define HEADER_H

void foo(uint16_t val);

#endif

14 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

/* file1.c */
void foo(uint16_t val) {

...
}

/* file2.c */
#include <stdint.h>
#include "header.h"

#define MAGIC_VALUE 42U

void bar() {
foo(MAGIC_VALUE);

}

4.3 Format of a file inclusion directive
Different file systems do not behave in the same way: some file systems are case sensitive, and the
separator of the constituents of a path may vary.

When an operating system-specific path separator is used, this prevents the portability of the source
code. When an #include directive includes a path to the header file to be included, the separating
character for the path components must be the slash “/”, not the backslash “\”, to ensure portability
of the source. In addition, the character “\”, as well as the following characters or sequences of
characters: ', ", /* and // located between opening and closing chevrons (< and >) or between
double quotes (i.e. ") lead to undefined behaviour.

Directory and file name case must also be preserved.

RULE
10

RULE — File paths must be portable and case sensitive
File paths, whether for an #include inclusion directive or not, must be portable
while respecting the case of directory names.

Bad example
In the following example, portability is not assured and leads to undefined behaviour.
#include <sys\stat.h>
#include "Module_A\Sub_Module_A\Header.h"

Good example
The example below uses a correct format for including header files.
#include <sys/stat.h>
#include "module_a/sub_module_a/header.h"

In addition, certain specific rules must be respected in the header file name to avoid undefined
behaviour.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 15

RULE
11

RULE — The name of a header file must not contain certain characters or
sequences of characters
The name of a header file must contain none of the following characters and charac-
ter sequences: ', ", \, /* and //.

4.3.1 References
[Misra2012] Rule 20.2: The ”,” or ”\” characters and the ”/*” and ”//” character sequences shall not
occur in a header file name.
[Misra2012] Rule 20.3: The #include directive shall be followed by either a <filename> or
"filename" sequence.
[AnsiC99] Sections 6.4.7 and 6.10.2.

4.4 Comment and definition of preprocessor blocks
The compilation directives #if, #ifdef,#ifndef, #else, #elif and #endif form blocks. These
may be long and impossible to display on a single screen. They may also contain nested blocks.
It can then be very difficult to determine the interdependencies between the different directives.
These directives must therefore be commented on carefully to explain the cases dealt with and the
sequence of the different directives.

RECO
12

RECOMMENDATION — Preprocessor blocks must be commented on
Preprocessor block directives must be commented on in order to clarify the cases
being dealt with and, in the case of “intermediate” and “closing” directives, these
must also be associated with the corresponding “opening” directive by means of a
comment.

For reasons of readability, double negation in preprocessor directive expressions should be avoided,
typically by using #ifndef and a “non-mode” (i.e. amode defined via the negation of anothermode
such as NDEBUG).

GOOD
PRACTICE

13

GOOD PRACTICE — Double negation in the expression of preprocessor
block conditions should be avoided

Finally, it is essential that all the directives associated with a preprocessor block (i.e. “opening”,
“intermediate” and “closing” directives) are present in the same file. Furthermore, it should only
be possible to evaluate the control conditions used in these directives to 1 or 0.

RULE
14

RULE — Definition of a preprocessor block in a single file
For a preprocessor block, all associated directives must be found in the same file.

16 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RECO
15

RECOMMENDATION — Preprocessor directive control expressions must be
correctly formed
Control expressions must be evaluated only to 0 or 1 and should only use defined
identifiers (via #define).

Bad example
The following code should be modified to add comments and not use double nega-
tion for the #else and #endif directives.
/* file1.c */
#ifdef A /* no #endif */
#include "log.h"

/* log.h */

#endif /* #endif of file1.c */

#ifndef LOG_H
#define LOG_H

typedef enum {
DEBUG = 0,
WARN,
INFO,
ERROR,
FATAL

} LogLevel_T;

void log_msg(LogLevel_T level, const unsigned char* sLogMessage);

#ifndef NDEBUG /* double negation */
#define LOG_DEBUG(msg) log_msg(DEBUG, (msg))
#define LOG_WARN(msg) log_msg(WARN, (msg))
#define LOG_INFO(msg) log_msg(INFO, (msg))
#define LOG_ERROR(msg) log_msg(ERROR, (msg))
#define LOG_FATAL(msg) log_msg(FATAL, (msg))
#else
#define LOG_DEBUG(msg)
#define LOG_WARN(msg)
#define LOG_INFO(msg)
#define LOG_ERROR(msg)
#define LOG_FATAL(msg)
#endif
#endif

Good example
In the following example, the directives are correctly commented on and the associ-
ated directives are in the same file.
/* file1.c */
#ifdef A
#include "log.h"
#endif

/* log.h */
#ifndef LOG_H
#define LOG_H

typedef enum {
DEBUG = 0,
WARN,
INFO,

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 17

ERROR,
FATAL

} LogLevel_T;

void log_msg(LogLevel_T level, const unsigned char* sLogMessage);

#ifdef NDEBUG /* double negation removed */
/* Not debug mode */
#define LOG_DEBUG(msg)
#define LOG_WARN(msg)
#define LOG_INFO(msg)
#define LOG_ERROR(msg)
#define LOG_FATAL(msg)
#else /* #ifdef NDEBUG */
/* Debug mode */
#define LOG_DEBUG(msg) log_msg(DEBUG, (msg))
#define LOG_WARN(msg) log_msg(WARN, (msg))
#define LOG_INFO(msg) log_msg(INFO, (msg))
#define LOG_ERROR(msg) log_msg(ERROR, (msg))
#define LOG_FATAL(msg) log_msg(FATAL, (msg))
#endif /* #ifdef NDEBUG */
#endif /* #ifndef LOG_H */

4.4.1 References
[Misra2012] Rule 20.8 The controlling expression of a #if or #elif preprocessing directive shall eval-
uate to 0 or 1.
[Misra2012] Rule 20.9 All identifiers used in the controlling expression of #if or #elif preprocessing
directives shall be #defined before evaluation.
[Misra2012] Rule 20.14 All #else, #elif and #endif preprocessor directives shall reside in the same
file as the #if, #ifdef or #ifndef directive to which they are related.

4.5 Using the preprocessor operators # and ##
The evaluation order of several # (stringification or character string conversion operator) or ##
(concatenation operator) or the mixture of these two operators is not specified.

RULE
16

RULE — Do not use more than one of the preprocessor operators # and
in the same expression

It is also important, with these two operators, to have a good understanding of how it works, i.e.
the steps resulting from the macro replacement.

RULE
17

RULE — Understand the macro replacement when using the preprocessor
operators # and ##

18 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
#include <stdio.h>
...
#define MYPRINT(s) printf(#s)
#define TWO 2

int main(void)
{

MYPRINT(TWO); /* prints "TWO" */
return 1;

}

Good example
#include <stdio.h>
...
#define MYPRINT2(s) PRINT(s) /* Additional indirection to expand

"TWO" */
#define PRINT(s) printf(#s)
#define TWO 2

int main(void)
{

MYPRINT2(TWO); /* prints "2" */
return 1;

}

4.5.1 References
[Misra2012] Rule 20.10 The # and ## preprocessor operators should not be used.
[Misra2012] Rule 20.11 A macro parameter immediately following a # operator shall not immedi-
ately be followed by a ## operator.
[Misra2012] Rule 20.12 A macro operator used as an operand to the # or ## operators which is
itself subject to further macro replacement, shall only be used as an operand to these operators.
[Cert] PRE05-C Understand macro replacement when concatenating tokens or performing stringi-
fication.
[AnsiC90] Section 6.8.3.
[AnsiC99] Section 6.10.3.

4.6 Specific naming of macros
It is not always easy to distinguish the use of a preprocessor macro in the source code. The use of
some macros may resemble function calls.

Furthermore, when a macro is not named in upper case, there is a risk that the name corresponds
to a real function name or even a reserved word in the C language. This can therefore lead to the
substitution of a function call with the code replaced by the preprocessor, or even to undefined
behaviour.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 19

RULE
18

RULE — Macros must be specifically named
To easily differentiate macros from functions and not use a reserved name from an-
other C macro, preprocessor macros must be uppercase. In addition, the words mak-
ing up the name must be separated by the underscore character “_”, but without
starting them with the underscore character, as this is a convention for reserved
names in the C language.

Bad example
In the following example, the macro naming rule is not followed.
#define cte 0x7EU /* lower case */
#define _my_squared(a) ((a)*(a)) /* lower case and starts with _ */

Good example
The following example shows suitable naming of the preprocessor macros.
#define CTE 0x7EU
#define MY_SQUARED(a) ((a)*(a))

4.6.1 References
[Misra2012] Rule 5.4 Macro identifiers shall be distinct.
[Misra2012] Rule 5.5 Identifiers shall be distinct from macro names.
[Misra2012] Rule 21.1: A #define or #undef shall not be used on a reserved identifier or reserved
macro name.
[Misra2012] Rule 21.2: A reserved identifier or macro name shall not be declared.
[Misra2012] Rule 20.4: A macro shall not be defined with the same name as a keyword.
[IsoSecu] Using Identifiers that are reserved for the implementation [resident].
[Cert] Rule DCL37-C Do not declare or define a reserved identifier.
[Misra2012] Dir. 4.5 Identifiers in the same name space with overlapping visibility should be typo-
graphically unambiguous.
[Cert] Rec. DCL02-C Use visually distinct identifiers.

4.7 A macro must not end with a semicolon
Macros are used to make it easier to read the code and avoid repeating the same code pattern
several times. When expanding a macro, if the macro definition contains a semicolon, this one is
also expanded, which can cause a complete and unexpected change in the control flow.

RULE
19

RULE — Do not end a macro with a semicolon
The final semicolon should be omitted at the end of the definition of a macro.

20 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
The macro is not defined by applying the rule and ends with a semicolon.
#define SQUARED(n) (n) = (n) * (n); /* no semicolon at the end of a macro */
...
if (x >= 0)

SQUARED(x); /* conditional without brace */
else

x = -x;
...

on expansion, we have:
#define SQUARED(n) (n) = (n) * (n);
...
if (x >= 0)

x= x * x;
; /* empty statement */
else /* parsing error before the else */

x = -x;
...

Good example
The macro is corrected:
#define SQUARED(n) (n) = (n) * (n)
/* ... */
if (x >= 0)
{

SQUARED(x);
}
else
{

x = -x;
}

on expansion, we have:
#define SQUARED(n) (n) = (n) * (n)

/* ... */
if (x >= 0)
{

x = x * x;
}

else
{

x = -x;
}

4.7.1 References
[Cert] Rec. PRE11-C Do not conclude macro definitions with a semicolon.

4.8 Give preference to static inline functions in
“function type” macros

Inline functions have been available since the C99 version of the C language.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 21

Information
As mentioned in section 13.5, inline functions must also be declared as static.

The use of a static inline function to replace these “function type” macros prevents errors in
the order of operator evaluation when inlining macros, and makes the code easier to read.

Information
It is important to note that unused static inline functions may cause warnings to
be issued on compilation for some compiler versions. In particular, some versions of
the CLANG compiler issue warnings in this case, unlike the GCC compiler. This differ-
ence in behaviour between compilers occurs when the -Wunused-function option is
enabled at compile-time, either explicitly or via other options such as -Wall. When
the associated code really cannot be deleted (in a library for example), the developer
may have to use compiler extensions to silence these warnings, but these additions
must be clearly commented on and justified.

RECO
20

RECOMMENDATION — Use static inline functions instead of
multi-statement macros

In addition to the above recommendations and rules, it is important to add that macros whose
replacement defines functions in the code should not be used. The associated risk of error is too
great and the readability of the code can suffer from this kind of practice.

RULE
21

RULE — The replacement of a developer-defined macro must not create a
function

4.8.1 References
[Misra2012] Dir. 4.9: A function should be used in preference to a function-like macro where they
are interchangeable.
[Cert] Rec. PRE00-C Prefer inline or static functions to function-like macros.

4.9 Multi-statement macros
The use ofmacros withmultiple statements can lead to unexpected behaviour. Indeed, when defin-
ing a macro with several statements, the character “\” must be used to indicate to the preprocessor
that a line break must be inserted. This makes the defined macro difficult to read and can also be
a source of errors.

22 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

The grouping of statements in a do { ... } while(0) loop limits the possibilities of unexpected
behaviour. A do { ... } while(0) loop is always executed exactly once and prevents changing the
control flow of the function calling the macro by grouping all its statements in a loop.

RULE
22

RULE — Macros containing multiple statements must use a
do { ... } while(0) loop for their definition

Bad example
The macro does not implement the rule.
#define HALF_SUM(a,b,c,d) \

(a) = ((c) + (d)) / 2; \
(b) = ((c) - (d)) / 2

/* leads to a different behaviour to the one required with a call in a conditional
statement without braces */

if(c > d)
HALF_SUM(a, b, c, d);

else
/* ... */

Even if the macro were defined between braces:
#define HALF_SUM(a,b,c,d) { (a) = ((c) + (d)) / 2; (b) = ((c) - (d)) / 2 }

the replacement of the macro in the same conditional is always problematic because
of the lack of braces in the conditional and the “;” following the call of the macro:

if(c>d)
{ (a)=((c) + (d)) / 2; (b) = ((c) - (d)) / 2 };

else
/* ... */

Good example
In the following example themacro is correctly defined using a do-while(0) loop struc-
ture.
#define HALF_SUM(a, b, c, d) \

do { \
(a) = ((c) + (d)) / 2; \
(b) = ((c) - (d)) / 2; \

} while(0)

4.9.1 References
[Cert] Rec. PRE10-C Wrap multistatement macros in a do-while loop.

4.10 Arguments and parameters of a macro
During the replacement of a macro by the preprocessor, side effects not expected by the developer
may occur if the macro parameters are not protected. Parentheses must systematically be added

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 23

around parameters in the definition of a macro.

RULE
23

RULE — Mandatory parentheses around the parameters used in the body
of a macro
The parameters of a macro must always be enclosed in parentheses when used, in
order to preserve the desired order of evaluation of the expressions.

In general, it is best to avoid arguments of a macro resulting in an operation in the broadest sense.
Apart from the side effects, even if the operation performed as an argument is constant for a given
input, the performance of the code is not optimal.

RECO
24

RECOMMENDATION — Arguments of a macro carrying out an operation
should be avoided

Moreover, if the operation carried out by the arguments of a macro leads to a side effect in the
sense of compilation, this can also lead to unexpected behaviors such as multiple evaluations of
the arguments of the macro or even to no evaluation at all.

RULE
25

RULE — Arguments in a macro must not contain side effects
Macro arguments with side effects can lead to unwanted multiple evaluations.

Finally, the use of preprocessor directives (#define, #ifdef ...) in macro arguments leads to unde-
fined behaviour and is therefore to be avoided.

RULE
26

RULE — Do not use preprocessor directives in macro arguments

Bad example
In the following example, the result will not be the one expected upon execution.
#define ABS(x) (x >= 0 ? x : -x)

a = c + ABS(a - b) + d;
/* result: a = c + (a - b >= 0 ? a - b : -a -b) + d */

m=ABS(n++);
/* additional increment of n: m = ((n++ < 0) ? - n++ : n++) */

Good example
The following code defines a macro with parentheses correctly placed around its
argument.
#define ABS(x) (((x) >= 0) ? (x) : -(x))

a = c + ABS(a - b) + d;

24 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

/* correct result: a = c + (((a - b) >= 0) ? (a - b) : -(a - b)) + d */

p=n++;
m=ABS(p);

/* only one increment of n: m = (((p) < 0) ? - (p) : (p)); */

4.10.1 References
[Misra2012] Rule 20.7: Expressions resulting from the expansion of macro parameters shall be
enclosed in parentheses.
[Cert] Rec. PRE01-C Use parenthesis within macros around parameters names.
[Cert] Rec. PRE02-C Macro replacement lists should be parenthesized.
[Cert] Rule EXP30-C Do not depend on the order of evaluation for side effects.
[Cert] Rule. PRE31-C Avoid side effects in arguments to unsafe macros.
[Cert] Rule. PRE32-C Do not use preprocessor directives in invocations of function-like macros.
[Cert] Rec. PRE12-C Do not define unsafe macros.

4.11 Using the #undef directive
Use of the #undef directive frequently leads to confusion. Inadvertently, its use can lead to partial
code deletion if the inclusion of the code is in fact controlled by the symbol whose definition
is deleted. It must never be necessary to delete the definition of a preprocessor symbol. If the
purpose of deleting the symbol is to limit its scope, it is preferable to check why the scope of the
symbol needs to be limited.

The use of #undefmay result from the risk of a clash in the name chosen for a preprocessor symbol.
The symbol name must then be changed to prevent this clash.

RULE
27

RULE — The #undef directive should not be used

4.11.1 References
[Misra2012] Rule 20.5 #undef should not be used.

4.12 Trigraph and double question mark
Two successive question marks in C mark the beginning of a sequence associated with a trigraph.
For example, the trigraph “??-” represents the character “~”. All trigraphs will be replaced prior
to preprocessor directives, regardless of the location of the trigraph. They must not therefore be
used.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 25

RULE
28

RULE — Do not use trigraphs

In addition, to avoid confusion with a trigraph, all comments, strings and other literals should not
contain two successive question marks.

RECO
29

RECOMMENDATION — Successive question marks should not be used
This rule applies to all parts of the code, but also to comments.

Information
The -Wtrigraphs option issues an alert when a trigraph is detected.

Information
By default, trigraphs are disabled in GCC.

4.12.1 References
[Misra2012] Rule 4.2 Trigraphs should not be used.
[Cert] Rec. PRE07-C Avoid using repeated question marks.

26 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

5
Compilation

Compilation is an important stepwhen developing software since itmakes the connection between
the codewritten by the developer and the code that will actually execute on the end user’smachine.
Mastering it is thus primordial. Moreover, the compiler is a precious ally to detect programming
errors or dangerous uses of the language, and it also generally provides hardening features capable
of strongly improving the security of the produced software.

Warning
In this guide and a fortiori this chapter, two compilers are frequently used for illustra-
tion purposes: GCC [GccRef] and CLANG [ClangRef]. This choice is largely motivated
by the popularity of these compilers, which on top of that are open source. It doesn’t
mean in any way that this guide only recommends using one of these two compil-
ers. Any alternative may be proposed but the developper shall transpose the various
options presented in this guide himself.

5.1 Mastery of the compilation phase
Compilers offer different warning levels meant to inform the developper of the use of risky con-
structions or the presence of programming errors. The default level is usually rather low and
reports few bad practices. It is thus insufficient and must be increased, which requires making
used compilation options explicit. Furthermore, for the same version of the C standard, some de-
fault behaviors may vary from one compiler to another. Even warnings emitted when compiling
are directly tied to the compiler version. It is thus of primary importance to precisely know the
compiler in use, its version as well as all enabled options, ideally backed with justifications.

RULE
30

RULE — Precisely define compilation options
Options used for compiling must be precisely defined for the whole software sources.
These options should in particular accurately establish:
n the C standard version in use (for instance C99 or C90);

n the name and version of the compiler in use;

n the warning level (for example -Wextra for GCC);

n preprocessor symbols definitions (for instance defining NDEBUG when compiling
in release mode).

Moreover, any developer enabling compiler or linker options must be fully aware of the conse-
quences regarding security of the generated executable or library.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 27

RECO
31

RECOMMENDATION — Master actions performed by the compiler and the
linker
The developer must know and document all actions stemming from enabled com-
piler and linker options, including when such options have to do with code optimiza-
tion.

Warning
In particular, the use of compilation options such as -fno-strict-overflow,
-fwrapv, -fwrapv-pointer, -fno-delete-null-pointer-checks or
-fno-strict-aliasing is most of the time indicative of a risky usage of the C
language.

Using a build automation software likemake, CMake orMeson facilitates management of compila-
tion options. The latter may be defined globally and applied to all source files to compile.

GOOD
PRACTICE

32

GOOD PRACTICE — Make use of build automation software

5.1.1 References
[Misra2012] Subsection 4.2. Understanding the compiler.
[Cert] MSC06-C Beware of compiler optimizations.
[Cert] PRE13-C Use the standard predefined macros to test for versions and features.
[Cwe] CWE-14 Compiler Removal of Code to Clear Buffers.

5.2 Compilation without errors nor warnings
Making sure that the code compiles without any error nor warning is an excellent way to decrease
the risk of programming errors or risky constructions remaining in the code base. Obviously, the
idea is not to lower the stringency of compilation options in order to achieve this objective, but to
actually fix all issues reported by the compiler. By default, compilation options shall be as strict as
possible with the aim of increasing the stringency of the compiler to the fullest.

RULE
33

RULE — Compile the code without any error nor warning while enabling
strict compilation options
High warning and error levels of the compiler and the linker must be enabled to
ensure, as much as possible, the absence of potential issues related to incorrect use
of the programming language.
All warnings and all errors reported by the compiler and the linker must be dealt
with. It is incidentally very much advised, if using GCC or CLANG, to use the -Werror
option in order to turn any warning into a compilation error, hence not running the

28 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

risk of ignoring it.

The relevance and accuracy of warnings emitted by the compiler directly depends on the precision
of analyzes it conducts, which in turn rely on the various optimizations the compiler is able to
perform. Specifying a reasonably high optimization level is thus beneficial.

RULE
34

RULE — Enable a reasonably high optimization level
For GCC and CLANG, the optimization level must be at least -O1, and ideally -O2 or
-Os.

Warning
It is the responsibility of the developer to make sure that a high optimization level
does not suppress defensive code or manually added software countermeasures.

Information
For example, the minimal command line for compiling with GCC or CLANG is:
gcc/clang -O1 -Wall a -Wextra b -Wpedantic c -Werror -std=c99/c90 d file.c
-o file.exe

RECO
35

RECOMMENDATION — Use the strictest compilation options
If a compilation option proves to be too strict for a given development and a choice
is made to disable it, a justification shall be provided to explain it.

Information
Appendix B.2 draws up a non-exhaustive list of extra warnings for GCC and CLANG,
which can serve as a starting point to the developer.

In order to suppress errors and warnings, the first thing to do is of course to fix the source code,
while imperatively commenting on any resulting code edit. However, if it appears to be a false
positive, several methods exist. Firstly, the complexity of a code snippet may occasionally suffice
to mislead the compiler analysis, and it is then beneficial in general to simply rewrite this hunk
in a more intelligible form, while obviously making sure it is semantically equivalent. Then, if it
turns out that a warning cannot be eliminated by fixing the source code, and if the compiler allows
for it (via a #pragma directive for example), this warning may be disabled locally.

a. Enables all the warnings about risky language constructions that are easy to avoid. See the GCC and CLANG compilers manuals
for a complete listing.

b. Enables some extra warning flags that are not enabled by -Wall. See the GCC and CLANG compilers manuals for a complete
listing.

c. Enables all the warnings demanded by the C standard; disables all compiler extensions, including the ones that do not conflict
with the standard.

d. Specifies the C standard used by the compiler. See appendix B.1.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 29

Warning
Using #pragma to suppress warnings can be quite dangerous and must therefore be
perfectly understood in order not to disable one or more warnings in the whole code
base bymistake. Moreover, as the use of #pragma is not standard, the developermust
keep inmind that this is specific to each compiler (implementation-defined) and thus
risky.

In case the developer opts for warning suppression, a clear justification needs to be provided with
a comment:
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
/* code */
/* some variables are not used in the new algorithm anymore but are kept for API compatibility */
/* warnings about such unused variables are thus disabled in the code following the pragma */
#pragma GCC diagnostic pop

5.2.1 References
[Misra2012] Dir. 2.1: All sources files shall compile without any compilation errors.
[Misra2012] Dir. 4.1: Run-time failures shall be minimized.
[Cert] MSC00-C: Compile cleanly at high warning levels.
[Cwe] CWE-563 Unused variable.
[Cwe] CWE-570 Expression is always false.
[Cwe] CWE-571 Expression is always true.

5.3 Use of security features provided by compilers
Modern compilers offer various options that make it possible to improve the robustness and defen-
siveness of the final executable. It can come to prevent a vulnerability from surfacing or to reduce
its security impact, but also to harden the program against vulnerability exploitation attempts.

RULE
36

RULE — Make use of security features offered by compilers
Developers must, as much as possible, take advantage of compilation options that
allow for improving the security of the final software product.

Warning
Throughout this section, when GCC or CLANG options are given as examples, it is
necessary to keep in mind that:
n these options apply to GCC 11 and CLANG 13 respectively;

n some of them are already enabled by default, sometimes partially, depending on
the compiler and its version, but it is preferable to specify them anyway;

n the accuracy of warnings emitted by the compiler may depend upon the selected
optimization level;

30 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

n the impact on performances, if mentioned, is given for information purposes only
and may vary a lot according to use cases; it is therefore the developer’s job to
ensure compliance with his needs.

5.3.1 Warnings oriented towards security bugs
A number of warnings offered by compilers focus very especially on detecting potential security
issues. Enabling these warnings and dealing with any issue they report are thus a first step in
reducing the risk of software vulnerabilities being introduced in the code base.

RULE
37

RULE — Enable warnings that focus on detecting security bugs and deal
with any reported issue
For instance, the -Wformat=2 a GCC and CLANG compilation option must be enabled
and any reported issue needs to be methodically dealt with.
GCC options -Wformat-overflow=2 and -Wformat-truncation=2may also be used.

Information
The GCC and CLANG compilers nowadays embed static source code analyzers capable
of running deeper and more precise — but more expensive — analyses on programs
in order to detect more programming errors, especially potential security vulnerabil-
ities.
Even though these embedded analyzers are still rather basic and in the end yet quite
experimental compared to standalone tools that are dedicated to static source code
analysis, it may be convenient and interesting to use them. The interested developer
may refer to the documentation [GccRef] of GCC option -fanalyzer as well as the
Clang Static Analyzer section from the CLANG documentation [ClangRef].

5.3.2 Instrumentation of some particularly unsafe functions
The use of functions that handle memory or character strings is a large source of programming
errors that frequently lead to vulnerabilities such as buffer overflows. In addition to choosing less
dangerous versions of such functions when available (cf. rules from section 17.4), some compilers
are capable of automatically enhancing them with simple checks, performed at compile or execu-
tion time, to detect potential buffer overflows.

RULE
38

RULE — Enable the use of hardened variants of unsafe functions
For instance, when using GCC to compile a program intended for aGNU/Linux system
running the glibc, the _FORTIFY_SOURCE macro must be defined. The optimization
level must be greater or equal to -O1 for the added checks to be effective.
Run-time checks terminate the program as soon as an overflow is detected.

a. This option adds additional compile-time checks on format strings, as well as on function calls that take them as arguments.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 31

Information
Option -Wstringop-overflow=n of GCC allows for performing similar checks at
compile-time only. Their stringency depends on the value of n.

5.3.3 Initialization of automatic variables
The use of uninitialized automatic variables 3 is another common error and source of vulnerabil-
ities (see section 6.10 as well). A number of compilers however are capable of detecting some of
these uses, as long as the appropriate warnings are enabled.

RULE
39

RULE — Enable compiler warnings related to the use of uninitialized vari-
ables
In particular, options -Wuninitialized a, -Winit-self and
-Wmaybe-uninitialized b must be enabled when GCC is used.
As for CLANG, options -Wuninitialized c and -Wconditional-uninitializedmust
be enabled.

Warning
It should be noted that these warnings do not detect all instances of uninitialized
automatic variable uses, especially when such variables are passed to other functions
by reference.

Furthermore, some compilers support automatic initialization of such variables. In practice, this
forced initialization can use either the value zero or another particular value, called pattern. Au-
tomatic initialization to zero should be chosen for release builds (cf. next section 5.4) because it
usually limits the exploitability of this type of bug. In contrast, during development, testing and
debugging phases, pattern initialization is preferable since it is more likely to uncover certain bugs.
Selecting the right pattern is then essential: for example, for pointer-type variables, it may be a
non-canonical address so that any memory access through an uninitialized pointer systematically
faults.

RULE
40

RULE — Enable forced initialization of automatic variables by the compiler
CLANG supports automatic initialization with the two aforementioned approaches:
n -ftrivial-auto-var-init=pattern for development, tests and debugging;

n -ftrivial-auto-var-init=zero for release builds, an
option that currently necessitates appending option
-enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang.

3. An automatic variable is a variable defined within a function, without the static storage class specifier. Its storage is allocated
and deallocated automatically on the call stack.

a. Automatically enabled by -Wall
b. Automatically enabled by -Wall
c. Automatically enabled by -Wall

32 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Warning
Even when all automatic variables are forcibly initialized by the compiler, their use
without prior explicit initialization by the developer is still a programming error that
absolutely has to be fixed.
Automatic initialization by the compiler is thus a hardening only intended to limit
the security impact of this type of bugs, and as a consequence the developer should
never rely on this behavior.

5.3.4 Integer overflows
Signed integer overflows are not defined by the C standard and are thus particularly dangerous.
For instance, depending on hardware architectures and compilers, a variable of type int reaching
the value INT_MAX can wrap after another increment, that is become INT_MIN, which may prove to
be quite problematic especially in the case of a variable that represents a reference counter for a
memory allocation. The compiler may be able to detect certain kinds of signed integer overflows.

RECO
41

RECOMMENDATION — Enable compiler options that allow for detecting
signed integer overflows
In particular, GCC and CLANG both support option -ftrapv, which makes the com-
piler instrument the source code in such a way as to emit a trap during program
execution for any signed integer overflow on addition, subtraction or multiplication
operations.

Warning
Even though unsigned integer overflows are actually a well-defined behavior of the
C language, they are not any less dangerous and may just as well lead to the intro-
duction of bugs and vulnerabilities in a piece of software. The developer should thus
remain particularly careful when performing operations prone to overflows, even
with unsigned operands.

Information
GCC and CLANG support many other options that are useful for detecting integer
overflows, but they are part of the UBSan a sanitizer, the use of which as well as of
other sanitizers is not addressed by this guide.

5.3.5 Call stack hardenings
In order to make it harder to exploit certain vulnerabilities, the memory area corresponding to the
program stack should not be executable. Modern toolchains generally endeavor to enforce this
rule by default.

a. Undefined Behavior Sanitizer

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 33

Nonetheless, the use of nested functions, as supported by GCC, imposes an executable stack 4 and
is thus prohibited 5. Moreover, supporting this feature has complicated the way GNU linkers —
namely BFD and gold — choose to mark an executable or a library as requiring executable stack;
it is thus necessary to be very cautious when using them.

RULE
42

RULE — Do not use executable stack
In particular, GCC nested functions should not be used. Besides, for software in-
tended for GNU/Linux or FreeBSD environments:
n option -z execstack of BFD, gold and lld linkers should not be used;

n option -z nognustack of lld should not be used;

n option -z noexecstack of BFD and gold must be used.

Stack buffer overflows certainly rank among the oldest and most common memory corruptions.
Positioning guard variables with a random value, usually called canaries 6, makes it possible for
example to detect some linear overflow attempts that try to overwrite the value of a return address
saved on the stack. If need be, program execution is automatically terminated.

RULE
43

RULE — Enable stack canaries
With GCC and CLANG, compilation option -fstack-protector-strong must be en-
abled.
Section 19.2 also tackles manual implementation of a canary mechanism.

Depending on hardware architectures, platforms and compilers, it is also possible to use a guard
variable whose value is different for each thread within the same process. This allows for reducing
the severity of a potential leak of the canary value.

RECO
44

RECOMMENDATION — Use per-thread canaries
In particular, for x86 architectures, GCC and CLANG support option
-mstack-protector-guard=tls, relying on glibc Thread Local Storage.

5.3.6 Dynamic loading
Randomization is a probabilistic security defense tactics aiming to make software vulnerability
exploitation less reliable. In particular, common toolchains are able to produce executables that
can be loaded at a random memory address, in order to make the most of address space layout
randomization (ASLR) as implemented by the operating system.

4. More precisely, it is the use of closures, implemented by GCC by means of such nested functions and of trampolines located on
the stack, that is problematic.

5. It is a language extension anyway, offered by a compiler, yet, as a reminder, only C code compliant with the C90 or C99 standards
is allowed by the present guide.

6. Alternatively known as cookies

34 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RULE
45

RULE — Produce position independent executables
With GCC and CLANG, compilation option -fPIE must be enabled, as well as option
-pie of BFD, gold and lld linkers.

To allow for relocation of shared libraries and executables, the dynamic loadermust be able tomod-
ify some of their sections. If the corresponding memory mappings consequently remain writable
during program execution, they may prove useful to an attacker trying to exploit a software vul-
nerability. However, it is possible at link-time to mark said sections so that the dynamic loader
makes the underlying memory mappings read-only as soon as possible. This is referred to as relro
or partial relro mode.

RULE
46

RULE — Use relro mode of linkers
For instance, with BFD and gold linkers, option -z relromust be used. lld enforces
relro mode by default thus no extra option is required.

Nevertheless, since function symbols resolution usually happens in the course of program execu-
tion (lazy binding), a number of sections within shared libraries or executables remain writable
regardless of relro mode. Is is then possible to force the dynamic loader to resolve all symbols
when the program is started 7 so that it can go on to make the underlying memory mappings read-
only. This is referred to as full relro or BIND_NOW mode.

RECO
47

RECOMMENDATION — Do not use lazy binding
For instance, option -z now of BFD, gold and lld causes these linkers to mark gener-
ated executables and libraries so as to tell the dynamic loader it needs to resolve all
symbols at program startup.

Information
When relromode is used and lazy binding is disabled, some linkers reorder sections
inside generated binaries in order to prevent overflows of data located in one section
from overwriting the contents of sensitive sections.
This is notably the case with BFD, gold and lld.

5.3.7 Reproducible builds
Among other things, reproducible builds allow users of a particular software to verify indepen-
dently that a binary they are provided with is indeed the unaltered product of a precise state of
its sources, by rebuilding it and comparing the result. This requires a fully deterministic build pro-
cess, which is nontrivial and goes beyond the scope of this guide, but taking this problematic into
consideration as soon as possible in a project can greatly facilitate the implementation of such a
feature the day that it becomes an objective.

7. Disabling lazy binding might thus slow down a large software’s startup. It should also be noted that this becomes of little
importance in practice for a daemon.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 35

GOOD
PRACTICE

48

GOOD PRACTICE — Ensure reproducible builds
For example, compilation options such as -Wdate-time from GCC and CLANG or
-frandom-seed= from GCC may prove useful to limit the introduction of nondeter-
minism at compile-time.

5.4 Debug and release modes
Build modes debug and release are usually both available with any compiler and are very useful
for software development because of the significant changes they can induce on build products.

Debug and release modes
In debugmode, which is mainly designed for debugging while developing, most opti-
mizations are disabled and debugging information for all symbols is preserved, mak-
ing it easier in particular to set breakpoints. Compilation is faster and uses less mem-
ory, but the generated code will generally be larger and slower to execute. In release
mode, which corresponds to the final mode suitable for client delivery or deploying
to production, optimizations are enabled and information that does not add value to
program execution, such as symbols, is removed. Compilation takes more time then
and consumes more memory, but allows for generating more complex machine code
that will thereby be faster and more compact.

Debug mode enables the developer to better understand how a program works and fix reported
errors whereas releasemode is required for delivery for performance or program size reasons. For
instance, in debug mode, some compilers make sure that all variables are automatically initialized
to 0, while in release mode this only applies to global variables, as per the standard.

Information
If NDEBUG is defined as a macro name at the point in the source file where the stan-
dard library header assert.h is included, then the assert macro is redefined to be
disabled.

RULE
49

RULE — All production-ready code must be compiled in release mode
Compiling in release mode is mandatory when putting software into production.

This can seem redundant with rules and recommandations from sections 5.1 and 5.2 but it is def-
initely a rather common mistake in software engineering. In addition to different behaviors re-
garding memory management and code optimizations, debugmode may even sometimes increase
software attack surface. It is thus very important that the developer make use of these modes in
full knowledge of the cause.

36 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RECO
50

RECOMMENDATION — Pay special attention to debug and release modes
when building a project
The use of debug and releasemodes at compile-timemust be done while making sure
that all induced changes regarding memory management and optimization are well
known. Every difference between these two modes must be documented exhaus-
tively.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 37

6
Declaration, definition and initialisation

Definition versus use of variables
Defining a variablemeans assigning a value to it (i.e. writing to the variable’smemory
address), while using a variable means reading the value of the variable (i.e. reading
the value stored at the associated memory address).

6.1 Multiple variable declarations
The C language allows the sumultaneous declaration of several variables of the same type. In mul-
tiple variable declarations, each variable is separated with a comma. These multiple declarations
are used to associate a given type with a group of variables or to group together related variables.
However, this type of multiple declaration should only be used on simple variables (no pointers
or structured variables) of the same type.

RECO
51

RECOMMENDATION — Only multiple declarations of simple variables of the
same type are authorised

In order to also avoid errors in the initialisation of variables, initialisations coupled with a multiple
declaration are to be prohibited. Indeed, in the case of a single initialisation at the end of the
multiple declaration, only the last variable declared is actually initialised.

RULE
52

RULE — Do not make multiple variable declarations associated with an
initialisation
Initialisations associated (i.e. consecutive and in the same statement) with amultiple
declaration are prohibited.

Bad example
In the code below, several variables are declared in the same statement, but only the
last variable is initialised.

uint32_t abs, ord = 0; /* caution, the variable abs is not set to zero here ! */
uint32_t a, *b; /* to be prohibited: mix of simple variable and pointer

declaration */
struct blob_t g, h[35]; /* to be prohibited: mix of simple variable , pointer and

array declaration */

38 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Good example
uint32_t a,
uint32_t *b; /* separation of the simple variable and the pointer */
struct blob_t g;
struct blob_t h[35]; /* as above for separation of the array and simple variable

*/
uint32_t abs, ord; /* joint declaration of two functionally -related variables */
abs = 0; /* assignment of the two variables */
ord = 0;

6.1.1 References
[Cert] Rec. DCL04-C Do not declare more than one variable per declaration.

6.2 Free declaration of variables
Since C99, variables can be declared anywhere in the code. This feature seems practical, but its
abuse can make reading the code significantly more complex and may lead to possible redefinition
of variables.

RECO
53

RECOMMENDATION — Group variable declarations at the beginning of the
block in which they are used
For reasons of readability and to avoid redefinition, variable declarations have to
be grouped at the beginning of the file, of the function or of the block statement
according to their scope.

Information
This recommendation is not strictly related to security but has an impact on the
readability, portability and/or maintainability of the code, and concerns all types of
development.
The -Wdeclaration-after-statement GCC and CLANG compiler option can help
with enforcing this recommendation.

A very common practice for loop counters is to declare them directly in the associated loop. This
“on the fly” declaration is accepted, but a special care must be taken to ensure that the associated
variable does not mask one of the other variables used in the body of the loop.

Bad example
In the following code, the variables are declared “on the fly” and not in a grouped
and structured manner. This type of practice makes it more complex to identify all
the variables declared, thus increasing the risk of variable shadowing.
#include <stdint.h>
uint8_t glob_var; /* global variable */
uint8_t fonc(void)
{

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 39

uint8_t var1; /* local variable */
if (glob_var >=0)
{

/* ... */
}
else

var1=glob_var;
uint8_t var2; /* other local variable declared in the middle of a block */
/* ... */

}
uint8_t glob_var2; /* other global variable declared between two functions */
void main(void)
{

uint8_t x = fonc();
/* ... */

}

Good example
The variables are declared in a grouped and structured way at the beginning of the
blocks, which makes them easier to read.
#include <stdint.h>

uint8_t glob_var; /* global variable declared together */
uint8_t glob_var2;

uint8_t fonc(void)
{

uint8_t var1; /* local variables declared together at the beginning of the
function */

uint8_t var2;
if (glob_var >= 0)
{

/* ... */
}
else
{

var1 = glob_var;
}
/* ... */

}
void main(void)
{

uint8_t x = fonc();
/* ... */

}

6.3 Declaration of constants
The direct use of numerical values (or characters and constant or literals) makes the source code
difficult to maintain. If a value is changed, one has to remember to change all the statements in
which the value is used.

RULE
54

RULE — Do not use hard-coded values
The values used in the code must be declared as constants.

The constant declaration rule is also to be applied for all types of values appearing several times in
the source code. Therefore, if a character or string is repeated several times, it must also be defined
using a global const variable or, failing that, using a preprocessor macro.

40 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Centralising the declaration of constants ensures that the change in their value is applied across
the entire implementation.

GOOD
PRACTICE

55

GOOD PRACTICE — Centralise the declaration of constants at the beginning
of the file
To make it easier to read, the constants are declared together at the beginning of the
file.

To identify these constants, several rules must be respected.

RULE
56

RULE — Declare constants in upper case

Constants that do not require type checking are declared with the keyword #define.

RULE
57

RULE — Constants that do not require type checking are declared with the
#define preprocessing directive

RULE
58

RULE — Constants requiring explicit type checking must be declared with
the keyword const

RULE
59

RULE — Constant values must be associated with a suffix depending on
the type
To avoid misinterpretation, constant values must use a suffix based on their type:
n the suffix U must be used for all unsigned integer type constants;

n to indicate a long (or long long for C99) type constant, the suffix L (or LL re-
spectively) must be used instead of l (or ll respectively) in order to avoid any
ambiguity with the number 1;

n floating values are by default considered as double; use the suffix f for the float
type (or d for the double type respectively).

Warning
By default, integer values are considered int type and floating values are considered
double type.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 41

RULE
60

RULE — The size of the type associated with a constant expression must
be sufficient to contain it
It must be ensured that the constant values or expressions used do not exceed the
type associated with them.

To avoid any confusion, octal constants are to be prohibited. Some cases can be tolerated such as
UNIX file modes, but they will be systematically identified and commented on.

RECO
61

RECOMMENDATION — Prohibit octal constants
Do not use octal constants or escape sequences.

Bad example
The following example does not centralise the definition of the constants. Certain
constants have not been declared. There is also an absence of specific naming for
the constants.
#define octal_const 075 /* octal base numerical constant and name in lower case */

const int64_t b = 0l; /* l and not L, and constant naming problem */
uint8_t buffer[0x82]; /* constant not declared and type check needed for this

constant */
int16_t i;

for(i = 0; i < 0x82; i++) { /* hard-coded value */
...

}

printf("Message\012"); /* octal base escape sequence \012 = \n */

Good example
The following code applies the different rules and recommendations for the declara-
tion of constants.
const uint32_t INIT_VALUE = 0x1294U; /* declared constant and with the necessary

type check */

#define BUFFER_SIZE 0x82U /* declared constant with type check not necessary */

const int64_t B = 0L; /* correction of the suffix and specific naming of the
constant */

uint8_t buffer[BUFFER_SIZE];
uint16_t i;

for(i = 0; i < BUFFER_SIZE; i++) {
...

}

6.3.1 References
[Misra2012] Rule 11.8 A cast shall not remove a const or volatile qualification from the type pointed
to by a pointer.

42 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Misra2012] Rule 7.1. Octal constants shall not be used.
[Misra2012] Rule 7.2. A u or U suffix shall be applied to all integer constants that are represented
in an unsigned type.
[Misra2012] Rule 7.3. The lowercase character l shall not be used as a literal suffix.
[Misra2012] Rule 7.4. A string literal shall not be assigned to an object unless the object’s type is
”pointer to a const-qualifed char”.
[Misra2012] Rule 12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-
around.
[Misra2012] Dir. 4.5 Identifiers in the same name space with overlapping visibility should be typo-
graphically unambiguous.
[Cert] Rec. DCL16-C Use L, not l, to indicate a long value.
[Cert] Rec. DECL00-C Const-qualify immutable objects.
[Cert] Rec. STR05-C Use pointers to const when referring to string literals.
[Cert] Rec. DECL18-C Do not begin integer constants with 0 when specifying a decimal value.
[Cert] Rule EXP40-C Do not modify constants objects.
[Cert] Rule STR30-C Do not attempt to modify string literals.
[Cert] Rec. EXP05-C Do not cast away a const qualification.
[Cert] Rec. DCL02-C Use visually distinct identifiers.
[Cert] Rec. DCL06-C Use meaningful symbolic constants to represent literal values.
[Cwe] CWE-547 Use of Hard-coded, security relevant constants.
[Cwe] CWE-704 Incorrect type conversion or cast.
[IsoSecu] Modifying string literals [strmod].

6.4 Limited use of global variables
When global variables are used, it is difficult to identify every function thatmodifies these variables.
Furthermore, if a global variable is not named according to clear naming conventions, reading the
code of a function using this variable does not immediately identify the side effect of the function
on this global variable. This specific naming scheme must be clear and remains the choice of the
developer or of the developing team (use of upper case, prefix g_, etc.).

In addition, the use of global variables can quickly lead to problems of concurrency in the case of a
multi-tasking application. For each of the global variables, the developer must study the possibility
of limiting the scope of the variable systematically.

RULE
62

RULE — Limit global variables to what is strictly necessary
Limit the use of global variables and give preference to function parameters in order
to propagate a data structure through an application.

Bad example
The following code uses a global variable. However, its use could easily be avoided.
static uint32_t g_state;

void foo(void) {
...

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 43

g_state = 1;
}

void bar(void) {
...
g_state = 2;

}

int main(int argc, char* argv[]) {
foo();
bar();
...

}

Good example
The following example does not use a global variable. The variable state is propa-
gated from function to function by passing it as a parameter:
void foo(uint32_t* state) {

...
(*state) = 1;

}

void bar(uint32_t* state) {
...
(*state) = 2;

}
int main(int argc, char* argv[]) {

uint32_t state = 0;
foo(&state);
bar(&state);
...

}

6.4.1 References
[Cert] Rec. DCL02-C Use visually distinct identifiers.
[Cert] Rule DCL30-C Declare objects with appropriate storage durations.
[Cert] Rec. DCL19-C Minimize the scope of variables and functions.
[Misra2012] Dir. 4.5 Identifiers in the same name space with overlapping visibility should be typo-
graphically unambiguous.
[Misra2012] Rule 8.9 An object should be defined at block scope if its identifier only appears in a
single function.

6.5 Use of the static keyword
When a function is declared, defined and used only within a single source file, the static storage-
class specifier is often forgotten. Conflicts may then arise at link-time. In addition, the absence of
the static specifier makes code review more difficult because it does not allow to quickly notice
that a function is “private/local”. The static keyword tells the compiler that the variable/function
is indeed a global variable/function but that its visibility must be limited to the source file in which
it is declared.

44 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

The same applies for variables global to a file that are not used outside that file. Global variables of
this type should be systematically declared as static. This limits the scope of these variables only
to the other functions defined in the same file, and therefore limits the exposure of said variables.
These global functions and variables should not be declared in a header file.

RULE
63

RULE — Systematically use the static specifier for declarations
The static storage-class specifier must be used for all global functions and variables
that are not used outside the source file in which they are defined.

6.5.1 References
[Cert] Rec. DCL15-C Declare file-scope objects or functions that do not need external linkage as
static.
[Cert] Rule MSC40-C Do not violate constraints.
[Misra2012] Rule 8.7 Functions and objects should not be defined with external linkage if they are
referenced in only one translation unit.
[Misra2012] Rule 8.8 The static storage class specifier shall be used in all declarations of objects
and functions that have internal linkage.

6.6 Use of the volatile keyword
The volatile keyword must be used to qualify either a variable corresponding to a hardware
area that represents an input/output port in memory, or a variable read or written to by an asyn-
chronous interrupt function. Accesses to such variables should indeed be protected from compiler
optimizations.

RULE
64

RULE — Only variables that can be modified outside the implementation
should be declared volatile
Only variables associated with input/output ports or asynchronous interrupt func-
tions should be declared as volatile to prevent optimisation or reorganisation on
compilation.

Moreover, to avoid undefined behaviour, only a pointer that is itself qualified as volatile can
access a volatile variable.

RULE
65

RULE — Only volatile-qualified pointers can access volatile
variables

6.6.1 References
[Cert] Rec. DCL17-C Beware of miscompiled volatile-qualified variables.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 45

[Cert] Rec. DCL22-C Use volatile for data that cannot be cached.
[Cert] Rule EXP32-C Do not access a volatile object through a nonvolatile reference.
[Misra2012] Rule 2.2 There shall be no dead code.
[Misra2012] Rule 11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer.
[Cwe] CWE-704 Incorrect type conversion or cast.
[Cwe] CWE-561 Dead code.

6.7 Implicit type declaration is prohibited
C90 allows the implicit declaration of variables in terms of omission of the type in certain circum-
stances, such as for the parameters of a function, elements of a structure or the declaration of a
typedef.

Information
In practice, compilers issue a warning (-Wimplicit-int) but implicitly assume that
the type is int.

RULE
66

RULE — No type omission is accepted when declaring a variable
All variables used must have been explicitly declared before use.

Furthermore, the K&R 8 function declaration syntax, such as for example:
int foo(a,p)

int a;
char *p;

{ ...
}

is also prohibited. Firstly, this type of declaration is obsolete and, secondly, it reduces the readabil-
ity of the code and therefore, potentially, the checks made at compiler level.

Bad example
The following code (C90) contains several implicit type declarations.
...
const ACONST = 42; /* prohibited: type of constant not explicitly defined (

implicite int) */
unsigned e; /* prohibited: type of e not explicitly defined (implicit unsigned int)

*/
signed f; /* prohibited: type of constant not explicitly defined
(implicit signed int) */
...
int foo(char a, const b) /* prohibited: type of b not explicitly defined (implicit

int) */
{
...
}

8. Kernighan & Ritchie’s C syntax before ANSI standards

46 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

bar(char c, const int d) /* prohibited: type of return of the function not
explicitly defined (implicit int) */

{
..
}

Good example
All types are now explicit.
...
const int ACONST = 42;
unsigned int e;
signed int f;
...
int foo(unsigned char a, const int b)
{
...
}
int bar(unsigned char c, const int d)
{
...
}

6.7.1 References
[Cert] Rule DCL31-C Declare identifier before using them.
[Misra2012] Rule 8.1 Types shall be explicitly specified.

6.8 Compound literals
Compound literals were introduced by C99 and allow the creation of unnamed objects from a list
of initialisation values. This construction is often used with particular structures that have been
passed as function parameters. The lifetime of a compound literal is either static or automatic
depending on whether it is declared at file or block statement level.

Attempting to access the associated object outside of its scope will result in undefined behaviour.
It is therefore essential to fully understand the scope associated with this type of construction.

RECO
67

RECOMMENDATION — Limit the use of compound literals
Due to the risk of mishandling compound literals, their use must be limited, docu-
mented and special attention must be paid to their scope.

Bad example
#include <stdio.h>
#include <stdint.h>
#define MAX 10

struct point {
uint8_t x,y;

};

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 47

int main(void)
{

uint8_t i;
struct point *tab[MAX];
for (i = 0; i < MAX; i++){

tab[i] = &(struct point){i,2*i};
}
for (i = 0; i < MAX; i++){

printf("%d\n", tab[i]->x); /* undefined behaviour because the compound literal
defined in the previous loop does not exist anymore */

}
...

}

Good example
#include <stdio.h>
#include <stdint.h>

struct point {
uint8_t x,y;

};

#define MAX 10
int main(void)
{

uint8_t i;
struct point tab[MAX];
for (i = 0; i < MAX; i++){

tab[i] = (struct point){i, 2*i};
}
for (i = 0; i < MAX; i++){

printf("%d\n", tab[i].x);
}
...

}

6.8.1 References
[Cert] Rec. DCL21-C Understand the storage of compound literals.
[Cert] Rule DCL30-C Declare objects with appropriate storage durations.
[IsoSecu] Escaping of the address of an automatic object [addrescape].

6.9 Enumerations
The non-explicit value of a constant in an enumeration is 1 higher than the value of the previous
constant. If the first constant value is not explicit then it is 0. If all the values in the enumeration are
implicit, no problem arises, but if the developer makes certain values explicit, an error is possible.
It is therefore better to avoid mixing constants with explicit and implicit values. If constants of
the same enumeration have the same value, this leads to undefined behaviour. If values are made
explicit then all values of the enumeration constants must be made explicit to ensure that none of
the given values are repeated.

48 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RULE
68

RULE — Do not mix explicit and implicit constants in an enumeration
Either all the constants in an enumeration must be made explicit with a single value,
or none at all.

The constants of an enumeration are also subject to the rules of section 6.3, such as the use of
upper case for the declaration of constants.

A use sometimes observed around enumerations is the declaration of anonymous enumerations
for the declaration of constants. For example:

enum {
ZERO,
ONE

};

is used instead of:
const int ZERO=0;
const int ONE=1;

Enumerations are not made for this purpose; it is a misuse that can make the code harder to
understand.

RULE
69

RULE — Do not use anonymous enumerations

Bad example
enum une_enum {

enum1=1,
enum2,
enum3,
enum4=3 /* enum4 et enum3 ont la même valeur */

};

Good example
All constants have a unique value and are in upper case.

enum une_enum {
ENUM1=0,
ENUM2=1,
ENUM3=2,
ENUM4=3

};

6.9.1 References
[Misra2012] Rule 8.12 Within an enumerator list, the value of an implicitly-specified enumeration
shall be unique.
[Cert] Rec. INT09-C Ensure enumeration constants maps to unique values.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 49

6.10 Initialising variables before use
If variables are not initialised on declaration, there is a risk of using the variable when it has not
been initialised. The behaviour is then undefined.

Information
Global and static variables are automatically initialised when they are defined, but
with a default value specified by the standard. Due to the possible lack of knowledge
of these default values, it is recommended to explicitly initialise all variables.

One easy way to ensure this is to do it systematically when declaring a variable if it is declared
alone, or immediately after declaration for multiple declarations.

RECO
70

RECOMMENDATION — Variables should be initialised at or immediately
after declaration
All variables should be systematically initialised when they are declared, or immedi-
ately afterwards in the case of multiple declarations.

Information
The compiler can detect certain missing initialisations. GCC for example provides the
-Wuninitialized option. Subsection 5.3.3 gives more details and also highlights the
limits of such options. In particular, the absence of warning raised by this option is
not sufficient to guarantee that all variables are properly initialized.

Bad example
In the following example, variables are not initialized when they are used.
/* declarations in the body of a function */
uint32_t a;
uint32_t b;
uint32_t c;

a = b + c; /* variables are used but without initialisation */

Good example
In the following code, the variables are correctly initialised before being used (as
soon as they are declared here).
/* declarations in the body of the function */
uint32_t a = 0;
uint32_t b = 0;
uint32_t c = 0;

a = b + c;

6.10.1 References

50 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Misra2012] Rule 9.1: The value of an object with automatic storage duration shall not be read
before it has been set.
[Cert] Rule Exp33-C Do not read uninitialized memory.
[Cwe] CWE-457 Use of uninitialized variable.
[Cwe] CWE-758 Reliance on undefined, unspecified, or Implementation-defined behavior.
[Cwe] CWE-908 Use of uninitialized Resource.
[IsoSecu] Referencing uninitialized memory [uninitref].

6.11 Initialisation of structured variables
The C language offers multiple possibilities for initialising arrays, structures and other structured
variables. As there are many such possibilities, they can be confusing and can also be misinter-
preted.

RULE
71

RULE — Use only one initialisation syntax for structured variables
For the initialisation of a structured variable, only one initialisation syntax must be
chosen and used.

Bad example
int tab[10] = { 0, [4] = 3, 5, 6, [1] = 1, 2 };
struct type_t o = { .a = 10, 0, "bob" };

Good example
int tab[10] = { 0, 1, 2, 3, 5, 6, 0, 0, 0, 0 };
struct type_t o = { 10, 0, "bob" };
struct type_t p = { .a = 10, .b = 0, .c ="bob" };

An initialisation of structured variables often used and accepted is:
int tab[N] = {0};
une_structure st = {0};

This initialisation ensures that all elements/fields of the structured variable are initialised to zero.

Warning
However, the semantics of this notation should not be misunderstood:
int tab[N] = {1}; /* does not mean that all the elements are 1, but that all are at

zero and only the first element is 1 */

This is because, in case of an incomplete initialisation of a structured variable (i.e. if
not all fields/elements are explicitly initialised), then the unlisted fields/elements are
initialised at 0 by default. Please note that this initialisation does not extend to the
padding space.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 51

In addition, C99 introduced the possibility of initialising (a) given element(s) of an array, which
adds yet another possible source of error and confusion or evenmultiple initialisations of the same
elements with potentially different values.

RULE
72

RULE — Structured variables must not be initialised without specifying the
initialisation value and each field/element of the structured variable must
be initialised
Non-scalar variables must be initialised explicitly: each element must be initialised
with a clear identification, without superfluous initialisation values. Alternatively,
the {0} initializer can be used in the declaration. Finally, arrays must have their size
explicitly set when initializing them.

Bad example
The initialisations are not precise in the following example: there are non-explicit ini-
tialisations of the elements of the structured variables and superfluous initialisation
values.
int32_t y[5] = {1, 2, 3}; /* the initialisation is misleading here - in reality,

the last two elements are initialised at zero */

int32_t z[2] = {1, 2, 3}; /* as above - in reality the value 3 is ignored */

int16_t vv[5] = { [0] = -2, [1] = -9, [3] = -8, [2] = 18 }; /* source of error, the
indexes 2 and 3 are not in increasing order and 4 is forgotten */

struct person {
unsigned char name[20];
uint16_t roll;
float marks;
int grades[10];

};

struct person p1 = {" ", 0}; /* obscure */
struct person p2 = {"toto",67,78.3,{0},12}; /* everything is correctly initialised ,

including
all the elements of the array grades which are set to 0, but 12 is ignored */

Good example
Initialisations are now explicit and encompass all elements of the structured vari-
ables without superfluous initialisation values.
int32_t y[5] = { 1, 2, 3, 4, 5 }; /* full initialisation */

int32_t z[2] = { 1, 2 }; /* no superfluous elements */

int32_t w[3] = { 0 }; /* accepted notation to initialise all elements with the
value 0 */

int16_t vv[5] = { [0] = -2, [1] = -9, [2] = 18, [3] = -8, [4] = 33 }; /* ok */

struct person {
unsigned char name[20];
uint16_t roll;
float marks;
int grades[10];

};

struct person p1 = { .name = "titi", .roll = 12, .marks = 10.0f, .note = {0}};
/* all elements are explicitly initialised */

52 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

struct person p2 = { .name="toto", .roll=67, .marks=78.3, .grades={0}}; /* another
example of recognised initialisation , this time without superfluous elements

*/

6.11.1 References
[Misra2012] Rule 9.2 The initializer for an aggregate or union shall be enclosed in braces.
[Misra2012] Rule 9.3 Arrays shall not be partially initialized.
[Misra2012] Rule 9.4 An element of an object shall not be initialized more than once.
[Misra2012] Rule 9.5 Where designated initializers are used to initialize an array object the size of
the array shall be specified explicitly.
[Cert] Rec. ARR02-C Explicitly specify array bounds, even if implicitly defined by an array initial-
izer.
[Cwe] CWE-665 Incorrect or incomplete initialization.

6.12 Mandatory use of declarations
When identifiers are declared but are not used afterwards, it may mean that the developer made
a mistake when writing the code and that one element was used instead of another or that its use
was removed from the program.

Information
GCC and CLANG compilation options such as -Wunused-variable and
-Wunused-parameter make it possible to detect this kind of patterns.

RECO
73

RECOMMENDATION — Every declaration must be used
All declared identifiers must be used, whether they are variables, functions, labels,
function parameters or anything.

Warning
When developing a library, not all declared identifiers are necessarily used : functions
and variables exported by the library may obviously not be used by the library itself.

Bad example
In the following code, variables declared but not used must be deleted.
uint32_t init_list(list_t** pp_list) {

list_t* p_list = NULL;
list_element_t* p_element = NULL;
uint32_t ui32_list_len = 0;

if (NULL == pp_list) {
return 0;

}

(*pp_list) = (list_t*)malloc(sizeof(list_t));

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 53

if (NULL == (*pp_list)) {
return 0;

}

(*pp_list)->p_head = NULL;
(*pp_list)->p_tail = NULL;

return 1;
}

Good example
In the following example, all declared variables are used.
uint32_t init_list(list_t** pp_list) {

if (NULL == pp_list) {
return 0;

}

(*pp_list) = (list_t*)malloc(sizeof(list_t));

if (NULL == (*pp_list)) {
return 0;

}

(*pp_list)->p_head = NULL;
(*pp_list)->p_tail = NULL;

return 1;
}

6.12.1 References
[Misra2012] Rule 2.2 There shall be no dead code.
[Misra2012] Rule 2.3 A project should not contain unused type declarations.
[Misra2012] Rule 2.4 A project should not contain unused tag declarations.
[Misra2012] Rule 2.5 A project should not contain unused macro declarations.
[Misra2012] Rule 2.6 A project should not contain unused label declarations.
[Misra2012] Rule 2.7 There should be no unused parameters in functions.
[Cert] Rec. MSC07-C Detect and remove dead code.
[Cert] Rec. MSC13-C Detect and remove unused values.
[Cert] Rec. MSC12-C Detect and remove code that has no effect or is never executed.

6.13 Naming of variables for sensitive data
It is imperative to use separate variables used to store sensitive and non-sensitive data. In the
absence of a well-defined naming convention, the developer risks using variables to successively
store sensitive and non-sensitive data.

RULE
74

RULE — Use separate variables for sensitive data and non-sensitive data

54 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Separate variables should also be used for unencrypted sensitive data and sensitive data protected
in confidentiality and/or integrity.

RULE
75

RULE — Use different variables for sensitive data that are protected in
confidentiality and/or integrity than the ones used for unprotected sensitive
data

These rules are more of a principle of secure coding to avoid handling non-sensitive, encrypted
sensitive and unencrypted sensitive data in the same variable.

It goes without saying that hard-coding any sensitive information of any kind (password, login,
encryption key, etc.) is forbidden.

RULE
76

RULE — Never hard-code sensitive data

Bad example
The code below does not use a naming convention.

#define KEY_SIZE 32U
#define BUFFER_SIZE 512U

size_t key_len = 0;
size_t clear_data1_len = 0;
size_t encrypted_data2_len = 0;
uint8_t key[KEY_SIZE];
uint8_t data1[BUFFER_SIZE];
uint8_t data2[BUFFER_SIZE];
uint32_t error_code = 0;
error_code = cipher_data(clear_data, clear_data_len, key, key_len,
encrypted_data, encrypted_data_len);

Good example
In the following example, a naming convention is used so that the same variables are
not used for encrypted or unencrypted sensitive data.

#define KEY_SIZE 32U
#define BUFFER_SIZE 512U

/* conventions :
suffix s for sensitive data variables‘’
clear prefix for unencrypted data‘’
encrypted prefix for encrypted data */

size_t encrypted_key_len_s = 0;
size_t clear_data_len_s = 0;
size_t encrypted_data_len_s = 0;
uint8_t encrypted_key_s[KEY_SIZE];
uint8_t clear_data_s[BUFFER_SIZE];
uint8_t encrypted_data_s[BUFFER_SIZE];
uint32_t encrypted_error_code_s = 0;

encryptederrorCode = cipher_data(clear_data_s, clear_data_len_s,
encrypted_key_s, encrypted_key_len_s , encrypted_data_s, encrypted_data_len_s);

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 55

6.13.1 References
[Misra2012] Dir. 4.5 Identifiers in the same name space with overlapping visibility should be typo-
graphically unambiguous.
[Cert] Rec. DCL02-C Use visually distinct identifiers.
[Cert] Rule MSC41-C Never hard code sensitive information.
[Cwe] CWE-259 Use of Hard-Coded Password.
[Cwe] CWE-798 Use of Hard-Coded Credentials.

56 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

7
Types and type conversions

7.1 Explicit size for integers

Warning
The C standard does not define an explicit size for each type of integer. In particular,
for the int type, depending on the architecture, it can be on 16, 32 or 64 bits.

Therefore, use of the int type is risky since it is necessary to be sure of the associated size and
possible values to avoid any overflow or unexpected behaviour such as a value wrap (for unsigned
integers).

It is therefore best to avoid using this type unless the developer is certain that the associated value
range is contained within its range (e.g. in loop counters).

The type name must include its size on the target machine explicitly, like those defined in the
header file stdint.h, available in C99. Its use is to be preferred to the generic int type. In C90,
equivalent types must be defined and used. The redefinition of integer types is possible but this
redefinition must be explicit on both the associated size and sign.

RECO
77

RECOMMENDATION — Only integer types with an explicit size and sign
should be used

Furthermore, the plain char type should not be used for numeric values as its sign is not speci-
fied by the C standard and is implementation-defined. This type must be restricted to character
handling.

RULE
78

RULE — Only signed char and unsigned char types must be
used to handle numeric values

Bad example
#define MAXUINT16 65535U
int value;
char c = 35; /* sign is not specified */

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 57

if (value >= MAXUINT16)
{

/* depending on the architecture */
}

Good example
#include <stdint.h> /* if C99 */
#define MAXUINT16 65535U
unsigned char c = 35U; /* sign is explicit , for numeric value manipulation */
...
uint32_t value; /* if C99 */

typedef unsigned char uint8_t; /* type definition in C90 */
if (value >= MAXUINT16)
{

/* ... */
}

7.1.1 References
[Misra2012] Rule 10.1 Operands shall not be of an inappropriate essential type.
[Misra2012] Rule 10.3 The value of an expression should not be assigned to an object with a nar-
rower essential type or of a different essential type category.
[Misra2012] Rule 10.4 Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category.
[Misra2012] Rule 8.1 Types shall be explicitly specified.
[Misra2012] Directive 4.6 typedef that indicate size and signedness should be used in place of the
basic numerical types.
[Cert] Rec. INT00-C Understand the data model used by your implementation(s).
[Cert] Rec. INT07-C Use only explicitly signed or unsigned char type for numeric values.
[Cert] Rule INT35-C Use correct integer precisions.
[Cert] Rec STR00-C Represent characters using an appropriate type.
[Cwe] CWE-682 Incorrect calculation.

7.2 Type alias
The typedef operator allows the redefinition of a type that has itself been redefined using typedef.
It is then difficult to follow the actual type checking of a variable. There is a significant risk of
confusion and duplication of type definitions. The types defined by the language or by external
libraries should therefore not be redefined more than once. If this is done intentionally by the
developer for strong type checking, it should be commented on and explained, but also controlled
to avoid any type confusion.

RECO
79

RECOMMENDATION — Do not redefine type aliases

58 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
The following example (C90) shows multiple aliases of the same type.
typedef unsigned short uint16_t; /* definition of type uint16_t */
typedef unsigned short uint16_type; /* type uint16_type is an alias of type

uint16_t */
typedef uint16_t unsigned_short; /* type unsigned_short is a redefinition of type

uint16_t */

Good example
In the following example (in C90, i.e. before the introduction of stdint.h), only one
type is correctly defined from the definition of a standard type of the language.
typedef unsigned short uint16_t; /* definition of type uint16_t */

7.2.1 References
[Cert] Rec. PRE03-C Prefer typedefs to defines for encoding non-pointer types.

7.3 Type conversions
C compilers perform implicit conversions from one type to another. However, these type promo-
tions and implicit conversions can lead to errors (loss of information, miscalculations). In addition,
the absence of explicit conversions does not facilitate proofreading of the code. It is therefore
necessary to add the type conversion operator systematically and not to mix signed and unsigned
types in the same arithmetic operation (operators: +, -, *, /, %, ~, >, <, >=, <=, <<, >>, etc.).

Multiple implicit conversions are made, whether in C90 or C99.

On the one hand, integer promotion is performed on integer values whose type is smaller than the
int type and when these integer values are subjected to an operation (binary operators, unary
operators, shifts, etc.). These integer values are then automatically and systematically converted
to int or unsigned int.

On the other hand, type balancing corresponds to the usual conversion to a common type when
operands are of different types. Finally, the last implicit conversion corresponds to the assignment
of a value in a different type.

Information
Details of integer promotion can be found in sections 6.2.1.1. and 6.3.1.1. of stan-
dards [AnsiC90] and [AnsiC99] respectively. For type balancing, the relevant sections
are 6.2.1.5 and 6.3.1.8 of standards [AnsiC90] and [AnsiC99] respectively.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 59

RULE
80

RULE — Detailed and precise understanding of the conversion rules
The developer needs to know and understand all the implicit conversion rules for
integer types.

The developer must make explicit the conversions implicit in the code to avoid any errors. The
classic case that is often a source of errors is an implicit conversion between signed and unsigned
types.

RULE
81

RULE — Explicit conversions between signed and unsigned types
Prohibit implicit type conversions. Use explicit conversions, particularly between
signed and unsigned types.

Bad example
signed int v1 = -1;
unsigned int v2 = 1;
if (v1 < v2)
{

/* v1 converted to unsigned int and value -1 becomes UINT_MAX , therefore the if
condition is always false */

}

Good example
signed int v1 = -1;
unsigned int v2 = 1;
if (v1 < (signed int)v2)
{

/* v2 is explicitly converted to a signed integer - the condition is true */
}

Again for the same reasons, no implicit conversion should be made between an integer type and
a floating type or from an integer type to a smaller integer type.

Bad example
In the following lines, conversions are implicit.
uint32_t u32;
int32_t s32;
uint16_t u16;
double dbl;
uint8_t idx;

s32 = 42;
u32 = s32; /* implicit conversion */
u16 = u32 + 2 * s32; /* implicit conversion to a smaller type */
dbl = u32 / u16; /* the result is 0 (integer division) */
s32 = dbl; /* implicit conversion float -> integer */

/* the following loop is infinite: idx being unsigned , idx >= 0 is always true
since an unsigned value cannot be negative */

for(idx = 27; idx >= 0; idx--) {
...

}

60 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Tolerated example
The following example shows a code in which the type conversions are explicit. This
is called a tolerated example because other cleaner solutions such as incrementing
the loop index exist.
uint32_t u32;
int32_t s32;
uint16_t u16;
double dbl;
uint8_t idx;

s32 = 42;
u32 = (uint32_t)s32;
u16 = (uint16_t)((int32_t)u32 + 2 * s32);
dbl = (double)u16 / (double)u32;

/* the signed integer cast is used to avoid an infinite loop */
for(idx = 27; (int8_t)idx >= 0; idx--) {

...
}

Good example
int32_t s32;
uint16_t u16;
double dbl;
uint8_t idx;

s32 = 42;
u32 = (uint32_t)s32;
u16 = (uint16_t)((int32_t)u32 + 2 * s32);
dbl = (double)u16 / (double)u32;

/* change of the loop */
idx=27;
while (idx>0)
{

...
}

Information
-Wconversion and -Wsign-conversion warnings provided by GCC and CLANG can
help to detect such implicit conversions.

7.3.1 References
[Misra2012] Rule 10.1 Operands shall not be of an inappropriate essential type.
[Misra2012] Rule 10.3 The value of an expression should not be assigned to an object with a nar-
rower essential type or of a different essential type category.
[Misra2012] Rule 10.4 Both operands of an operator in which the usual arithmetic conversions are
performed shall have the same essential type category.
[Misra2012] Rule 10.5 The value of an expression should not be cast to an inappropriate essential
type.
[Misra2012] Rule 10.6 The value of a composite expression shall not be assigned to an object with
wider essential type.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 61

[Misra2012] Rule 10.7 If a composite expression is used as one operand of an operator in which the
usual arithmetic conversions are performed then the other operand shall not have wider essential
type.
[Misra2012] Rule 10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.
[Cert] Rec. INT02-C Understand integer conversion rules.
[Cert] Rule INT30-C Ensure that unsigned integer operation do not wrap.
[Cert] Rule INT31-C Ensure that integer conversions do not result in lost or misinterpreted data.
[Cert] Rule INT32-C Ensure that operations on signed integers do not result in overflow.
[Cert] Rec. INT18-C Evaluate integer expressions in a larger size before comparing or assigning to
that size.
[Cert] Rec. EXP14-C Beware of integer promotion when performing bitwise operations on integer
types smaller than int.
[Cwe] CWE-190 Integer overflow or wraparound.
[Cwe] CWE-192 Integer coercion error.
[Cwe] CWE-197 Numeric Truncation Error.
[Cwe] CWE-681 Incorrect conversion between numerical types.
[Cwe] CWE-704 Incorrect Type Conversion or Cast.
[IsoSecu] Conversion of signed characters to wider integer types before a check for EOF [signconv].
[IsoSecu] Overflowing signed integers [intoflow].

7.4 Type conversion of pointers to structured variables of
different types

Type conversion from or to structured variables via pointers can result in overflowswhen the target
type is larger than the memory area pointed to. Indeed, a type conversion from one structure to
a larger structure, for example, gives undesirable access to areas of memory outside the initial
structure.

In addition, type conversion from/to structured variables makes proofreading the code more com-
plex.

RECO
82

RECOMMENDATION — Do not use pointer type conversion on types struc-
tured differently

Bad example
In the following code, a structure type conversion will result in an overflow.
#define TAB_SIZE 16U

typedef struct {
int32_t magic;

} s_a;

typedef struct {

62 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

int32_t magic;
int16_t s;
uint8_t x[TAB_SIZE];

} s_b;

void foo(s_a* structa) {
s_b* p = (s_b*)structa; /* type conversion to be excluded */

p->magic = 0xBAADCAFE;
p->s = 0xDEAD; /* overflow outside of the structure s_a */
p->x[0] = 4; /* and risk of overwritten data (buffer overflow) */

}

Good example
In the following code, the structure type conversion is no longer performed.
#define TAB_SIZE 16U

typedef struct {
int32_t magic;

} s_a;

typedef struct {
s_a h;
int16_t s;
uint8_t x[TAB_SIZE];

} s_b;

void foo(s_b* structb) {
structb->h.magic = 0xCAFEBABE;
structb->s = 0xBEEF;
structb->x[0] = 4;

}

7.4.1 References
[Misra2012] Rule 11.2 Conversions shall not be performed between a pointer to an incomplete
type of any other type.
[Misra2012] Rule 11.3 A cast shall not be performed between a pointer to object type and a pointer
to a different object type.
[Misra2012] Rule 11.8 A cast shall not remove a const or volatile qualification from the type pointed
to by a pointer.
[Cert] Rule EXP36-C Do not cast pointer into more strictly aligned pointer types.
[Cwe] CWE-704 Incorrect type conversion or cast.
[IsoSecu] Converting pointer values to more strictly aligned pointer types [alignconv].

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 63

8
Pointers and arrays

In this section we are referring only to one-dimensional arrays, but as any multi-dimensional array
can also be represented via a one-dimensional array, all the rules and recommendations therefore
also apply to multi-dimensional arrays.

8.1 Standardised access to the elements of an array
Confusion between arrays and pointers is common, and it is often assumed that an array behaves
as a constant pointer to its first element. This statement is a shortcut that proves to be false in
general.

Therefore, for the following code:
int32_t tab1[6];
int32_t * tab2 = malloc(6 * sizeof(int32_t));
int32_t * tab3 = tab1;
int32_t * tab4 = tab2;

printf("tab1: %p, %p, %p\n", tab1, &tab1[0], &tab1);
printf("tab2: %p, %p, %p\n", tab2, &tab2[0], &tab2);
printf("tab3: %p, %p, %p\n", tab3, &tab3[0], &tab3);
printf("tab4: %p, %p, %p\n", tab4, &tab4[0], &tab4);

the result obtained is as follows:
tab1: 1559248928, 1559248928, 1559248928 /* tab1=&tab1[0]=&tab1 all represent the address of

the first element in the array */
tab2: 911295072, 911295072, 1559248904 /* &tab2 is the address of the pointer returned by

malloc, pointing to the array, and tab2 (or &tab2[0])
is the address of the first element of the array
tab2 */

tab3: 1559248928, 1559248928, 1559248912 /* similar case to tab2 */
tab4: 911295072, 911295072, 1559248920 /* similar case to tab2 */

The nuances between arrays and pointers are numerous and we can only draw the reader’s atten-
tion to this point and urge them to tread carefully.

Another example of a confusing code is:
int *var[N];
int (*var2)[N];

The first line involves declaring N int type pointers in memory, i.e. an array of N int type pointers.
The second line declares a pointer to an array of N int type elements in memory.

The standard clarifies this point by explaining that any array type expression is converted to a
pointer type expression pointing to the first element of the array and is not an lvalue except when

64 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

the initial expression is used as an operand of the operators sizeof, _Alignof or & or if the expres-
sion is a literal string used to initialise an array.

Expression
An expression is not an object in memory but a piece of source code such as a+b or
&a, for example.

Lvalue
An lvalue (locator value) is an expression with a type, even incomplete, but different
from void which is associated with an address in memory.

An array is not a modifiable lvalue, which means that it cannot be assigned, incremented or modi-
fied in general.
int tab[N];
tab = 0; // error
tab--; // error

When the array expression is converted to a pointer type expression, this expression then produces
a simple value and is no longer an lvalue.

Warning
For an array tab, the tab and &tab[0] notations represent the address of the first
element of the array created in memory. The &tab notation, on the other hand, will
vary. When an array is declared statically, the array address cannot change and there
is no pointer creation as such on the array: the tab notation is similar to a label
managed by the compiler containing the address of the array.
n Therefore, if the array is declared statically (case of tab1 in the previous example),

&tab always represents the address of the first element of the array, i.e. the address
of the array.

n On the other hand, if the array is declared dynamically, the tab notation rep-
resents the pointer containing the address of the array created in memory and
therefore, &tab represents the address of the pointer to the array (case of tab2 in
the example).

The C standard allows access to the iþelement of a tab array to be represented in a variety of ways,
which can be a source of errors or confusion.

Warning
For a tab array, access to the iþelement can be written:
(tab+i); / usual notation 1 */
tab[i]; /* usual notation 2 */
(i+tab); / interchangeable array and index ! */
i[tab]; /* interchangeable array and index ! */

These notations are all recognised by the standard and are therefore correct, but this
can quickly reduce understanding of the code. Note that, even with demanding com-
pilation options, neither GCC nor CLANG will issue alerts on these types of notations,

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 65

which can be a source of errors.

In order to avoid any ambiguity and misunderstanding of the code and therefore potential errors,
notations tolerated by the standard and intended to invert the index and the name of an array will
not be used.

RULE
83

RULE — Access to the elements of an array will always be by designating
as the first attribute the array and as the second attribute the index of the
element concerned
Access to the iþelement of an array will always be written with the name of the array
first followed by the index of the element to be reached.

Furthermore, again for reasons of transparency, the typical notation of the arrays using square
brackets [] will be preferred.

RECO
84

RECOMMENDATION — Access to elements in an array should be using
square brackets
In the case of an array type variable, the dedicated notation (via square brackets)
must be used to avoid any ambiguity.

Bad example
for (i = 0; i< size_tab; i++) {

(i+tab) = i; / the square brackets are not used and the index is in the first
position */

...
}

Good example
for (i = 0; i < size_tab; i++) {

tab[i] = i;
...

}

8.1.1 References
[Cert] ARR00-C Understand how arrays work.

8.2 Non-use of VLAs
The VLAs 9 introduced with C99 correspond to arrays whose size is not associated with a constant
integer expression at compilation but with an integer variable. This therefore corresponds to im-
plementing an object of variable size on the stack. If the size of the array is not strictly positive,

9. Variable-Length Array

66 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

this corresponds to undefined behaviour of C. Moreover, for an excessive array size, the program
may not behave as expected. Finally, if the size of said array can be controlled by the user, it is a
vulnerability. For all of these reasons, VLAs should not be used.

Information
The -Wvla option provides alerts on the use of VLAs in the code.

RULE
85

RULE — Do not use VLAs

8.2.1 References
[Misra2012] Rule 18.8 Variable-length array types shall not be used.
[Cert] ARR32-C Ensure size arguments for VLA are in a valid range.
[Cert] MEM05-C Avoid large stack allocations.
[Cwe] CWE-758 Reliance on undefined, unspecified, or Implementation-defined behavior.
[IsoSecu] Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted
sink [taintsink].

8.3 Explicit array size
The size of the arrays must be explicit to avoid out of bounds access. This recommendation may
seem redundant in relation to a previous rule imposing explicit declarations, but the focus here is
on the size of the arrays.

RECO
86

RECOMMENDATION — Do not use an implicit size for arrays
In order to ensure that array accesses are valid, their size must be made explicit.

Bad example
In the example below, the size of the array is implicit on initialisation.
int32_t tab [] = { 1, 2, 3 }; /* array 3 elements , implicit size */

Good example
This time, the size of the arrays is explicitly specified.
int32_t tab[3] = { 1, 2, 3 }; /* array of 3 elements , explicit size, with

initialisation */
int32_t tab2[2] = { 2, 3 }; /* array of 2 éléments , explicit size, with

initialisation */

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 67

8.3.1 References
[Misra2012] Rule 8.11 When an array with external linkage is declared, its size should be explicitly
specified.
[Misra2012] Rule 9.5 Where designated initializers are used to initialize an array object the size of
the array shall be specified explicitly.
[Cert] Rule ARR30-C Do not form or use out-of-bounds pointers or array subscripts.
[Cert] Rec. ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer.
[Cwe] CWE-655 Incorrect or incomplete initialization.

8.4 Systematic check for array overflow
Accessing an array element outside the allocated size is a classic coding error. For each access to
the element of an array, it must be checked whether the index used is strictly positive or null and
strictly less than the number of elements allocated for that array.

RULE
87

RULE — Use unsigned integers for array sizes

RULE
88

RULE — Do not access an array element without checking the validity of
the used index
The validity of the used array index must be checked systematically: an array index
is valid if it is greater than or equal to zero and strictly less than the declared size of
the array. In the case of a character array, the end of string character ’\0’ must be
taken into account.

Bad example
i++;
tab[i] = i; /* no overflow check */

Good example
for (i = 0; i < size_tab; i++){ /* size_tab is the number of elements in the array

*/
tab[i] = i;
...

}

8.4.1 References
[Cert] Rec. ARR02-C Explicitly specify array bounds, even if implicitly defined by an initializer.
[Cert] Rule ARR30-C Do not form or use out-of-bounds pointers or array subscripts.

68 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Cert] Rule STR31-C Guarantee that storage for strings has sufficient space for character data and
the null terminator.
[IsoSecu] Tainted, potentially mutilated, or out-of-domain integer values are used in a restricted
sink [taintsink].
[IsoSecu] Forming or using out-of-bound pointers or array subscripts [invptr].
[IsoSecu] Using a tainted value to write to an object using a formatted input or output function
[taintformatio].
[IsoSecu] Tainted strings are passed to a string copying function [taintstrcpy].
[Cwe] CWE-119 Improper Restriction of Operations within the bounds of a Memory buffer.
[Cwe] CWE-120 Buffer Copy without Checking Sizeof Input (Classic Buffer Overflow).
[Cwe] CWE-123 Write-what-where Condition.
[Cwe] CWE-125 Out-of-bounds read.
[Cwe] CWE-129 Improper Validation of Array Index.
[Cwe] CWE-170 Improper Null termination.

8.5 Do not dereference NULL pointers
Dereferencing a NULL pointer leads to undefined behaviour. This may result in an abnormal ter-
mination of the program. Therefore, before dereferencing a pointer, ensure that it is not NULL.

RULE
89

RULE — A NULL pointer must not be dereferenced
Before dereferencing a pointer, the developer must ensure that it is not NULL.

Bad example
In the following function, the pointer passed as a parameter is used without being
checked.
void function(const unsigned char *input)
{

size_t size = strlen(input); /* the pointer may be NULL */
...

}

Good example
Handling of the error relating to the NULL pointer has been added.
void function(const unsigned char *input)
{

if (NULL == input)
{

/* handling of the NULL pointer case */
}
else
{

size_t size = strlen(input);
/* ... */

}
}

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 69

8.5.1 References
[Cert] Rule EXP34-C Do not dereference null pointers.
[IsoSecu] Dereferencing an out-of-domain pointer [nullref].
[Cwe] CWE-476 NULL Pointer Dereference.
[AnsiC99] Section 6.5.3.2.
[AnsiC90] Section 6.3.3.3.

8.6 Assignment to NULL of deallocated pointers
Following the deallocation of the memory pointed to by a pointer, the pointer variable still stores
its address. This is known as a dangling pointer.

Dangling pointer
A dangling pointer is a pointer that contains the memory address of an element that
has been freed.

In case of bugs and incorrect use of the deallocated pointer, the memory may be corrupted. Once
freed, the memory may (or may not) be reused by the system. The result of the use of the memory
area (via the pointer) is then undefined and not necessarily visible, and may cause security prob-
lems (use-after-free). By assigning the pointer to NULL after deallocation, you can specify that the
pointer no longer points to a valid memory area. And in case of an accidental use of the pointer,
no memory area will be corrupted since the pointer no longer points to any valid memory area.

RULE
90

RULE — A pointer must be assigned to NULL after deallocation
A pointer must be systematically assigned to NULL following the deallocation of the
memory it points to.

Bad example
In the code below, the pointer is not set to NULL following its deallocation.
list_t *p_list = NULL;
p_list = create_list();
...
if(p_list != NULL) {

free_list(p_list);
}
/* setting of p_list to NULL is missing */

Good example
In the following example, the pointer is correctly set to NULL following the dealloca-
tion of the area being pointed to.
list_t *p_list = NULL;
p_list = create_list();
...
if(p_list != NULL) {

70 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

free_list(p_list);
p_list = NULL;

}

8.6.1 References
[Cert] Rule MEM30-C Do not access freed memory.
[Cert] Rec MEM01-C Store a new value in pointers immediately after free().
[Misra2012] Rule 18.6. The address of an object with automatic storage shall not be copied to
another object that persists after the first object has ceased to exist.
[Cwe] CWE-415. Double free.
[Cwe] CWE-416. Use after free.
[Cwe] CWE-672 Operation on a resource after expiration or release.
[IsoSecu] Accessing freed memory [accfree].
[IsoSecu] Freeing memory multiple times [dbfree].

8.7 Use of the restrict type qualifier
The restrict qualifier, introduced in C99, is a means of indicating to the compiler that the area
being pointed to cannot be accessedwithout passing via the pointermarked restrict. A restrict-
qualified pointer therefore implies that the object it points to is reached directly or indirectly only
via this pointer. This requires that there are no other aliases on the object you are pointing to.

Alias
Two aliases are two variables or access paths to the same memory area.

Warning
The restrict qualifier is a declaration of the developer’s intention to associate a
single pointer with a memory area, not an actual fact. In practice, nothing prevents
the code from reaching the same area via a different pointer.

The behaviour becomes undefined if objects pointed to by restrict pointers have common mem-
ory addresses. In addition, it is necessary to check for the absence of common memory addresses
on each function call with restrict type parameters, but also during the execution of said func-
tions.

Warning
Several functions in the standard library have restrict type parameters since C99
(memcpy, strcat, strcpy, etc.).

It is very easy to introduce undefined behaviour through the use of restrict, as it must be ensured
that none of the pointers concerned share a memory area, while taking into account function calls

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 71

from the standard library which also have restrict type parameters since C99. The use of the
restrict qualifier directly by the user is therefore to be prohibited.

RULE
91

RULE — Do not use the restrict pointer qualifier
The restrict qualifier must not be used directly by the developer. Only indirect use,
i.e. via the standard library function call, is tolerated, but the developer must ensure
that no undefined behaviour will result from the use of such functions.

Information
The -Wrestrict GCC option makes it possible to alert to the misuse of restrict
pointers.

Bad example
In the following example, restrict type pointers share memory areas and therefore
cause undefined behaviour.
uint16_t * restrict ptdeb;
uint16_t * restrict ptfin;
uint16_t tab[12];
unsigned char * pt1;
unsigned char * pt2;
unsigned char c_str[] = "blabla";
...
ptdeb = &tab[0];
ptfin = &tab[11];
ptdeb = ptfin; /* undefined behaviour */
...
pt1 = pt2 + 2;
memcpy(pt2, pt1, 3); /* undefined behaviour - restrict type memcpy parameters */

Good example
In the following example, the restrict qualifiers have been deleted and there is no
longer any undefined behaviour.
uint16_t * ptdeb; /* deletion of restrict qualifier */
uint16_t * ptfin; /* deletion of restrict qualifier */
uint16_t tab[12];
unsigned char * pt1;
unsigned char * pt2;
unsigned char c_str[] = "blabla";
...
ptdeb = &tab[0];
ptfin = &tab[11];
ptdeb = ptfin; /* ok */
...
pt1 = pt2 + 2;
memmove(pt2, pt1, 3); /* change of function */

8.7.1 References
[Misra2012] Rule 8.14 The restrict type shall not be used.
[IsoSecu] Passing pointers into the same objects as arguments to different restrict-qualified param-
eters [restrict].

72 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Cert] Rule EXP43-C Avoid undefined behavior when using restrict-qualified pointers.

8.8 Limit on the number of pointer indirections
When a pointer has more than two levels of indirection (for example: pointer of pointer of pointer
int32_t ***pppInt32), it becomes difficult to understand the developer’s intentions and the be-
haviour of the code.

RECO
92

RECOMMENDATION — The number of levels of pointer indirection should
be limited to two
The number of levels of indirection for a pointer should not exceed two.

Bad example
The following code shows excessive levels of indirection.
void function(int8_t ***arr_pt) /* 3 levels */
{

int8_t ***pt;
...
}

Good example
In the following example, temporary pointers are introduced to facilitate access to
the data and limit the number of nesting levels.
typedef int8_t *int8ptr_t;
void function(int8ptr_t **arr_pt) /* reduction to two levels */
{

int8_t *pt_temp; /* temporary pointer */
int8ptr_t **pt;

...
}

8.8.1 References
[Misra2012] Rule 18.5 Declarations should contain no more than two levels of pointer nesting.

8.9 Give preference to the use of the indirection operator
->

Two writing methods are possible in the C language to reach a structure field via a pointer: the
indirection operator ptr->field and dereferencing (*ptr).field. However, the second method
is often a source of errors and comprehension problems. It is therefore best to avoid using deref-
erencing (*ptr).field to reach a field of a structure via a pointer.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 73

RECO
93

RECOMMENDATION — Give preference to the use of the indirection oper-
ator ->
The indirection operator -> should be used to reach the fields of a structure via a
pointer.

Bad example
In the following example, the access should be rewritten with the indirection opera-
tor.
(*list.p_head).pNext = NULL;

Good example
In the following code, the indirection operator is correctly used.
list.p_head->pNext = NULL;

8.10 Pointer arithmetic
The C language allows direct access to the memory using pointers. Arithmetic operations can be
applied to the value of a pointer either to increment or decrement it.

Pointer arithmetic
Pointer arithmetic is the use of pointer values as integer values in an elementary
arithmetic operation (subtraction and addition).

Pointer arithmetic is very often used in the case of a pointer to an array element to navigate be-
tween the different elements of the array. Apart from this case, arithmetic on memory addresses
is very risky.

RULE
94

RULE — Only incrementing or decrementing array pointers is authorised
Incrementing or decrementing pointers should only be used on pointers represent-
ing an array or an element of an array.

Arithmetic on void* type pointers is therefore prohibited. No memory size is in fact associated
with the void* type, which causes undefined behaviour, in addition to the violation of the previous
rule.

RULE
95

RULE — No arithmetic on void* pointers is authorised
The use of any arithmetic on void* type pointers must be prohibited.

Even in the case of pointer arithmetic on elements in an array, a special care must be taken to
ensure that the arithmetic will not cause dereferencing outside of the array.

74 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RECO
96

RECOMMENDATION — Controlled pointer arithmetic on arrays
Arithmetic on pointers representing an array or an element of an array must be
carried out ensuring that the resulting pointer will still point to an element of the
same array.

As a result, subtractions or comparisons between pointers will only be relevant for pointers on the
same array.

RULE
97

RULE — Subtraction and comparison between pointers in the same array
only
Only subtractions and comparisons of pointers on the same array are authorised.

Finally, the assignment of a fixed address to a pointer is strongly discouraged.

RECO
98

RECOMMENDATION — A fixed address should not be assigned directly to
a pointer

Bad example
#include <stddef.h>
#include <stdint.h>
void function(int8_t * ptr_param)
{

int8_t tab1[10];
int8_t tab2[100];

int8_t *pt1=&tab1[0];
int8_t *pt2=&tab2[0];

ptr_param ++; /* it is not known whether ptr_param points to an array ... */
pt1++; /* pt1 points to the next element of tab1 */
ptr_param = pt1 + pt2; /* illegal memory access */

if (pt2 >= 15) /* not relevant */
{

/* ... */
}

uint8_t nb_elem = pt2 - pt1; /* the two pointers are not on the same array and
the type is not adapted */

...
}

Good example
#include <stddef.h>
#include <stdint.h>
void function(int8_t * ptr_param)
{

int8_t tab1[10];
int8_t tab2[100];

int8_t *pt1 = &tab1[0];
int8_t *pt2 = &tab2[0];

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 75

pt1++; /* pt1 points to the next element of tab1 */
pt2 = pt2 + 3; /* pt2 points to tab2[3] */
pt1 = pt1 + 8; /* pt1 points to the last elements of tab1 */

if (pt1 >= tab1) /* same array ok */
{

/* ... */
}

ptrdiff_t nb_elem = pt2 - tab2; /* both pointers are on the same array and
dedicated type used (taken from stddef.h) */

...
}

8.10.1 References
[Misra2012] Rule 18.1 A pointer resulting from arithmetic on a pointer operand shall address an
element of the same array as that pointer operand.
[Misra2012] Rule 18.2 Substraction between pointer shall only be applied to pointers that address
elements of the same array.
[Misra2012] Rule 18.3 The relational operators shall not be applied to objects of pointer type ex-
ception where they point into a same object.
[Misra2012] Rule 18.4 The +, -, += and -= operators shall not be applied to an expression of pointer
type.
[Cert] Rule ARR36-C Do not substract or compare two pointers that do not refer to the same array.
[Cert] Rule ARR37-C Do not add or subtract an integer to a pointer to a non-array object.
[Cert] Rule ARR39-C Do not add or substract a scaled integer to a pointer.
[Cert] Rec. EXP08-C Ensure pointer arithmetic is used correctly.
[IsoSecu] Subtracting or comparing two pointers that do not refer to the same array [ptrobj].
[IsoSecu] Forming or using out-of-bounds pointers or array subscripts [invptr].
[Cwe] CWE-469 Use of pointer substraction to determine size.
[Cwe] CWE-468 Incorrect pointer scaling.
[Cwe] CWE-466 Return of pointer value outside of expected range.
[Cwe] CWE-587 Assignment of a fixed address to a pointer.
[AnsiC99] Sections 6.2.5, 6.3.2.3, 6.5.2.1, 6.5.6.
[AnsiC90] Sections 6.1.2.5, 6.2.2.3, 6.3.6, 6.3.8.

76 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

9
Structures and unions

9.1 Declaration of structures
In order to model an entity within a program, it is often necessary to want to associate several
scalar data items (integers, characters, etc.). The definition of independent variables to represent
this entity makes it difficult to understand the code and tedious to pass parameters to a function.
A structure must be used to group together data representing the same entity. And as many struc-
tures must be defined as there are entities to model. You should not use a single structure and
group data relating to different entities in it.

RULE
99

RULE — A structure must be used to group data representing the same
entity
Linked data must be grouped within a structure.

Information
This rule is not linked to an immediate security risk, but is a common-sense rule to
be applied to all developments.

Bad example
In the following example, the lack of structure results in function prototypes that are
difficult to understand.
void rectangle (float x0, float y0, float x1, float y1, float x2,
float y2, float x3, float y3);
void pyramide(float* coords); /* coords is an array */

Good example
The following example correctly uses independent structures to represent different
geometric shapes.
typedef struct point_s {

float x;
float y;

} Point_t;

typedef struct rectangle_s {
point_t xy0;
point_t xy1;
point_t xy2;
point_t xy3;

} rectangle_t;

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 77

typedef struct pyramid_s {
rectangle_t base;
point_t top;

} pyramid_t;

void rectangle (rectangle_t* rect);

void pyramid(pyramid_t* pyra);

9.2 Size of a structure
The size of a structure should not be assumed to be equal to the sum of the size of its elements.
This is due to structure padding. It corresponds to a rearrangement of the fields in memory in
order to properly align the structure (it is referred to as padding fields). For this reason, the size
of a structure should not be calculated by adding up the size of its fields, as this does not take into
account the size of the padding fields.

RULE
100

RULE — Do not calculate the size of a structure as the sum of the size of
its fields
Because of the padding, the size of a structure should not be assumed to be the sum
of the size of its fields.

Bad example
#define SIZE_TABL 100
...
typedef struct{

int tabl[SIZE_TABL];
size_t size;

} my_struct;
...
size_t sizestruct= sizeof(my_struct.tabl)+sizeof(my_struct.size);
/* assumes that the size of the structure is the sum of the size of the elements */
...

Good example
#define SIZE_TABL 100
...
typedef struct {

int tabl[SIZE_TABL];
size_t size;

} my_struct;
...
size_t sizestruct = sizeof(my_struct); /* good size */
...

Warning
The use of non-standard attributes such as packed is not considered in this guide.

78 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

9.2.1 References
[Cert] EXP42-C Do not compare padding data.
[Cert] EXP03-C Do not assume the size of a structure is the sum of the sizes of its members.
[Cert] Rule DCL39-C Avoid information leakage when passing a structure across a trust boundary.

9.3 bit-field
In C, you can specify the size (in bits) of elements of a structure or union, in particular to use
memory more efficiently. Precautions must be taken when using bit-field. On the one hand, an
int type bit-field will not necessarily be signed. In fact, an int variable is indeed signed by default
except in the case of bit-field, where the sign becomes dependent on the compiler implementation.

RULE
101

RULE — All bit-fields must be explicitly declared as unsigned

Furthermore, the internal representation of structureswith bit-fields is also implementation-dependent,
so that no assumption should ever be made about this representation.

RULE
102

RULE — Do not make assumptions about the internal representation of
structures with bit-fields

Bad example
typedef struct structure {

int ok: 1; /* bit-field of size 1 */
int value: 7; /* bit-field for which the sign depends on the compiler used */

} struct_bitfield;
..
struct_bitfield s;
int *pt_s;
pt_s=(int *) &s;
s.ok=1;
..
if(s.ok==1) /* if compiled with gcc for example, by default the bit-fields are
signed, therefore being of size 1, s.ok equals 0 or -1 ! */
{

pt_s++; /* ? */
pt_s=100; / ? */

}

Good example
typedef struct structure {

unsigned int ok: 1; /* unsigned bit-field */
unsigned int value: 7; /* unsigned bit-field */

} struct_bitfield;
..

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 79

struct_bitfield s;
s.ok=1;
..
if(s.ok==1) /* no longer compiler dependent */
{

s.value=100;
}

9.3.1 References
[Cert] Rule EXP11-C Do not make assumptions regarding the layout of structures with bit-fields.
[Cert] Rec. EXP12-C Do not make assumptions about the type of a plain int bit-field when used in
an expression.
[Misra2012] Dir. 1.1. Any implementation-defined behaviour on which the output of the program
depends shall be documented and understood.

9.4 Use of FAMs
FAMs 10 were introduced with C99. This corresponds to declaring as the last member of a structure
an array without dimensions and therefore of flexible size by nature. If the associated structure
is not allocated (or copied) dynamically but on the stack, no space is allocated for this array and
accessing it causes undefined behaviour.

Furthermore, this means accepting arrays of undefined size, which contradicts the rule in sec-
tion 8.3. FAMs are therefore prohibited.

RULE
103

RULE — Do not use FAMs

9.4.1 References
[Misra2012] Rule 18.7 Flexible array member shall not be used.
[Cert] MEM33-C Allocate and copy structures containing a flexible array member dynamically.
[Cert] Rule DCL38-C Use the correct syntax when declaring a flexible array member.

9.5 Do not use unions
The C language, via the union mechanism, allows the same memory space to be used to store
different data types. However, there is a risk of misinterpretation and misuse of the data. The use
of the same space for several data types should therefore be avoided as far as possible.

10. Flexible Array Member

80 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RECO
104

RECOMMENDATION — Do not use unions
The use of the same memory space for different data types is not authorised.

The use of unions must be strictly limited to cases where the type is verified by other means and
only if it is necessary (for network frame parsing for example), and this must be justified with a
comment in the code.

9.5.1 References
[Misra2012] Rule 19.2 The union keyword should not be used.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 81

10
Expressions

10.1 Integer expressions
Several basic precautions should be taken whenever expressions handle integers.

For signed integer operations, it must be ensured that there is no overflow of the size of the asso-
ciated type and for unsigned integer operations, that there will be no value wrap.

RULE
105

RULE — Remove all possible value overflows for signed integers

RECO
106

RECOMMENDATION — Detect all possible value wraps for unsigned inte-
gers

Bad example
In the following function, no overflow is checked.
#include <stdint.h>
void f(uint8_t i, int8_t j)
{

uint8_t ibis = i+ 2;
int8_t j_bis = j +3;

/* ... */
}

Good example
In the following function, overflows are checked.
#include <stdint.h>

void f(uint8_t i, int8_t j)
{

uint8_t ibis;
int8_t j_bis;
if (i > (UINT8_MAX - 2))
{

/* error */
}
else
{

ibis=i+2;

82 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

}
if (j > (INT8_MAX - 3))
{

/* error */
}
else
{

jbis=j+3;
}
/* ... */

}

Similarly, all potential errors due to division by zero must be avoided.

RULE
107

RULE — Detect and remove any potential division by zero
This check must be systematic for any division or computation of remainder of a
division.

Bad example
In the following function, no check on a possible division by zero is performed.
#include <stdint.h>
void func(int8_t i, int8_t j)
{

int8_t result;
result = i / j;
...

}

Good example
In the following function, there is a check on a possible division by zero.
#include <stdint.h>
void func(int8_t i, int8_t j)
{

int8_t result;
if (0 == j)
{

/* error */
}
else
{
result = i / j;
}
...

}

10.1.1 References
[Cert] Rule INT30-C Ensure that unsigned integer operation do not wrap.
[Cert] Rule INT31-C Ensure that integer conversions do not result in lost or misinterpreted data.
[Cert] Rule INT32-C Ensure that operations on signed integers do not result in overflow.
[Cert] Rule INT33-C Ensure that division and remainder operations do not result in divide-by-zero
errors.
[Cert] Rec. INT08-C Verify that all integer values are in range.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 83

[Cert] Rec. INT10-C Do not assume a positive remainder when using % operator.
[Cert] Rec. INT18-C Evaluate integer expressions in a larger size before comparing or assigning to
that size.
[Cert] Rec. INT16-C Do not make assumptions about representation of signed integers.
[Cwe] CWE-190 Integer overflow or wraparound.
[Cwe] CWE-682 Incorrect calculation.
[Cwe] CWE-369 Divide by Zero.
[IsoSecu] Integer division errors [diverr].

10.2 Readability of arithmetic operations
Understanding an arithmetic calculation can be complex if no effort has been made to make it
legible. Moreover, depending on the writing method chosen for the calculation, it may prove
ambiguous.

A complex expression will need to be simplified to aid understanding. If the complexity is relevant
(optimisation, etc.), a comment should explain and accompany the expression. A fairly common
example is to use a n-bit left shift for a multiplication by 2n (or a right shift for a division). Thus,
the following expression:
a << b;

can be used to perform the operation a ∗ 2b. Such expressions do not help with understanding the
code. In addition, these shifts must comply with precise rules taking into account the number of
bit shifts requested and the size of the type concerned (cf. section 10.7). It is recommended to use
bit shifts only when the purpose is to handle the bits of a register, for example.

RECO
108

RECOMMENDATION — Arithmetic operations should be written in a way
that assists with readability
Arithmetic operations that are as explicit (natural) as possible and follow the logic
of the program must be used.

Bad example
In the following example, the arithmetic operations are not readable. Understanding
of the operations is not immediate.
/* In the following calculation , we want to calculate a² + 4ac + b² */
uint64_t res;
uint32_t a, b, c;
res = a * a + ((a * c) << 2) + b * b; /* an explanation would be welcome */
/* a<<b is equalivaent to a* 2^b but here the bit shift is used for a

multiplication */
...
/* mask computation */
uint32_t bitfield = 0xCAFEBABE;
uint32_t n, bitmask;
n = 4;
bitmask = 1;
for(n = n; n > 0; n--) {

bitmask = 2 * bitmask;
} /* on the contrary here, the bit shift would have been more logical */

84 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

bitfield = bitfield & (~bitmask);

Good example
The following code performs calculations using simple arithmetic operations.
/* computation of a² + 4ac + b² */
uint64_t res;
uint32_t a;
uint32_t b;
uint32_t c;
res = (a * a) + (4 * (a * c)) + (b * b); /* plus clair */
...
/* mask computation */
uint32_t bitfield = 0xCAFEBABE;
uint32_t n = 4;
uint32_t bitmask
bitmask = 2 << n; /* bits handling */
bitfield = bitfield & (~bitmask);

10.2.1 References
[Cert] Rec. INT14-C Avoid performing bitwise and arithmetic operations on the same data.

10.3 Use of parentheses to make explicit the order of the
operators

The C language has many operators, with different levels of priority in terms of their associativ-
ity. However, the absence of parentheses in an expression makes it difficult to understand and
proofread.

The systematic use of parentheses in the calculations makes it possible to clearly show and choose
the priority of the operations and the order in which the calculation is performed.

Information
The C language operators and their priorities are presented in appendix D.

RULE
109

RULE — Explanation of the order of evaluation of calculations through the
use of parentheses
To avoid any ambiguity in an expression, its subexpressions must be surrounded by
parentheses to make the order of evaluation of a calculation more explicit.

10.3.1 References

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 85

[Cert] EXP10-C Rec. Do not depend on the order of evaluation of subexpressions or the order in
which side effects take place.
[Cert] Rule EXP30-C Do not depend on the order of evaluation for side effects.
[Misra2012] Adv. 12.1 The precedence of operators within expressions should be made explicit.
[Misra2012] Rule 13.2 The value of an expression and its persistent side effects shall be the same
under all permitted evaluation orders.
[Misra2012] Rule 13.5 The right hand operand of a logical && or || operator shall not contain
persistant side effects.
[Cwe] CWE-783 Operator Precedence Logic Error.

10.4 No multiple comparison of variables without
parentheses

It is common to want to check the value of a variable against a lower and an upper limit, and
the shortcut of doing this in a single statement without parentheses is an error. Let us take the
following expression as an example: (0<=x<=n). The left side, i.e. 0<=x, is evaluated first. The
result of this evaluation (0 or 1) is then compared with the value to the right, which will always
be checked for any value of n greater than or equal to 1. The statement (0<=x<=n) is therefore
semantically equivalent to ((0<=x)<=n) and not to ((0<=x)&&(x<=n)).

Another classic error is the combined if(a==b==c) equality test whose objective is, a priori, to
verify that the three variables are equal. In practice, as in the previous case, this test does not
behave as the developer expects. Indeed, this conditional will only be true if the three variables
are 1 or if c is 0 and a and b are different.

Boolean expression
The C language does not have a true boolean type in C90. The boolean type was
introduced with C99. It has an associated library (stdbool.h). However, we will
use the term boolean expression for expressions in the C language, even before C99,
where the result of the evaluation corresponds to a truth value, as is typically the
case for comparison expressions. A boolean expression corresponds to the false truth
value for an evaluation returning the value 0. Any other value returned by a boolean
expression (whether it is 1 or a negative, positive, integer or non-integer value) cor-
responds to the true truth value.

Boolean expressions containing at least two relational operators are prohibited without parenthe-
ses and must be broken down either into nested conditionals or into several relational expressions.

RECO
110

RECOMMENDATION — Avoid expressions of comparison or multiple equal-
ity

86 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RULE
111

RULE — Always use parentheses in expressions of comparison or multiple
equality
Boolean expressions of comparison or equality containing at least two relational op-
erators are prohibited without parentheses.

Bad example
#define N 100
...
if (0 <= x <= N) {

/* statement 1 ALWAYS executed */
} else {

/* statement 2 NEVER executed */
}
...
if (30 < x < 40) {

printf("pb"); /* ALWAYS executed */
}
...

Good example
#define N 100
...
if ((0 <= x) && (x <= N)) { /* case 1 : breakdown into 2 relational expressions */

/* statement 1 */
} else {

/* statement 2 */
}
...

if (30 < x) { /* case 2 : breakdown into 2 nested conditional statements */
if (x<40) {

printf("pb");
...

}}

10.4.1 References
[Misra2012] Rule 10.1 Req. Operands shall not be of an inappropriate essential type.
[Misra2012] Rule 12.1 The precedence of operators within expressions should be made explicit.
[Cert] EXP00-C Rec. Use parentheses for precedence of operation.
[Cert] EXP13-C Rec. Treat relational and equality operators as if they were nonassociative.
[Cwe] CWE-783 Operator Precedence Logic Error.

10.5 Parentheses around elements of a boolean expression
Whenwriting boolean expressions, the absence of parentheses and the exclusive use of associativity
makes it difficult to understand the code. The systematic use of parentheses avoids programming
errors by making the order of evaluation of operations explicit.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 87

RULE
112

RULE — Parentheses around the elements of a boolean expression
The different elements of a boolean expressionmust always be placed in parentheses,
so that there is no ambiguity in the order of evaluation.

Bad example
In the following example, it is necessary to know the associativity between the oper-
ators and the priority between them in order to understand the order of evaluation.
if (x > 0 && y * z > length) {

...
}
u = z > 100 && 100 == x || x + y < z;

Good example
In the following code, the use of parentheses makes it possible to explicitly know the
order of evaluation.

if ((x > 0) && ((y * z) > length)) {
...

}
u = (z > 100) && ((100 == x) || ((x + y) < z));

10.5.1 References
[Cert] EXP00-C Rec. Use parentheses for precedence of operation.
[Misra2012] Rule 12.1 The precedence of operators within expressions should be made explicit.
[Cwe] CWE-783 Operator Precedence Logic Error.

10.6 Implicit comparison with 0 prohibited
In C90, the “true” value corresponds to any value other than 0 (whether that value is negative,
positive, integer or non-integer) and the “false” value corresponds to the value 0. As a result, it
is possible to write boolean expressions where a comparison with 0 is implicitly made. Implicit
comparisonsmake understanding andmaintenance of the code difficult. Boolean expressionsmust
use an explicit comparison operator:

==, !=, <, >, <=, >=

RULE
113

RULE — Implicit comparison with 0 prohibited
All boolean expressionsmust use comparison operators. No implicit test with a value
equal to 0 or different from 0 must be performed.

88 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RECO
114

RECOMMENDATION — Using the bool type in C99
In C99, the bool (or _Bool) type must be used for variables with boolean values.

In C99, the use of the bool-typed variables directly in a conditional is accepted.

Bad example
The comparisons implicit in the following code should be removed in favour of ex-
plicit comparisons.
#define MAX 10
uint8 z;
..
while (x) {

...
}
if (x < y) {

...
} else {

...
}
if (!z) { /* implicit comparison with 0 and z should be of the bool type */

...
}
if (ptr) {

...
}
for (x = MAX; x; x--) {

...
}

Good example
In the following example, no implicit comparison is performed and the dedicated
header file is used.
#include <stdbool.h>

bool z; /* use of the bool type */
while (x > 0) {

...
}
if (x < y) {

...
} else {

...
}
if (FALSE== z) { /* constant on the left and explicit comparison of z; z being of

the bool type, if (! z) can be used */
...

}
if (NULL != ptr) {

...
}
for (x = MAX; x > 0; x--) {

...
}

10.6.1 References

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 89

[Cert] Rec. EXP20-C Perform explicit tests to determine success, true and false, and equality.

10.7 Bitwise operators
Generally speaking, bitwise operators should only be used with expressions of unsigned types. This
way, many undefined or implementation-defined behaviours are avoided.

RECO
115

RECOMMENDATION — Bitwise operators must be used with unsigned
operands only

Furthermore, some bitwise operators such as &, | or ^ can easily be mistakenly used — especially
the first two — instead of logical operators such as &&, || and !. To avoid this confusion, it is
important to check that the bitwise operators used in boolean expressions are actually the desired
operators. Bitwise operators have no reason to be applied to any operand of type boolean or
similar.

RULE
116

RULE — No bitwise operator on an operand of type boolean or similar

Bad example
if ((var >= 0) & (var < 120)) { /* operator confusion */
...

if ((val && FLAG) != 0) /* operator confusion? */
...

}

Good example
if ((var >= 0) && (var < 120)) { /* correction */
...
if ((val & FLAG) != 0) /* correct use here of the bitwise operator

in a boolean expression */
...

}

10.7.1 References
[Cert] Rec. INT13-C Use Bitwise operators only on unsigned operands.
[Cert] Rec. EXP14-C Beware of integer promotion when performing bitwise operations on integer
types smaller than int.
[Cert] Rule INT34-C Do not shift an expression by a negative number of bits or by greater or equal
the number of bits that exist in the operand.

90 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Cwe] CWE-682 Incorrect calculation.
[Cert] EXP46-C Do not use a bitwise operator with a Boolean-like operand.
[Cwe] CWE-480 Use of incorrect operator.
[Misra2012] Rule 10.1 Operands shall not be of an inappropriate essential type.

10.8 Boolean assignment and expression
The C language assignment operator returns a value. It is therefore possible to use this value. How-
ever, this is often an unintentional assignment of the developer resulting from confusion between
the assignment operator = and the equality operator ==.

GOOD
PRACTICE

117

GOOD PRACTICE — Do not use the value returned during an assignment

Information
During the compilation phase with the right options (-Wall, etc.), a warning will
be emitted suggesting in particular to place the assignment in parentheses in the
boolean expression (-Wparentheses option).

RULE
118

RULE — Assignment prohibited in a boolean expression
An assignment must not be made in any boolean expression. An assignment must
be made in an independent statement.

In order to limit the risks of writing an assignment with the = operator instead of a comparison
with the == operator, when the comparison is made between a variable and a constant operand,
the constant operand should be written as the left operand of the == operator and the variable
as the right operand. The compiler raises a warning when trying to assign a value to a constant
operand.

GOOD
PRACTICE

119

GOOD PRACTICE — Comparison with constant operand on the left
When a comparison involves a constant operand, this should preferably be set as the
left operand to avoid an unintended assignment.

Information
This good practice is debatable, and is therefore not enforced but merely advised.
Compiling this type of code with strict options (in particular with -Wall), as required
by section 5.2, is actually sufficient to detect the use of the assignment operator in-
stead of the comparison operator in a boolean expression.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 91

Bad example
The following code contains assignments in Boolean expressions. One of the assign-
ments in a conditional expression is a programming error.
if ((x = y + z) > 0) { /* assignment in a Boolean expression and use of the value

returned by the assignment and constant on the right */
...

}
if (z = VALUE) { /* constant on the right and = instead of == */

...
}

Good example
In the following example, all assignments are made in independent statements and
the various problems are corrected.
x = y + z;
if (0 < x) {

...
}
if (VALUE == z) {

...
}

10.8.1 References
[Misra2012] Rule 13.4 The result of an assignment operator should not be used.
[Cert] Rule EXP45-C Do not perform assignments in selection statements.
[IsoSecu] No assignment in conditional expressions [boolasign].
[Cwe] CWE-480 Use of incorrect operator.
[Cwe] CWE-481 Assigning instead of comparing.
[Cwe] CWE-482 Comparing instead of assigning.

10.9 Multiple assignment of variables prohibited
The C language allows the same value to be assigned to several variables with a single statement.
This multiple assignment is often used for variable initialisations.

However, code containing multiple assignments is difficult to read and also difficult to maintain.
Break the multiple variable assignment statement down into as many assignment statements as
there are variables.

RULE
120

RULE — Multiple assignment of variables prohibited
Multiple assignment of variables is not authorised.

92 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
The following example shows a multiple assignment.
...
a = b = c = d = 1; /* multiple assignment */

Good example
The following code contains one assignment per variable.
...
a = 1;
b = 1;
c = 1;
d = 1;

10.10 Only one statement per line of code
The end of a statement in the C language is marked by the semicolon. The C language does not
require the developer to write only one statement per line of code.

However, when several statements are present on the same line, the code is less readable. Debug-
ging is also more difficult, since it is not possible to check the execution of code one statement at
a time.

The presence of multiple statements per line of code also distorts the metric of the number of lines
of code.

RULE
121

RULE — Only one statement per line of code

Bad example
In the following example, the code is difficult to understand.
int32_t a; int64_t b;
a = 4; b = a / 6; printf("a = %d, b = %lld\n", a, b);

Good example
int32_t a;
int64_t b;
a = 4;
b = a / 6;
printf("a = %d, b = %lld\n", a, b);

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 93

10.11 Use of floating-point numbers

Information
By floating-point numbers, we are referring to numbers using a floating-point repre-
sentation.

The representation of floating-point numbers in a machine is a complex notion which is often not
well known or badly understood and moreover, it is dependent on the precision associated with
the type. These floating-point numbers are often a source of errors.

Not all actual values can be represented as floating-point numbers, and other “unnatural” phe-
nomena such as absorption 11 and cancellation 12 can occur with the use of floating-point numbers,
although these points will not be detailed in this guide. Further details are given in the standard
IEEE754 [float], which ensures reproducible inter-compiler and inter-architecture behaviour in the
presence of floating-point numbers.

In addition, the error associated with the use of these floating-point numbers can become greater
than the result of the calculation using them.

Finally, certain elementary properties of real arithmetic are no longer true when using floats: com-
mutativity, associativity, etc.

For all of these reasons, the use of floating-point numbers is strongly discouraged. Should the use
of floating-point numbers prove necessary for numerical processing for example, the developer will
have to ensure that the constant float values are representative and that they are correctly used in
accordance with the associated precision.

GOOD
PRACTICE

122

GOOD PRACTICE — Avoid floating constants
Do not use floating numerical constants in order to avoid loss of precision and other
phenomena related to floating-point numbers. If this cannot be avoided, the repre-
sentativeness of the float value in question must be checked.

RECO
123

RECOMMENDATION — Limit the use of floating-point numbers to what is
strictly necessary
The use of floating-point numbers should be limited.

Float type loop counters are sources of error due to the limited representativeness of this type and
the associated complexity.

11. Phenomenon related to the precision of floats, such asLargeF loatV alue+FloatingEpsilon = LargeF loatV alue, i.e. a large
float value will “absorb” a small float value

12. Another phenomenon always related to the precision and representation of floating-points numbers, such that for two close
float values, FloatV alue1− FloatV alue2 = 0, whereas formally, FloatV alue1 ̸= FloatV alue2

94 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RULE
124

RULE — No float type loop counter
Loop counters must be of the integer type only, with type overflow verification of
the counter values.

The handling of float values in Boolean expressions is also always very risky in connection with
problems of representation and precision of these values. The use of the logic operators != or
== on floats is incorrect in most cases. The results may depend on the level of optimisation, the
compiler itself and the platform used.

RULE
125

RULE — Do not use floating-point numbers for comparisons of equality or
inequality

Bad example
float y = 0.1; /* not representable in simple precision */
...

if (y == 0.1) /* comparison of float value AND 0.1 double value so promotion of y
*/

printf("equal\n");
else

if (y == 0.1f) /* 0.1f float value - condition checked here */
printf("equal2\n");

else printf("not equal\n");
...
for (float x = 0.1f; x <= 1.0f; x += 0.1f) { /* the loop will be carried out 9 or

10 times */
}

Good example
double y = 0.1; /* type correction */
...

for (uint count = 1; count <= 10; count ++) {
float x = count/10.0f; /* 10 passes exactly in the loop */

}

10.11.1 References
[Misra2012] Rule 14.1 A loop counter shall not have essentially floating type.
[Cert] Rule FLP30-C Do not use floating-point variables as loop counters.
[Cert] Rule FLP30-C Do not use object representations to compare floating-point values.
[Cert] Rec. FLP00-C Understand the limitations of floating-point numbers.
[Cert] Rec. FLP01-C Take care in rearranging floating-point expressions.
[Cert] Rec. FLP02-C Avoid using floating-point numbers when precise computation is needed.
[Cert] Rec. FLP03-C Detect and handle floating-point errors.
[Cert] Rec. FLP04-C Check floating-point inputs for exceptional values.
[Cert] Rec. FLP05-C Do not use denormalized numbers.
[Cwe] CWE-369 Divide by Zero.
[Cwe] CWE-681 Incorrect conversion between numerical types.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 95

[Cwe] CWE-682 Incorrect calculation.

10.12 Complex numbers
Since C99, the C language supports the calculation of complex numbers with three new built-in
types, double_Complex, long double_Complex and float_Complex. With the associated header
file complex.h, these types are also accessible via double complex, long double complex and
float complex. In addition, the three associated imaginary types are also supported: double_Imaginary,
long double_Imaginary and float_Imaginary (orwith the double imaginary, long double imaginary
and float imaginary header).

As these complex numbers are based on a floating representation, their use is strongly discouraged.

RECO
126

RECOMMENDATION — No use of complex numbers
Complex numbers introduced since C99 should not be used.

96 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

11
Conditional and iterative structures

11.1 Use of braces for conditionals and loops
The C language does not require the statements of a conditional or a loop to be delimited by braces.
A lack of braces makes a conditional or a loop more difficult to read. Furthermore, there is a risk
of error if the code is modified: a statement could be added with the intention to be part of the
conditional, it will instead end up outside of the conditional.

RULE
127

RULE — Systematic use of braces for conditionals and loops
Never omit braces to delimit a statement block. Braces must be written to delimit a
block of statements after loops (for, while, do) and conditionals (if, else).

Bad example
In the code below, a conditional is not delimited by braces.
if (x == 0) /* braces are required , even for a single statement */

printf("X = 0\n");
/* An indented statement under the printf may visually suggest that the statement

is within the if, but it is not. For a jump statement like "goto", this may
result in a significant portion of the code not being executed. */

if (x != 0) {
if (x < 0) {

...
while (x < 0) {

x++;
...

}
} else {

while (x > 0) {
x--;
...

}
}

}
/* example of ’Apples goto fail */

if (err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
/* other checks, but not reachable due to the duplicate goto fail

without braces */
fail:

/* cleaning and releasing of buffers */
return err;

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 97

Good example
The following example delimits all the conditionals and loops with braces.
if (0 == x) {

printf("X = 0\n");
} else {

if (x < 0) {
...
while (x < 0) {

x++;
...

}
} else {

while (x > 0) {
x--;
...

}
}

}
/* example of goto fail - Apple */
if (err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0) {

goto fail;
}
/* other checks */
fail:

/* cleaning and releasing of buffers */
return err;

11.1.1 References
[Misra2012] Rule 15.6 The body of an iteration-statement or a selection statement shall be a
compound-statement.
[Cert] Rec. EXP19-C Use braces for the body of an if, for, or while statement.

11.2 Correct construction and use of switch statements
The switch statement of the C language provides an elegant way of writing the handling of dif-
ferent cases based on the value of a variable or an expression. However, this statement is also a
source of errors when omitting the break statement: unwanted code may be executed. In fact,
since the successive conditions of the switch statement are not exclusive, several cases can be acti-
vated. It must also be ensured that processing is performed if the value of the expression does not
correspond to any of the cases of the switch (default case).

RULE
128

RULE — Systematic definition of a default case in switch
A switch-case must always contain a default case placed last.

RECO
129

RECOMMENDATION — Use of break in each case of switch state-
ments
By default, a switch-case must always contain a break for each case. The absence
of a break to avoid duplicating code is tolerated but must be made explicit in a com-
ment.

98 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Information
The -Wimplicit-fallthrough option is used to check the correct application of this
recommendation.

The code in each case should be simple and contain few statements. If complex processing is to be
carried out in a case, then a function must be defined for this processing and this function must
be called from the case.

RECO
130

RECOMMENDATION — No nesting of control structure in a
switch-case
Even though C allows it, the nesting of control structures inside a switch should be
avoided.

Finally, it is forbidden to declare, initialise variables or introduce code statements within a switch
statement before the first label associated with the first case of the switch-case.

RULE
131

RULE — Do not insert statements before the first label of a
switch-case

Bad example
In the following example, the final default statement is missing.
switch(var) {

int i = 0; /* not authorized */
case VAL1:

...
break;

case VAL2:
...

case VAL3:
...
break;

/* absence of default and break and no comment to explain the case on the value
VAL2 */

}

Good example
In the following example, a break statement is present for each case. There is also
a final default statement to ensure that processing is carried out if the value did not
match any of the cases.
int i = 0; /* displaced declaration and initialisation */
switch(var) {

case VAL1:
...
break;

case VAL2:
...
/* break voluntarily missing */

case VAL3:
...
break;

default:

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 99

...
}

11.2.1 References
[Misra2012] Rule 16.1 All switch statements shall be well-formed.
[Misra2012] Rule 16.2 A switch label shall only be usedwhen themost closely-enclosing compound
statement is the body of the switch statement.
[Misra2012] Rule 16.3 An unconditional break statement shall terminate every switch-clause.
[Misra2012] Rule 16.4 Every switch statement shall have a default label.
[Misra2012] Rule 16.6 Every switch statement shall have at least 2 switch-clauses.
[Misra2012] Rule 16.7 A switch expression shall not have a essentially boolean type.
[Cert] Rule DCL41-C Do not declare variables inside a switch statement before the first case label.
[Cert] Rec. MSC01-C Strive for logical completeness.
[Cert] Rec. MSC17-C Finish every set of statements associated with a case label with a break state-
ment.
[Cwe] CWE-484: Omitted Break Statement in Switch.
[IsoSecu] Use of an implied default in a switch statement [swtchdflt].

11.3 Correct construction of for loops
The C language allows several expressions to be added to the first and last element of a for state-
ment, separated by a comma. This allows for example the initialisation of several variables in the
first element of the for, or the incrementation of several variables in the third element of the
for. However, the presence of comma-separated expressions in the for statement makes it diffi-
cult to understand the code and is a source of errors. In addition, the sequencing of statements is
already prohibited in section 14.1. If other variables are to be initialised at the start of the loop,
they must be initialised just before the for statement. If several variables are to be incremented
or decremented, they must be modified at the end of the loop.

Furthermore, the C language does not require each element (initialisation, stop condition and
increment/decrement) of the for statement to be completed. It is possible to leave the initialisation
empty, for example, or even to leave each element empty, resulting in an infinite loop. In the case
of an infinite loop, the form while (1) { ... } is to be preferred to the form for(;;) { ... }.

RULE
132

RULE — Correct construction of for loops
Each element of a for loop must be completed and contain exactly one statement.
Thus a for loop must contain an initialisation of its counter, a stop condition on its
counter, and a loop counter increment or decrement.

Bad example
In the following example, the comma is used to separate several initialisations and
modifications of variables in the first and third element of the for. In addition, for
loops should be replaced by while() { ... } or do { ... } while () loops.

100 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

#define MAX_LOOP 10U
for(;;) {

data = read();
if (0 == data) {

break;
}
...

}
for (i = 0;;) { /* missing elements */

max = some_function(i);
i++;
if (i >= max) {

break;
}

}
...
for (i = 0, a = 0; i < MAX_LOOP; i++, a += 2) {

...
some_function(a);
...

}

Good example
The following code only initialises the loop counter in the first for element, and only
increments the counter in the third element. The for loops contain all its elements
(initialisation, stop condition, counter increment).
#define MAX_LOOP 10U
for (i = 0; i < arraySize; i++) {

...
dataArray[i] = some_function(i);
...

}
while (1) {

data = read();
if (0 == data) {

break;
}
...

}
i = 0;
do {

max = some_function(i);
i++;

}
while (i < max);
...
a = 0;
for (i = 0; i < MAX_LOOP; i++) {

...
some_function(a);
...
a += 2;

}

11.3.1 References
[Misra2012] Rule 14.2 A for loop shall be well-formed.
[Misra2012] Rule 15.6 The body of an iteration-statement or a selection statement shall be a
compound-statement.
[Cert] Rec. EXP15-C Do not place a semicolon on the same line as an if, for, or while statement.
[Cert] Rec. EXP19-C Use braces for the body of an if, for, or while statement.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 101

11.4 Changing of a for loop counter forbidden in the body of
the loop

Changing the counter of a for loop within the loop makes it difficult to understand and maintain
the code. Furthermore, this can lead to an infinite loop when the comparison operator in the loop
condition is an equality or inequality. If the loop accesses an array, there is also a risk of overflow.

The loop counter should only be modified in the third part of the for loop.

It is common to modify within the body of the loop a flag or other variable that intervenes at the
conditional stop expression of the for loop. This scenario must then be replaced by the use of a
break allowing the exit from the loop.

RULE
133

RULE — Change to a counter of a for loop forbidden in the body of the
loop
The counter of a for loop must not be changed inside the body of the for loop.

Bad example
The example below shows a for loop with a modification of its counter in its body.
There is a risk of an infinite loop.
#define MAX_LOOP 10U

for (i = 0; i != MAX_LOOP; i++) {
...
if (...) {

/* if the condition is met with i == 9, we end up in an infinite loop. */
i++;

}
...

}

Good example
In the following code, no changes are made to the counter in the body of the for
loop.
#define MAX_LOOP 10U

for (i = 0; i < MAX_LOOP; i++) {
...
if (some_function()) {

break; /* loop stopped */
}
...

}

11.4.1 References
[Misra2012] Rule 14.2

102 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Cert] Rule ARR30-C Do not form or use out-of-bounds pointers or array subscripts.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 103

12
Jumps in the code

12.1 Do not use backward goto
The use of a backward gotomakes proofreading and maintenance of the code very difficult and is
a source of errors such as unwanted infinite loops. If this need arises, it is because the algorithm
to be implemented actually comprises a loop. Then use the control structures proposed by the
language for the loops, in other words for, while or do-while.

RULE
134

RULE — No use of backward goto
Prohibit within a function the use of goto statements referring to a label that is
placed before this goto statement.

Bad example
The following example contains a backward goto. This choice of implementation
corresponds to an assembler approach, and does not take advantage of the higher
level possibilities offered by the C language.
#define BUFFER_SIZE 100U
void foo() {

uint8_t s[BUFFER_SIZE];
uint8_t x = 0;
my_loop:

s[x] = x;
x++;
if(x < BUFFER_SIZE)

{
goto my_loop; /* backward goto prohibited */

}
}

Good example
The following example uses a loop type control structure. There is no need for a
backward goto.
#define BUFFER_SIZE 100U
void foo() {

uint8_t s[BUFFER_SIZE];
uint8_t x = 0;
for(x = 0; x < BUFFER_SIZE; x++) {

s[x] = x;
}

}

104 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

12.1.1 References
[Misra2012] Rule 15.1 The goto statement should not be used.

12.2 Limited use of forward goto
The forward goto can simplify error management and reduce the number of exit points from a
function. However, with a forward goto outside of a conditional statement, code may be executed
with variables that have not been initialised. Another possible serious consequence is, for example,
forgetting to free memory or resources among other things. The code must therefore be modified
in order to use control structures that avoid the use of goto.

The forward goto should only be used for error management, and the number of labels should be
kept to a minimum.

RECO
135

RECOMMENDATION — Limited use of forward goto
The use of a forward goto is tolerated only in cases where it allows:
n the number of exit points from the function to be significantly limited;

n the code to be made much more readable.
The label(s) referenced by the goto statements must all be located at the end of the
function.

Good example
The following code does not use a forward goto, but uses the control structures pro-
posed by the C language.
#define BUFFER_LEN (128U)
int32_t my_function(int32_t a) {

FILE* f = NULL;
uint8_t *buffer = NULL;
int32_t result = ERR_UNDEFINED;
f = fopen("/my/path", "r");
if(NULL == f) {

result = ERR_FOPEN;
} else {

buffer = (uint8_t *) malloc(BUFFER_LEN * sizeof(uint8_t));
if(NULL == buffer) {

result = ERR_MALLOC;
}
else
{

...
free(buffer);
buffer = NULL;
result = ERR_NOERROR;

}

fclose(f);
f = NULL;

}
return result;

}

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 105

Tolerated example
The following example uses the forward goto for error management. This scenario
is tolerated.
int32_t my_function(int32_t a) {

FILE* f = NULL;
uint8_t *buffer = NULL;
int32_t result = ERR_UNDEFINED;
f = fopen("/my/path", "r");
if(NULL == f) {

result = ERR_FOPEN;
goto cleanup;

}
buffer=(uint8_t *)malloc(BUFFER_LEN * sizeof(uint8_t));
if(NULL == buffer) {

result = ERR_MALLOC;
goto cleanup;

}
...
result = ERR_NOERROR;

cleanup:
if(NULL != f) {

fclose(f);
f = NULL;

}
if(NULL != buffer) {

free(buffer);
buffer = NULL;

}
return result;

}

12.2.1 References
[Misra2012] Rule 15.1 15.5.

106 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

13
Functions

13.1 Correct and consistent declaration and definition

Declaration/Prototype of function
The declaration of a function or its prototype is a statement which defines three el-
ements: the return type of the function, its name and the list of its arguments, fol-
lowed by a semicolon.

Definition of function
The definition of a function is the body of the function, i.e. the set of statements it
executes. A function definition also contains a prototype of the function.

C90 allows for the implicit declaration of functions, whether it be the absence of a return type or
the absence of a function declaration. C99 is stricter and imposes at least one type specifier.

The C language, in its successive versions, proposes different forms for the declaration of functions.
Combining these different forms of function declaration is not recommended since this risks re-
sulting in a much less precise analysis of the code, and leading to problems when editing links.

Information
Compilers raise a warning (-Wimplicit-function-declaration or -Wimplicit-int
or -Wreturn-type), but assume an implicit extern int type, i.e. by default, a function
not associated with a return type has an integer type.

RULE
136

RULE — Any (non-static) function defined must have a function declara-
tion/prototype

RULE
137

RULE — The prototype declaration of a function must be consistent with
its definition
The types of parameters used to define and declare a function must be the same.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 107

RULE
138

RULE — Every function must have an explicit return type and parameter
list associated with it
Each function is explicitly defined with a return type. Functions without a return
value must be declared with a void type parameter. In the same way, a function
without a parameter must be defined and declared with void as argument.

Activating the compiler warnings is used to find out which functions are not correctly declared
(missing return type, inconsistency of types between declaration and definition).

Bad example
In the example below, the return type is missing for a declaration, a function with-
out parameters is not correctly declared and there is an inconsistency between the
declaration and the definition.
/* header.h */

foo(uint8_t a); /* the return type is missing */
uint32_t bar(uint16_t b);
void car(); /* void is missing in the parameter type to indicate that the

function does not take parameters */
/* file.c */
foo(uint8_t a) {

...
}
uint32_t bar(int32_t b) { /* after the declaration , b must be a uint16_t */

...
}
void car() {

...
}

Good example
The following example makes a correct declaration and definition of functions.
/* header.h */
void foo(uint8_t a);
uint32_t bar(uint16_t b);
void car(void);
/* file.c */
void foo(uint8_t a) {

...
}
uint32_t bar(uint16_t b) {

...
}
void car(void) {

...
}

13.1.1 References
[Misra2012] Rule 8.1 Types shall be explicitly specified
[Misra2012] Rule 8.2 Function types shall be in prototype form with named parameters
[Misra2012] Rule 8.3 All declarations of an object or function shall use the same names and type
qualifiers
[Misra2012] Rule 17.3 A function shall not be declared implicitly

108 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Misra2012] Rule 17.5 The function argument corresponding to a parameter declared to have an
array type shall have an appropriate number of elements
[Cert] Rec. DCL07-C Include the appropriate type information in function declarators
[Cert] Rec. DCL20-C Explicitly specify void when a function accepts no arguments
[Cert] Rule DCL31-C Declare identifier before using them
[Cwe] CWE-628 Function call with incorrectly specified arguments
[IsoSecu] Using a tainted value as an argument to an unprototyped function pointer [taintno-
proto].
[IsoSecu] Calling functions with incorrect arguments [argcomp].

13.2 Documentation of functions
Incomplete documentation of a function can lead to programming errors. This includes the func-
tionality of the function, a precise description of the parameters justifying the passages by value
or reference, but also the conditions to be checked for the correct use of the function.

Passing of parameter by value or copying
When passing a parameter by value (or by copying), the value of the actual argument
on the function call is sent (copied) to the respective formal argument of the called
function. The direct consequence is that any change made to a formal argument is
not propagated to the actual argument.

Passing of parameters by reference or pointer
When passing a parameter by reference, the address of the value of the actual ar-
gument on the function call is sent to the respective formal argument of the called
function. The direct consequence is that any change made to a formal argument will
be propagated to the actual argument.

RECO
139

RECOMMENDATION — Documentation of functions
All functions must be documented. This includes:
n a description of the function and the processing carried out;

n the documentation of each parameter, the direction of the parameter (input, out-
put, input and output) and any condition existing on it;

n the possible return values must be described.

This also includes the conditions for proper use of the function to be specified in the prototype,
especially in the case of portable code (Linux, Windows).

RECO
140

RECOMMENDATION — Specify call conditions for each function

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 109

13.3 Validation of input parameters
Programming errors can lead to invalid values being passed as function parameters. If there is no
parameter validity check, the behaviour of the function is undefined.

It is therefore necessary to check:

n address consistency (non-null, alignment, etc.);

n parameter values (value ranges, etc.).

Some generic measures must be applied, such as the return of an error code for example.

RULE
141

RULE — The validity of all the parameters of a function must systematically
be questioned
This includes:
n the validity of the addresses for pointer-type parameters must be checked (point-

ers must be non-null, properly aligned, etc.);

n the parameters must be checked to ensure that they belong to their domain.
This applies to the functions defined by the developer (cf. section 13.2) as well as to
the functions of the standard library.

Bad example
In the following example, the validity of the parameters is not checked.
double division(int32_t n, int32_t d) {

/* d != 0 not verified */
return ((double)n) / ((double)d);

}

Good example
Example 1:
The following code shows an example where the validity of the parameters is
checked:
double division(int32_t n, int32_t d) {

double res = 0.0;
if(0 == d) {

/* error handling */
}
else {

res = ((double)n) / ((double)d);
}
return res;

}

Example 2:
The following code shows a second example where the validity of the parameters is
checked:
uint8_t encrypt(uint8_t *output, int32_t *output_len,

const uint8_t *input, const int32_t input_len,
encrypted_ctx *ctx) {

uint8_t err = 0;

110 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

if((NULL == output) || (NULL == output_len) || (NULL == encrypted_ctx)) {
err++; /* error handling */

}
if((NULL == input) || (input_len <= 0) || (input_len > MAX_INPUT_LEN)) {

err++; /* error handling */
}
if(0 == err) {

/* API code */
}
return err;

}

13.3.1 References
[Misra2012] The validity of values passed to library shall be checked.
[Misra2012] Dir 4.1 Run-time failures shall be minimized
[Cert] API00-C Functions should validate their parameters
[Cert] Rule ARR38-C Guarantee that library functions do not form invalid pointers.
[Cert] Rec. MEM10-C Define and use a pointer validation function.
[Cwe] CWE-20 Insufficient input validation
[Cwe] CWE-628 Function call with incorrectly specified arguments.
[Cwe] CWE-686 Function call with incorrect argument type.
[Cwe] CWE-687 Function call with incorrectly specified argument value.
[IsoSecu] Calling functions with incorrect arguments [argcomp].

13.4 Use of the qualifier const for pointer-type function
parameters

When reading a function prototype with pointer-type parameters, the absence of the const quali-
fier may suggest that a modification will be made to the memory area pointed to. The absence of
this qualifier when it should be usedmakes the definition of interfaces unclear and complicates the
proofreading of code. When declaring a function with parameter pointers, the developer should
immediately consider how the pointers will be used and use const by default unless the memory
area pointed to is changed when the function is executed.

RULE
142

RULE — Pointer-type function parameters which point to memory that is
not to be changed must be declared as const
Mark as const all pointer-type parameters of a function that point to a memory area
that is read-only in the body of the function. The const qualifier must be applied to
the pointed object.

Bad example
The following example should use const for its parameter.
uint32_t foo(uint32_t *val) {

/* val lue */
uint32_t ret = 0;

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 111

if(TEST_VALUE > *val) {
ret = (*val) * 2;

} else {
ret = (*val);

}
return ret;

}

Good example
In the following example, const is correctly used for the pointer parameter. The
memory area pointed to is not in fact modified in the body of the function.
uint32_t foo(const uint32_t *val) {

uint32_t ret = 0;
if (NULL != val){

if(TEST_VALUE > *val) {
ret = (*val) * 2;

} else {
ret = (*val);

}
}
return ret;

}

13.4.1 References
[Cert] Rec. DECL00-C Const-qualify immutable objects.
[Cert] Rec DECL13-C Declare function parameters that are pointers to values not changed by the
function as const.
[Cert] Rule EXP40-C Do not modify constants objects.
[Misra2012] Rule 8.13 A pointer should point to a const-qualified type whenever possible.
[Cwe] CWE-20 Improper Input Validation.
[Cwe] CWE-369 Divide by Zero.

13.5 Using inline functions
C99 introduced the new inline keyword as a function specifier. An inline function declared with
external linkage but not defined in the same file leads to undefined behaviour. The declaration
and definition of an inline function must therefore be in the same compilation unit.

Information
An inline function can be accessed by multiple files by being declared in a header
file.

RULE
143

RULE — inline functions must be declared as static
To avoid undefined behaviour, an inline function is systematically static.

112 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

13.5.1 References
[Misra2012] Rule 8.10 An inline function shall be declared with the static storage class.
[Cert] Rec. DCL15-C Declare file-scope objects or functions that do not need external linkage as
static.
[Cert] MSC40-C Do not violate constraints.

13.6 Redefining functions
A function name can be declared by the programmer even if it is a name already defined in the
standard library or in another library. This declarationmay lead to confusion. Every functionmust
have its own name.

RULE
144

RULE — Do not redefine functions or macros from the standard library or
another library
Identifiers, macros, or function names that are part of the standard library or another
library used must not be redefined.

Bad example
In the following example, confusion will occur due to the use of a function name
that already exists in the standard library.
/* do not reuse the name of the standard library */
void* malloc (size_t taille);

Good example
The following example defines a name that does not clash with the name of a func-
tion in the standard library.
/* renaming of the function */
void* mymalloc (size_t taille);

13.6.1 References
[Misra2012] Rule 5.8 Identifiers that define objects or functions with external linkage shall be
unique.
[Misra2012] Rule 5.9 Identifiers that define objects or functions with internal linkage shall be
unique.

13.7 Mandatory use of the return value of a function
A function, whose return type is not void, returns a value indicating the success or failure of the
processing or the computation performed by this function. This function return is a very important

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 113

source of information and allows unexpected behaviour or even errors to be identified as soon as
possible. These function returns must therefore always be read and managed.

The calling function must test the value returned by the function to ensure its validity against the
interface documentation (returned value within the value range or returned value corresponding
to a success or error code).

RULE
145

RULE — The return value of a function must always be tested
When a function returns a value, the returned value must systematically be tested.

Bad example
In the following code, the value returned by the function is not tested and no pro-
cessing is performed if an error has occurred.
struct stat o_stat_buffer;
stat("somefile.txt", &o_stat_buffer);
/* success of the stat function not tested */
...

Good example
In the following code, the value returned by the function is correctly tested.
struct stat o_stat_buffer;
uint8_t i_result = 0;
i_result = stat("somefile.txt", &o_stat_buffer);
if (0 != i_result) {

/* erreur */
return 0;

}
...

13.7.1 References
[Cert] Rec. EXP12-C Do not ignore values returned by functions.
[Misra2012] Dir. 4.7: If a function returns error information, then that error information shall be
tested.
[Misra2012] Rule 17.7 The value returned by a function having non-void return type shall be used.
[Cwe] CWE-252 Unchecked Return Value.
[Cwe] CWE-253 Incorrect Check of Function Return Value.
[Cwe] CWE-754 Improper check for unusual or exceptional conditions.

13.8 Implicit return prohibited for non-void functions
In the absence of an explicit return value for all paths of a function returning a value (non-void
function), some compilers do not always generate an error. The behaviour of the code is then
undefined. Some compilers return an arbitrary value.

114 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

RULE
146

RULE — Implicit return prohibited for non-void type functions
All paths of a non-void function must return a value explicitly.

Bad example
In the following example, there are paths that do not explicitly return a value.
uint32_t encr_data(const uint8_t *p_data, uint32_t ui32_data_len,

uint8_t **pp_encrypted_data, uint32_t *ui32_encrypted_data_len)
{

uint8_t *p_encrypted_data = NULL;
if (NULL != p_data

&& NULL != pp_encrypted_data
&& NULL != ui32_encrypted_data_len) {
if (ui32_data_len > 0) {

p_encrypted_data = (uint8_t *)calloc(ui32_data_len, sizeof(uint8_t));
...
return 1;

}
}
/* implicit return */

}

Good example
In the following code, the function code always explicitly returns a value.
uint32_t encr_data(const uint8_t *p_data, uint32_t ui32_data_len,

uint8_t **pp_encrypted_data, uint32_t *ui32_encrypted_data_len)
{

uint32_t ui32_result_code = 0;
uint8_t *p_encrypted_data = NULL;
if (NULL == p_data
|| NULL == pp_encrypted_data
|| NULL == ui32_encrypted_data_len) {

ui32_result_code = 0;
goto End;

}
if (0 == ui32_data_len) {

ui32_result_code = 0;
goto End;

}
p_encrypted_data = (uint8_t *)calloc(ui32_data_len, sizeof(uint8_t));
...
(*pp_encrypted_data) = p_encrypted_data;
ui32_result_code = 1;

End:
return ui32_result_code;

}

13.8.1 References
[Misra2012] Rule 17.4 All exit paths from a functionwith non-void return type shall have an explicit
return statement with an expression.
[Cert] Rule MSC37-C Ensure that control never reaches the end of a non-void function.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 115

13.9 No passing by value of a structure as function
parameter

It is possible with the C language to pass structure as parameters of a function. These are then
copied to the stack. However, this is detrimental to performance and increases the risk of stack
overflow or even leakage of sensitive data.

The parameter corresponding to a structure must be passed in the form of a const–qualified
pointer. Only the address of the structure is then copied to the stack. Furthermore, the const
modifier prevents changes to the pointed object (which is desirable when passing the structure by
value).

RULE
147

RULE — Structures must be passed by reference to a function
Do not pass structure type parameters by copying when calling a function.

Bad example
In the following example, the parameter is passed by value and not by address.
#define STR_SIZE 20U
typedef struct
{

unsigned char surname[STR_SIZE];
unsigned char firstname[STR_SIZE];

} person_t;

uint32_t add_person(person_t person) {
size_t sz_surname_len = 0;
size_t sz_firstname_len = 0;
sz_surname_len = strlen(person.surname);
sz_firstname_len = strlen(person.firstname);
if (0 != sz_surname_len && 0 != sz_firstname_len) {

...
ui32_result = 1;

} else {
ui32_result = 0;

}
return ui32_result;

}
...
void some_function() {

person_t person;
...
add_person(person);
...

}

Good example
The following code correctly passes a structure type parameter using a pointer.
#define STR_SIZE 20U
typedef struct
{

unsigned char surname[STR_SIZE];
unsigned char firstname[STR_SIZE];

} person_t;

116 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

uint32_t add_person(const person_t *person) {
uint32_t ui32_result = 0;
size_t sz_surname_len = 0;
size_t sz_firstname_len = 0;
if (NULL != person) {

sz_surname_len = strlen(person->surname);
sz_firstname_len = strlen(person->firstname);

if (0 != sz_surname_len && 0 != sz_firstname_len) {
...
ui32_result = 1;

} else {
ui32_result = 0;

}
}
else {

ui32_result = 0;
}
return ui32_result;

}

void some_function() {
person_t person;
...
add_person(&person);
...

}

13.10 Passing an array as a parameter for a function
When a function takes a pointer as a parameter, it is not possible to determine whether the pointer
is the address of the first element of an array or whether it points to a single element.

To suppress this ambiguity, it is preferable to use the form with [] for an array type parameter as
indicated in sub-section 8.1.

RECO
148

RECOMMENDATION — Passing of an array as a parameter for a function
There are several ways to pass an array as a parameter for a function. When passing
by pointer, it must be specified in the function documentation that the parameter
corresponds to an array and also use the dedicated array notation.

Warning
For a multi-dimensional array, only the first dimension of the array can remain un-
defined when passing as a parameter, which therefore means defining the following
dimensions. For example, for a two-dimensional array, using tab[][] as a parameter
is a mistake, as a minimum the second dimension must be specified.

Bad example
The following example shows a prototype function with a pointer-type parameter.
It is an array passed as a parameter but this cannot be guessed from the function
signature. In this example, tab can:
n either be an integer passed by address

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 117

n or be an array of integers.
void func(int32_t *tab, uint32_t count);

Good example
In this second example, the notation and comments ensure that it can be immedi-
ately determined that the parameter is indeed an array.
void func(int32_t tab[], uint32_t count); /* tab is an array of count elements */

13.11 Mandatory use in a function of all its parameters
Failure to use a parameter in the implementation of a function is usually a developer error. It also
consumes unnecessary space on the stack.

The prototype of the function must be modified if the parameter is not useful.

However, in some cases, it may be justified not to use one (or more) parameters of a function:

n the function corresponds to a callback function whose prototype is imposed;

n for reasons of compatibility with existing code when upgrading a library. A previously used
parameter is no longer used;

n in the case of a future development in which the parameter will be used.

In all these cases, a comment must then explicitly state why the parameter is ignored.

RECO
149

RECOMMENDATION — Mandatory use in a function of all its parameters
All the parameters present in the prototype of the function must be used in its im-
plementation.

Information
The -Wunused-parameter option is used to provide alerts in this scenario.

Bad example
In the following example, a parameter of the function is not used and should there-
fore be deleted.
uint32_t compute_data(uint32_t ui32A, uint32_t ui32B, uint32_t ui32C) {

uint32_t ui32_result = 0;
ui32_result = 2 * ui32A + 2 * ui32B;
return ui32_result;

}

118 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Good example
In the following code, there are no unused parameters in the implementation of the
function.
uint32_t compute_data(uint32_t ui32A, uint32_t ui32B) {

uint32_t ui32_result = 0;
ui32_result = 2 * ui32A + 2 * ui32B;
return ui32_result;

}

13.11.1 References
[Misra2012] Rule 2.7 There should be no unused parameters in functions.
[Cert] Rule EXP37-C Call functions with the correct number and type of arguments.

13.12 Variadic functions
Variadic functions (i.e. those with a variable number of arguments or with varying types) can pose
several problems. It is not advisable to define variadic functions, but the standard library itself
contains several such definitions that are often used. The type of arguments of a variadic function
is not checked by the compiler, by default, which can, if these functions are used incorrectly, lead
to some surprises such as abnormal termination or unexpected behaviour.

Information
The -Wformat=2 option, required by subsection 5.3.1, allows the compiler to extend
its checks to arguments of variadic functions.

When NULL is passed to a classic function, NULL is converted to the correct type. This type conver-
sion does not work with the variadic functions since the “right type” is not known. In particular,
the standard allows NULL to be an integer constant or a pointer constant so on platformswhere NULL
is also an integer constant, passing NULL for variadic functions can lead to undefined behaviour.

RULE
150

RULE — Do not call variadic functions with NULL as an argument

Bad example
...
unsigned char *string = NULL;
printf("%s %d\n", string, 1); /* undefined behaviour */
...

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 119

Good example
...
unsigned char *string = NULL;
printf("%s %d\n", (string ? string : "null"), 1); /* not passing NULL */
...

13.12.1 References
[Misra2012] The features of <stdarg.h> shall not be used.
[Cert] Rec. DCL10-CMaintain the contract between the writer and the caller of variadic functions.
[Cert] Rec. DCL11-C Understand the type issues associated with variadic functions.
[Cert] Rule EXP47-C Do not call va_arg with an argument of the incorrect type.
[Cert] Rule MSC39-C Do not call va_arg on a va_list that has an indeterminate value.
[Cwe] CWE-628 Function call with incorrectly specified arguments.
[IsoSecu] Calling functions with incorrect arguments [argcomp].

120 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

14
Sensitive operators

14.1 Use of the comma prohibited for statement sequences
The comma should be used as a separator for the parameters of a function or as a separator for
initialising fields in a structure or array. Use of the comma is also tolerated when making a decla-
ration, subject to compliance with the other rules on multiple declarations. However, the use of
commas to string together statements in the C language makes the code difficult to read, and may
lead to unexpected results.

RULE
151

RULE — Use of the comma prohibited for statement sequences
The comma is not authorised when sequencing code statements.

The comma must be replaced by a semicolon for statement sequences. This means that:

n braces become necessary;

n the parameters of for loops must be reorganised.

Bad example
The following example makes use of the comma in expressions. It is not possible to
know the result of these statements when reading the code.
int32_t i = (j = 2, 1);
y = x ? (a++, a + 4) : c;
z = 3 * b + 2, 7 * c + 42;
a = (b = 2, c = 3, d = 4);
for(i = 0, j = SZ_MAX; i < SZ_MAX; i++, j--) {

...
}

Good example
In the following code, the comma is only used for the declaration of variables.
int32_t i, j;
i=1;
j=2;
if (0 != x) {

a++;
y = a + 4;

} else {
y = c;

}
z = 3 * b + 2;
j = SZ_MAX;

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 121

for(i = 0; i < SZ_MAX; i++) {
...
j--;

}

14.1.1 References
[Misra2012] Rule 12.3: The comma operator shall not be used.

14.2 Using pre/postfix ++ and -- operators and
compound assignment operators

When the pre/postfix ++ and -- operators are used within a calculation, it is very difficult to estab-
lish the result of the calculation when analysing the code. Moreover, it is also a source of confusion
and even errors for the developer. These operators must therefore be used alone in a statement. As
a result, since pre/postfix operators are semantically equivalent when used in isolation in a state-
ment (i.e. i++; ++j;), only postfix operators are authorised in order to avoid any ambiguity 13.
Prefix operators will not be used.

RECO
152

RECOMMENDATION — The prefix operators++ and-- should not be used
Pre-increment and pre-decrement operators will not be used.

Lastly, complex statements will be broken down into simple elements.

RECO
153

RECOMMENDATION — No combined use of postfix operators with other
operators
Post-increment and post-decrement operators should not be mixed with other oper-
ators.

Lastly, and again for readability reasons, it is recommended not to use combined assignment oper-
ators (>>=, &=, *=, etc.).

RECO
154

RECOMMENDATION — Avoid the use of combined assignment operators

Bad example
The code below uses postfix operators mixed with other operators. The behaviour
of this code is not specified. It depends on the compiler used.

13. The choice of postfix operators can be discussed since the two operators used in isolation are equivalent.

122 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

#define TAB_SIZE 25U

...

uint32_t x;
uint8_t b[TAB_SIZE] = { 0 };
uint16_t i = 0;
x = foo(i++, i); /* not specified: problem with the order of evaluation of the

parameters */

...

uint32_t foo(uint16_t a, uint16_t b) {
return a * b;

}

Good example
In the following example, postfix operators are used in isolated statements.
#define TAB_SIZE 25U

...

uint32_t x;
uint8_t b[TAB_SIZE] = { 0 };
uint16_t i = 0;
i++; /* N.B. replacing this statement with ++i; would not change the behaviour of

the program in any way */
x = foo(i, i);

...

uint32_t foo(uint16_t a, uint16_t b) {
return a * b;

}

14.2.1 References
[Misra2012] Rule 13.3 A full expression containing an increment or decrement operator should
have no other potential side effects other than that caused by the increment or decrement operator.
[Cert] Rule EXP30-C Do not depend on the order of evaluation for side effects.

14.3 No nested use of the ternary operator “?:”
The ternary operator ?: can be used to concisely write an assignment of a variable based on a
condition.

However, when the ternary operator is used with a complex conditional expression, or if several
ternary operators are nested, understanding the code and its maintenance becomes difficult.

In the case of complex expressions, an if-else conditional must be used.

RULE
155

RULE — No nested use of the ternary operator ?:
The nesting of ternary operators ?: is prohibited.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 123

Moreover, if the types of expressions are different in the two “branches”, this implies an implicit
cast according to the value of the condition of the ternary operator.

RULE
156

RULE — Correct construction of the expressions with the ternary opera-
tor ?:
The expressions resulting from the ternary operator ?: must be exactly of the same
type to avoid any type conversion.

Bad example
In the following example, the nested ternary expression makes it difficult to under-
stand the code, and the expressions of the two branches are not of the same type.
y = (x<42) ? 1042 : (t> 0) ? -1042 : 0.0;
/* integer and float, therefore implicit cast */

Good example
The following example uses several if-else conditionals in order to handle the as-
signment of a value to the variable y which depends on several conditions.
if(x < 42) {

y = 1042;
} else {

if(t > 0) {
y = -1042;

} else {
y = 0;

}
}

14.3.1 References

124 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

15
Memory management

15.1 Dynamic memory allocation
For all objects dynamically allocated by the developer, different rules must be respected. First of
all, the developer must ensure that they have allocated enough memory for the object in question.
A common error is to apply the sizeof operator on a pointer of the object to be allocated instead
of the object to be allocated directly, or not to apply this operator to the correct type.

RULE
157

RULE — Dynamically allocate sufficient memory space for the allocated
object
For a ptr pointer, it is preferable to use ptr=malloc(sizeof(*ptr)); wherever pos-
sible.

In addition, any dynamically allocated memory should be freed as soon as possible.

RULE
158

RULE — Free dynamically-allocated memory as soon as possible
Any dynamically-allocated memory space must be freed up when it is no longer
needed.

This rule echoes that of section 8.6.

For objects storing sensitive data, the memory areas must be reset before being freed.

RULE
159

RULE — Sensitive memory areas must be reset before being freed

Warning
It is crucial to ensure that this memory reset code is not optimised and is retained on
compilation. Most compilers consider this reset as dead code since the associated vari-
ables are not used afterwards. Generally speaking, the levels of optimisation should
not be pushed at compilation but sometimes, even at a low level of optimisation, one
must unfortunately recode one’s own memset to avoid this kind of inconvenience.

It is also important to note that memory release is only authorised for dynamically-allocated ob-
jects.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 125

RULE
160

RULE — Do not free memory not allocated dynamically

Finally, realloc must not be used to modify memory space allocated dynamically. This function
can in fact change the memory space allocated to an object by increasing or decreasing its size, but
can also free the memory of the object passed as parameter. Because of the risks associated with
memory handling or the potential double memory release corresponding to undefined behaviour,
use of this function should be avoided.

RULE
161

RULE — Do not change the dynamic allocation via realloc

Warning
If this fails, the realloc function returns NULL, but the initial memory location re-
mains intact and is therefore still accessible.

Bad example
#include <stdlib.h>
void fonc(size_t len){

long *p;
p = (long *) malloc(len *sizeof(int)); /* incorrect type */
...
p = (long *) realloc(p,0); /* release of p via realloc */
...
free(p); /* double release of p */

}

Good example
#include <stdlib.h>
void fonc(size_t len){

long *p;
p = (long *) malloc(len *sizeof(long)); /* corrected type */
...
free(p); /* realloc deleted and replaced by free */

}

15.1.1 References
[Cert] Rec. MEM00-C Allocate and free memory in the same module, at the same level of abstrac-
tion.
[Cert] Rule MEM31-C Free dynamically allocated memory when no longer needed.
[Cert] Rule MEM34-C Only free memory allocated dynamically.
[Cert] Rule MEM35-C Allocate sufficient memory for an object.
[Cert] Rule MEM36-C Do not modify the alignment of objects by calling realloc.
[Cert] Rec. MEM03-C Clear sensitive information stored in reusable resources.

126 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

[Cert] Rec. MEM04-C Beware of zero-length allocations.
[Misra2012] Rule 22.1 All resources obtained dynamically by means of Standard Library functions
shall be explicitly released.
[Misra2012] Rule 22.2 A block of memory shall only be freed if it was allocated by means of a
Standard Library function.
[Cwe] CWE-226 Sensitive information uncleared before release.
[Cwe] CWE-244 Failure to clear heap memory before release (”heap inspection”).
[Cwe] CWE-590 Free of memory not on the heap.
[Cwe] CWE-672 Operation on a resource after expiration or release.
[Cwe] CWE-131 Incorrect Calculation of Buffer Size.
[Cwe] CWE-680 Integer Overflow to Buffer Overflow.
[Cwe] CWE-789 Uncontrolled Memory Allocation.
[IsoSecu] Accessing freed memory [accfree].
[IsoSecu] Freeing memory multiple times [dblfree].
[IsoSecu] Reallocating or freeing memory that was not dynamically allocated [xfree].
[IsoSecu] Taking the size of a pointer to determine the size of the pointed-to type [sizeofptr].
[IsoSecu] Allocating insufficient memory [insufmem].

15.2 Use of the sizeof operator
The sizeof operator is essential in C in order to know the size of an object in memory. However,
careless use of this operator can lead to unexpected behaviour and result in an incorrect memory
size or lead to an unevaluated expression.

It is preferable to use the object type and not the identifier of a variable as a parameter of the
sizeof operator. Using the identifier has the advantage of being “resistant” to the associated type
change, but it is then necessary to ensure that the use of the sizeof operator is correct.

In order to avoid problems related to the alignment of the members of a structure, it is common
to use:

n either the pre-compilation directive pack;

n or an explicit padding field.

Warning
The pack directive is not standard.

If an alignment of the members of a structure is required, the pre-compilation pack directive or
padding fields can be used.

Moreover, the use of the idiomatic expression sizeof(array)/sizeof(array[0]) to determine
the number of elements in an array is quite traditional, but great care must be taken in its use.
This expression is only correct if the sizeof operator is applied to the array in the block in which
the array is declared. The result of this expression will be quite different if the sizeof operator

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 127

is applied to an array passed as parameter because this array will then be a pointer type and no
longer an array.

RULE
162

RULE — Correct use of the sizeof operator
An expression contained in a sizeof must not:
n contain the operator “=”, since the expression will not be evaluated;

n contain pointer dereferencing;

n be applied to a pointer representing an array.

Warning
The sizeof operator does not return the size of the object, but the size used in mem-
ory.

Bad example
The following example shows incorrect use of the sizeof operator.
uint8_t tab[LEN];
typedef struct s_example {

uint32_t ui_field1;
uint8_t ui_field2;

} t_example;

int32_t i, isize;
t_exemple test;
t_exemple* ptr;

i = 5;
ptr = NULL;
isize = sizeof(i = 1234); /* the expression i= 1234 will not be processed */
/* i has the value 5, and not 1234. isize equals 4 */
isize = sizeof(t_example); /* the value returned by sizeof is 8 for 32-bit

alignment */
isize = sizeof(*ptr); /* the expression sizeof(*ptr) returns the size of the

structure t_example */
void crawl_tab(uint8_t tab[])
{

for (size_t i = 0; i < sizeof(tab) / sizeof(tab[0]); i++) /* tab is therefore a
pointer type parameter! */

...
}

Tolerated example
The following example makes good use of the alignment directive and does not use
an expression as a parameter of the call to the sizeof operator.
#pragma pack(push, 1) /* 1 byte alignment - NOT STANDARD - */
uint8_t tab[LEN];
typedef struct s_example
{

uint32_t ui_field1;
uint8_t ui_field2;

} t_exemple;
#pragma pack(pop) /* return default alignment */

int32_t i;
size_t isize;

128 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

i = 5;
isize = sizeof(int32_t);
i = 1234;
isize = sizeof(t_example); /* the value returned by sizeof is 5 since the structure

was declared with a 1 byte alignment */
void crawl_tab(uint8_t tab[], size_t n) /* known array size */
{

for (size_t i = 0; i < n; i++) /* tab is therefore a pointer type parameter! */
...

}

15.2.1 References
[Cert] Rec. EXP09-C Use sizeof to determine the size of a type of a variable.
[Cert] Rule EXP44-C Do not rely on side effects in operand to sizeof, _Alignof, or _Generic.
[Cert] Rec. ARR01-C Do not apply the sizeof operator to a pointer when taking the size of an array.
[Misra2012] Rule 13.6 The operand of the sizeof operator shall not contain any expression which
has potential side effects.
[IsoSecu] Taking the size of a pointer to determine the size of the pointed-to type [sizeofptr].
[Cwe] CWE-131 Incorrect Calculation of Buffer Size.
[Cwe] CWE-467 Use of sizeof() on a pointer type.
[Cwe] CWE-805 Buffer access with incorrect length value.

15.3 Mandatory verification of the success of a memory
allocation

When a memory allocation is made, it may fail if there is no more free memory in the system.
Failure to test the pointer returned by the allocation function will cause the program to crash the
first time the pointer is used.

Usually, if allocation fails, the memory allocation function returns a NULL pointer. It is therefore
necessary to check that the pointer returned by the allocation function is not NULL.

If the allocation function behaves differently on an allocation error, refer to the documentation of
the function for how to handle the error appropriately.

RULE
163

RULE — Mandatory verification of the success of a memory allocation
The success of a memory allocation must always be checked.

This rule is a special case of section 13.7 but with special attention paid to the handling of memory
allocation errors.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 129

Bad example
In the following example, the memory allocation success check is missing.
point_t *p_point;
p_point = (point_t *)malloc(sizeof(point_t));
/* no check on function return */
p_point->x = 0.0f;
p_point->y = 0.0f;

Good example
In the following code, the success of the memory allocation is checked before the
pointer is used.
point_t *p_point = NULL;

p_point = (point_T *)malloc(sizeof(point_t));

if (NULL != p_point) {
p_point->x = 0.0f;
p_point->y = 0.0f;

} else {
/* error handling */

}

15.4 Isolation of sensitive data
When sensitive data is loaded into the memory (e.g. encryption keys), it remains in memory after
the program has finished accessing it. Another program can access our program’s memory via
auxiliary channels 14.

It is therefore necessary to associate memory areas with their use: data representing different
values is stored in separate memory spaces. If a shared memory area is recycled, make sure that it
is erased before being reused.

All memory areas that contain sensitive datamust be explicitly deleted once the program no longer
needs to access this data.

Warning
Clearing buffers so that data does not remain on the stack via a memset, for example,
may be considered unnecessary by the compiler and the associated calls can therefore
be deleted in order to optimise the code. The developer should be aware of this risk
and consult the documentation of the compiler used in order to ensure that the calls
in question are properly stored.

RULE
164

RULE — Sensitive data must be isolated
Check the correct use of a memory area storing sensitive data, i.e. minimise memory
exposure, minimise copying and delete the area(s) that contained the sensitive data
as soon as possible.

14. There are many illustrations of this: Meltdown, Spectre, ZombieLoad, etc.

130 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Bad example
In the example below, the same buffer is used to store the key and then the initiali-
sation vector.
#define WORK_SIZE 32U

#include <stdlib.h>

void process(const uint8_t *key, uint16_t key_size, const uint8_t *init,
uint16_t init_size) {

uint8_t buffer[WORK_SIZE];

if ((NULL == key) || (NULL == init)) {
/* error handling */
...

}

memcpy(buffer, key, min(key_size, WORK_SIZE));
print_key(buffer);

/* buffer contains 4 bytes of the initialisation vector and the last 12 bytes of
the key */

memcpy(buffer, init, min(init_size, WORK_SIZE));
printIV(buffer);
...
/* no secure deletion */

}

Good example
The following example shows a partition between the key and the initialisation vec-
tor.
#define KEY_SIZE 16U
#define IV_SIZE 4U

#include <stdlib.h>

void process(const uint8_t *key, uint16_t key_size, const uint8_t *init,
uint16_t init_size) {

uint8_t my_key[KEY_SIZE];
uint8_t iv[IV_SIZE];

if ((NULL == key) || (NULL == init)) {
/* error handling */
...

}

memcpy(my_key, key, min(key_size, KEY_SIZE));
print_key(my_key);

memcpy(iv, init, min(init_size, IV_SIZE));
printIV(iv);
...
/* deletion of the buffers, so that the data does not remain on the stack
ATTENTION: the compiler can optimise and delete these calls, which may be

considered unnecessary.
It is therefore necessary to consult the compiler documentation in order for the

calls to be retained. */
memset(my_key, 0, KEY_SIZE);
memset(iv, 0, IV_SIZE);

}

15.4.1 References

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 131

[Cert] Rec. MSC18-C Be careful while handling sensitive data, such as passwords, in program code.

132 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

16
Error management

16.1 Correct use of errno
The errno variable, activated by the header file, <errno.h>, has type int, and different functions in
the standard library change its value with a positive value in case of error. It is therefore important
to initialise errno before any function call from the standard library that changes its value, and it
is therefore also necessary to consult its value at the end of the execution of such functions.

RULE
165

RULE — Initialise and view the value of errno before and after any exe-
cution of a standard library function that changes its value

Bad example
#include <stdlib.h>
void try1 (const unsigned char * len)
{

unsigned long res;
res = strtoul(len,NULL,5); /* conversion character string to unsigned long */
/* the function strtoul writes in errno */
if (res == ULONG_MAX)
{

/* problem management */
}

...
}

Good example
#include <stdlib.h>
#include <errno.h>
void try1 (const unsigned char * len)
{

unsigned long res;
errno = 0; /* init errno */
res = strtoul(len,NULL,5); /* conversion character string to unsigned long */
/* strtoul written in errno */
if (res == ULONG_MAX && errno != 0) /* errno reading */
{

/* problem management */
}

...
}

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 133

16.1.1 References
[Cert] Rule ERR30-C Set errno to zero before calling a library function known to set errno and
check errno only after the function returns a value indicated failure.
[Cert] Rule ERR32-C Do not rely on indeterminate values of errno.
[IsoSecu] Incorrectly setting and using errno [inverrno].
[Cwe] CWE-456 Missing Initialisation of a variable.

16.2 Systematic consideration of errors returned by
standard library functions

Most of the standard library functions return values to indicate the correct operation of the func-
tion, but also an error when the function is executed. Failure to test the return value may lead to
the use of erroneous data produced by the function.

RULE
166

RULE — All errors returned by standard library functions must be handled
Any function return must be read in order to set up the appropriate processing fol-
lowing the execution of the function.

This rule is a specific case of section 13.7 but with special attention paid to the error management
of standard library functions.

Bad example
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

FILE *fp = fopen("myfile.txt", "w"); /* returned value not read */
fputs("hello\n", fp);
...

}

Good example
#include <stdio.h>
#include <stdlib.h>
int main(void)
{

FILE *fp = fopen("myfile.txt", "w");
if (fp != NULL) {

fputs("hello\n", fp);
...
}

}

134 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

16.2.1 References
[Misra2012] Dir. 4.7: If a function returns error information, then that error information shall be
tested.
[Cert] EXP12-C Do not ignore values returned by functions.
[Cert] ERR33-C Detect and handle standard library errors.
[Cert] FIO37-C Do not assume that fgets() or fgetsw() returns a nonempty string when successful.
[Cwe] CWE-241 Improper Handling of Unexpected Data Type.
[Cwe] CWE-252 Unchecked Return Value.
[Cwe] CWE-253 Incorrect Check of Function Return Value.
[Cwe] CWE-391 Unchecked Error Condition.
[IsoSecu] Failing to detect and handle library errors [liberr].
[IsoSecu] Forming invalid pointers by library function [libptr].

16.3 Documentation and structuring of error codes
Incomplete documentation of the prototype of a function can lead to programming errors, espe-
cially in error management, if all return codes are not indicated with their meaning.

A documentation template for error codes must be defined. This should contain, for each return
code, the associated error and, in the event that several error codes may occur at the same time,
the priority between these codes must be specified for error management.

RULE
167

RULE — Error code documentation
All error codes returned by a function must be documented. If several error codes
can be returned at the same time by the function, the documentation must define
the priority for handling these codes.

Error codes must contain information. Without structuring, the information indicated by the re-
turn code is often insufficient. The structuring of return codes via masks is one possibility. The
return codes must also be structured in such a way that it can be determined whether the value
comes from a normal execution of the function, or on the contrary whether an external element
has interfered (buffer overflow, etc.).

RECO
168

RECOMMENDATION — Structuring of return codes
The return codes must be structured in such a way that information on the progress
of the function called can be obtained easily:
n error;

n error type;

n alarm;

n alarm type;

n ok;

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 135

n etc.

16.3.1 References
[Cert] Rec. ERR00-C Adopt and implement a consistent and comprehensive error-handling policy.

16.4 Return code of a C program depending on whether it
executed successfully

The management of the return code of a program is not identical from one operating system to
another or from one shell to another. This can therefore cause problems of code portability. From
one operating system to another, or from one shell to another, the authorised value range for the
return code of a program varies:

n onWindows, the shell cmd.exe authorises signed 32-bit integers (value accessible in the ERRORLEVEL
variable);

n on Linux, the shell authorises a value between 0 and 255 (even if some codes are reserved for
signals; the value is accessible via the variable $?).

The use of a return code between 0 and 127 protects against the risks of modification (by type
conversion) or misinterpretation of the return code of a program:

n values between 0 and 127 can be coded over 7 bits;

n they have the same coding whether the integer type is signed or unsigned.

RULE
169

RULE — Return code of a C program according to the result of its execution
The return code of a C program must have a meaning in order to indicate that the
program has run correctly or that an error has occurred:
n the value of the return code must be between 0 and 127;

n the value 0 indicates that the program was executed without errors;

n the value 2 is generally used in Unix to indicate an error in the arguments passed
as parameters for the program.

The meaning of the program’s return codes must be indicated in its documentation.

Bad example
The following code presents a portability problem betweenWindows and Linux. The
value -1 is in fact converted to 255 on Linux with the bash shell.
int main(int argc, char* argv[]) {

if (argc != 2) {
/* incorrect number of arguments */
return -1; /* the return code will not be interpreted correctly on Linux */

}
...
return 0;

136 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

}

Good example
In the following example, the return codes do not pose a portability problem.
#define RESULT_OK (0U)
#define ARG_ERROR (2U)

int main(int argc, char* argv[]) {
if (argc != 2) {

/* incorrect number of arguments */
return ARG_ERROR;

}
...
return RESULT_OK;

}

16.5 Ending of a C program following an error
When multiple exit points are defined in a C program, this makes it difficult to set up tests for
that program or the libraries used by that program. Error management must be carried out using
error codes. If a critical error is encountered, the program should not be terminated by calling the
abort() function or the _Exit() function (C99) in the code where the error was detected. In fact,
these two functions do not terminate the program cleanly, i.e. they bypass the normal termination
routines (closing files, deleting temporary files, writing data, etc.). The error must be traced by
means of an error code to the main function main(), which will then terminate the program.

RECO
170

RECOMMENDATION — Give preference to error returns via return codes in
the main function
A C program must have a minimum main() function. Error returns are made by a
dedicated (and therefore documented) code return of this function.

RULE
171

RULE — Do not use the abort() or _Exit() functions

The exit() function results in a normal termination of the program and is not dependent on
the implementation. This exit from the program can be used, but excessively frequent use of this
function in the program can make it difficult to understand.

RECO
172

RECOMMENDATION — Limit calls to exit()
Calls to the exit() function must be commented and not overused. The developer
should replace them wherever possible with an error code return in the main func-
tion.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 137

Finally, the setjmp() and longjump() functions defined in the setjmp.h library mainly used for
exception handling in C can easily lead to undefined behaviour and should therefore not be used.
In particular, their use creates problems with signal management.

RULE
173

RULE — Do not use the setjmp() and longjump() functions

Bad example
#include <stdlib.h>
#include <stdio.h>
int read_file(void)
{

FILE *f = fopen("C:\\myfile.txt", "w");
if (NULL == f)
{

/* problem when opening file */
_Exit(12); /* not authorized */

}
fprintf(f, "%s", "blablabla");
...
abort(); /* not authorized */
...
return 0;

}
int main(void)
{

int val = read_file();
...
return 1;

}

Good example
#include <stdlib.h>
#include <stdio.h>
int read_file(void)
{

FILE *f = fopen("C:\\myfile.txt", "w");
if (NULL == f)
{

/* problem when opening file */
return 12; /* error code documented for this problem */

}
fprintf(f, "%s", "blablabla");
...
return 10; /* other documented error code */
...
return 0; /* no problem */

}
int main(void)
{

int val = read_file();
if (val == 0)
{ /* no problem in the function */

...
return 0;

}
else
{ /* error handling according to the error code */

...
return 1;

138 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

}
}

16.5.1 References
[Cert] Rule SIG30-C Call only asynchronous functions with signal handlers.
[Cert] ERR00-C Adopt and implement a consistent and comprehensive error-handling policy.
[Cert] ERR04-C Choose an appropriate termination strategy.
[Cert] ERR06-C Understand termination behavior of assert() and abort().
[IsoSecu] Calling functions in the C Standard Library other than abort, _Exit and signal from
within a signal handler [asyncsig].
[IsoSecu] Calling signal from interruptible signal handlers [sigcall].
[Cwe] CWE-479 Signal Handler Use of a Non-reentrant Function.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 139

17
Standard library

17.1 Prohibited standard library header files
Several header files in the standard library only introduce functions that contradict the rules or
recommendations of this guide:

n setjmp.h;

n stdarg.h.

Therefore, these header files must not be used as they violate several of the above rules.

The library <stdarg.h>, for example, introduced in the C90 standard, declares a type and defines 3
macros: va_start, va_arg, va_end. A new macro (va_copy) is introduced with C99. The purpose
of this library is to allow the definition of functions with a variable number and type of arguments.
In addition, the use of these features can, in many cases, lead to undefined behaviour.

Inconsistent typing in the call of a variadic function can lead to an unexpected termination of the
function or even undefined behaviour.

RULE
174

RULE — Do not use the setjmp.h and stdarg.h standard libraries

17.1.1 References
[Misra2012] Rule 17.1 The features of <stdarg.h> shall not be used.
[Cert] Rec. DCL10-C Maintain the contract between the writer and caller of variadic functions.
[Cert] Rec. DCL11-C Understand the type issues associated with variadic functions.
[Cert] Rule MSC39-C Do not call va_arg() on a va_list that has an indeterminate value.
[Misra2012] 21.4 The standard header file <setjmp.h> shall not be used.
[Cert] MSC22-C Use the setjmp(), longjmp() facility securely.
[Cert] ERR04-C Choose an appropriate termination strategy.
[Cert] ERR05-C Application independent code should provide error detection without dictating
error handling.

140 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

17.2 Not recommended standard libraries
Use of the following libraries should be limited and retained only if necessary: float.h, complex.h,
fenv.h and math.h.

RECO
175

RECOMMENDATION — Limit the use of standard libraries handling floating-
point numbers
The standard libraries float.h, complex.h, fenv.h and math.h should only be used
if absolutely necessary as in the case of digital processing.

17.2.1 References
[Misra2012] 21.11 The standard header file <tgmath.h> shall not be used.
[Misra2012] 21.12 The standard header file <fenv.h> shall not be used.
[Cert] FLP32-C Prevent or detect domain and range errors in math functions.
[Cert] FLP03-C Detect and handle floating point errors.
[Cwe] CWE-682 Incorrect calculation.

17.3 Prohibited standard library functions
Other libraries contain dangerous functions such as the atoi(), atol(), atof() and atoll() func-
tions of stdlib.h which lead to undefined behaviour if the resulting value cannot be represented.
The strto*() functions are to be preferred as they have the same action, but without the risk of
undefined behaviour.

RULE
176

RULE — Do not use the functions atoi(), atol(), atof()
and atoll() from the library stdlib.h
Equivalent functions strto*() have to be used.

The rand() function of the standard library for pseudo-random number generation does not give
any guarantee as to the quality of the generated randomness.

RULE
177

RULE — Do not use the rand() function of the standard library

17.3.1 References
[Misra2012] The atof, atoi, atol and atoll functions shall not be used.
[Cert] ERR07-C Prefer functions that support error checking over equivalent functions that don’t.
[Cert] Rec MSC25-C Do not use insecure or weak cryptographic algorithms.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 141

[Cert] Rule MSC30-C Do not use the rand() function for generating pseudorandom numbers.
[Cwe] CWE-327 Use of a Broken or Risky Cryptographic Algorithm.
[Cwe] CWE-338 Use of Cryptographically Weak Pseudo-random Number Generator (PRNG).
[Cwe] CWE-676 Use of potentially dangerous functions.

17.4 Choice between different versions of standard library
functions

When a function from the standard library offers a “less dangerous” version — in the sense that it
adds extra security —, this version should be favored.

Warning
We refer to “less dangerous” versions because such functions for instance add a limit
to the size of an input parameter, but they can still result in undefined or unspecified
behaviours.

Information
In later versions of the C language (especially for C11), new and genuinely more
secure versions are proposed such as strcpy_s().

String handling functions of the type strxx will be replaced by the equivalent functions strnxx
when it is possible to limit the number of characters to be handled.

RULE
178

RULE — Use the “more secure” versions for standard library functions
When different versions of functions from the standard library exist, the “more se-
cure” version must be used.

Likewise, all obsolete or outdated functions must not be used. The best known example is that
of the gets() function, deprecated in the third technical patch of C99 [AnsiC99] and which was
removed from subsequent standards.

RULE
179

RULE — Do not use obsolete library functions or those which become ob-
solete in subsequent standards

RULE
180

RULE — Do not use library functions that handle buffers without taking the
buffer size as an argument

142 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

17.4.1 References
[Cert] Rec. PRE09-C Do not replace secure functions with deprecated or obsolescent functions.
[Cert] Rec. MSC24-C Do not use deprecated or obsolescent functions.
[Cwe] CWE-20 Insufficient input validation.
[Cwe] CWE-120 Buffer Copy without checking Size of Input(’Classic Buffer Overflow’).
[Cwe] CWE-676 Use of potentially dangerous function.
[Cwe] CWE-684 Failure to provide specified functionality.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 143

18
Analysis, evaluation of the code

18.1 Proofreading of the code
It is good for any developer, although not mandatory, to have their code read through at least once
by a dedicated proofreader or another developer to check the maintainability and clarity of their
code.

GOOD
PRACTICE

181

GOOD PRACTICE — All code should be proofread

18.2 Indentation of long expressions
For long expressions, in the absence of adequate indentation, it is very difficult to understand the
code and the intention of the developer. The use of space characters for indentation of expressions
and statements allows more flexibility for indentation than the use of the tab character.

RECO
182

RECOMMENDATION — Indentation of long expressions
When a statement or expression is spread over several lines, indentation is essential
in order to facilitate understanding of the code. compréhension du code.

Bad example
The code in the following example should be re-indented in order to make it easier
to understand.

if((OPT_1 == opt)
|| ((c >= a) && (0xdeafbeef == b)
&& (NULL == p_point)))

{
/* processing */

}
if(0 != a_function_name_really_to_extend_to_be_as_explicit_as_possible(

A_CONSTANT_ALWAYS_WITH_A_VERY_EXPLICIT_NAME ,
A_SECOND_CONSTANT_ALWAYS_WITH_A_NAME_TO_EXTEND , 5, 50))

{
/* processing */

}

144 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Good example
The following code shows a correct indentation of a conditional over several lines.

if((OPT_1 == opt)
|| ((c >= a)
&& (0xdeafbeef == b)
&& (NULL == p_point)
))
{

/* processing */
}

if(0 != a_function_name_really_to_extend_to_be_as_explicit_as_possible(
A_CONSTANT,A_CONSTANT_ALWAYS_WITH_A_VERY_EXPLICIT_NAME ,
A_SECOND_CONSTANT_ALWAYS_WITH_A_NAME_TO_EXTEND ,
5,
50))

{
/* processing */

}

18.3 Identifying and removing any dead or unreachable
code

The presence of dead code or unreachable code hinders the proofreading and understanding of
the code.

Unreachable code
Code is considered unreachable if there is no input that allows this point of the pro-
gram to be reached (statements in an always false conditional, statements located
after a return statement, etc.).

Dead code
“Dead code” is understood to mean code for which the execution has no effect (no
modification of variables, no impact on the control flow, etc.).

Furthermore, from a security point of view, dead or unreachable code can be used during a bypass
of the execution stream. This unreachable code may be debugging code, disabling security checks.

RULE
183

RULE — Identify and remove any dead code

RULE
184

RULE — The code must have no unreachable code other than defensive
code and interface code
There must never be any unreachable code, except for defensive code or interface
code, and in both cases it must be specified as a comment.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 145

18.3.1 References
[Misra2012] Rule 2.1 A project shall not contain unreachable code.
[Misra2012] Rule 2.2 There shall be no dead code.
[Cwe] CWE-561 Dead code.
[Cwe] CWE-563 Assignment to Variable without use.
[Cwe] CWE-570 Expression is always False.
[Cwe] CWE-571 Expression is always True.

18.4 Tool-based evaluation of the source code to limit the
risk of execution errors

Despite the application of coding conventions, good programming practices and test execution,
errors frequently remain in software. Some of these residual errors can be discovered using code
analysis tools. The code analyser must be used as development progresses, which limits the impact
of the modifications and corrections made to the code but also the complexity of these modifica-
tions and corrections.

When running the tests, a dynamic analysis can be performed to identify memory leaks. Code
coverage should also be measured in order to identify parts of the software that have not been
tested.

RECO
185

RECOMMENDATION — Tool-based evaluation of the source code to limit
the risk of execution errors
The source code of the software should be analysed using at least one code analysis
tool. The results produced by the analysis tool should be studied by the developer
and corrections must be made in relation to the problems discovered.

18.4.1 References
[Misra2012] Rule 1.3 There shall be no occurrence of undefined or critical unspecified behaviour.
[Misra2012] Dir. 4.1: Run-time failures shall be minimized.

18.5 Limiting cyclomatic complexity

Cyclomatic complexity
Cyclomatic complexity is a metric that measures the structural complexity of a com-
puter program (module, function). It corresponds to the number of existing paths.

146 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

It is often observed that the greater the cyclomatic complexity, the more difficult the computer
program is to test and maintain. High cyclomatic complexity indicates a high probability of intro-
ducing errors during development or maintenance of the program.

In the event of significant cyclomatic complexity, the code should be reorganised in order to sim-
plify it. This can be done, for example, by writing additional functions.

RECO
186

RECOMMENDATION — Limitation of cyclomatic complexity
The cyclomatic complexity of a function should be limited as far as possible.

18.6 Limiting the length of functions
In line with the previous section, each function of a program must have a clear corresponding ac-
tion. Too often, C functions actually perform several actions/processes at once, which complicates
the reading of the code, its updating and maintenance. A function that is too long, in terms of the
number of lines of code, is often a sign of a function that is too complex with multiple actions, and
which could therefore be split into several sub-functions. In such cases, the function code should
be reorganised in order to simplify it and reorganise it into different functions of smaller sizes,
associated with precise processing.

RECO
187

RECOMMENDATION — Limitation of the length and complexity of a func-
tion
A function should ideally be associated with a single process and should therefore
correspond to a reasonable number of lines of code.

18.7 Do not use C++ keywords
C and C++ are two different programming languages, although they have many similarities, and
C++ incorporates most of the features of the C language.

A developer may inadvertently use C++ keywords (for example: class, new, private, public,
delete, etc.) within a C code, whether to name a function, variable or something else. How-
ever, this hinders proofreading of code, and risks confusing the analysis tools. Moreover, this can
hamper maintenance and can cause compilation problems if the compiler also includes C++. A
search for these keywords in the sources of a C program can be easily automated. When one of the
keywords is found, the name of the variable, type or function must be changed.

Appendix C provides the list of C++ keywords.

RULE
188

RULE — Do not use C++ keywords
No C++ keywords must be used in the source code of a C program.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 147

Bad example
In the code below, the names of the new and delete functions should be changed to
new_point and delete_point for example.
/* point.h */

typedef struct
{

float x;
float y;

} point_t;

point_t *new();

void delete(point_t *p);

Good example
In the following example, no C++ keywords are used.
/* point.h */
typedef struct
{

float x;
float y;

} point_t;
point_t *new_point();
void delete_point(point_t *p);

148 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

19
Miscellaneous

19.1 Comment format
Comments accepted according to C90 can only take the form:
/* comments that can be over several lines */

In C99, the notation of comments on a line is extended with the following format:
// comments on a single line

The character sequences /* and // are prohibited in all comments, and the line splicing character
\ is prohibited in a comment introduced by // because it leads to undefined behaviour.

RULE
189

RULE — Prohibited character sequences in comments
The /* and // sequences are prohibited in all comments. And a comment on a line
introduced by // must not contain a line splicing character \.

19.1.1 References
[Misra2012] Rule 3.1 The characters sequences /* and // shall not be used within a comment.
[Misra2012] Rule 3.2 Line-splicing shall not be used in // comments.

19.2 Implementation of a “canary” mechanism
Already introduced in subsection 5.3.5, “canaries” provide a protection against some programming
errors that could for instance enable control flowhijacking by overwriting a function return address
saved on the stack.

If the toolchain does not support automatic insertion of canaries, such a mechanism must be
implemented by the developer himself. This can be achieved by passing an additional argument
to each critical function and verifying its value at the beginning and at the end of this function, as
illustrated in the code sample hereinbelow.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 149

RULE
190

RULE — Manually implement a “canary” mechanism when not already sup-
ported by the toolchain
This mechanism must at least be applied to critical program functions.

When this is not feasible, it is still possible to undertake a thorough analysis of the source code in
order to, for example, guarantee that no local arrays are used, to avoid any control flow hijacking
due to a stack buffer overflow.

Warning
Preference should be given to the “automatic” use of canaries by means of the
toolchain. Indeed, developing a canary mechanism remains a complicated task, of-
ten prone to programming errors or even vulnerabilities.

Good example
The keyword volatile is used to prevent possible optimisations of the compiler for
access to the values of the canary and canaryRef variables. In fact, it is necessary to
systematically go and read the canary and canaryRef values in memory.
typedef volatile uint32_t fid_t;

#ifdef ACTIVATE_CANARIES
static inline void verifcanari(fid_t canari, fid_t canariRef) {

uint8_t res = !!(canari != canariRef);

if (0 != res)
{

/* context-specific processing */
}

}
#else /* ifdef ACTIVATE_CANARIES */
static inline void verifcanari(fid_t canari, fid_t canariRef) { }
#endif /* ifdef ACTIVATE_CANARIES */
void foo(fid_t canari) {

/* checking of the canary parameter at the beginning of the function */
verifcanari(canari, FID_FOO);

/* body of the function... */

/* checking of the canary parameter at the end of the function */
verifcanari(canari, FID_FOO);

}

19.3 Assertions of development and assertions of integrity
Two types of assertions can be distinguished in software:

n assertions for the purpose of development. These are intended to be removed from the software
once the qualification phase is over (for example, to check that a pointer parameter is not null);

n assertions designed to check the integrity of the software during execution: these are intended
to ensure that the software runs normally and to detect a hardware failure or an attempt to
modify it externally (e.g. a fault attack).

A software integrity assertion should not be written using the macro assert(). Indeed, this macro
is deleted from the code generated on compilation in release mode. Furthermore, these assertions

150 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

should only be used for debugging purposes and are in particular not recommended for verification
purposes, especially due to initialisations activated in debugmode which will no longer be present
outside of debug mode.

It may be that a code checking the integrity of a software program is detected as code unreachable
by the compiler or a static analysis tool (in fact, the code can check a set of conditions that cannot
occur during normal program execution). The purpose of this code must be clearly documented,
and it must be ensured that compiler optimisations do not result in the deletion of this code in the
generated binary.

RULE
191

RULE — No development assertion on a code in production
Development assertions must not be present in production.

RECO
192

RECOMMENDATION — Management of integrity assertions should include
emergency data deletion
Integrity assertions should appear in production. If an integrity assertion is triggered,
the processing code should result in the emergency deletion of sensitive data.

19.4 Last line of a non-empty file must end with a line break
The absence of a line break at the end of a non-empty file leads to undefined behaviour according
to the C90 and C99 standards.

Warning
The vast majority of publishers, particularly in a Linux environment, automatically
and invisibly add this line break when closing files.

In addition, all preprocessor directives and comments must be closed.

RULE
193

RULE— All non-empty files must end with a line break and the preprocessor
directives and comments must be closed
Anon-empty filemust not end in themiddle of a comment or preprocessor directive.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 151

Appendix A
Acronyms

ANSI American National Standards Institute

API Application Programming Interface

ASLR Address space layout randomization

FAM Flexible Array Member

IDE Integrated Development Environment

ISO International Standards Organization

MISRA Motor Industry Software Reliability Association

VLA Variable Length Array

152 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Appendix B
Further information on gcc and Clang

options

Information given in this appendix originates from [GccRef] and [ClangRef], for GCC 11 and CLANG
13 respectively.

B.1 Definition of the C language standard in use
Option -std allows for specifying the version of the C standard — or of the corresponding GNU
dialect — used by the compiler. Without this option, GNU dialect of ISO C17 is selected by default.

Information
Option -ansi is equivalent to option -std=c90, which is itself equivalent to -std=c89
and -std=iso9899:1990.

Information
Option -std=iso9899:199409 corresponds to ISO C90 as modified in amendment 1
in 1995.

Information
Option -std=iso9899:1999 is equivalent to -std=c99.

B.2 Additional warnings
The following options are neither included in -Wall nor -Wextra nor -Wpedantic and were not
mentioned in chapter 5, but may nonetheless prove useful 15:

n -Wbad-function-cast

n -Wcast-align

n -Wcast-qual (warns whenever a pointer is cast so as to remove — or introduce in an unsafe
way — a type qualifier like const)

15. Only options whose names are deemed not meaningful enough are explained. In any case, the reader is encouraged to refer to
GCC and CLANG compilers manuals for more detailed explanations.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 153

n -Wconversion (warns for implicit conversions that may alter a value, including conversions
between signed and unsigned)

n -Wfloat-equal

n -Wnull-dereference

n -Wshadow (warnswhenever a local variable or type declaration reuses an identifier that is already
bound to another variable, parameter or type)

n -Wstack-protector (warns about functions that are not instrumented with a stack canary)

n -Wstrict-prototypes

n -Wswitch-enum (warns whenever the controlling expression of a switch statement is of an enu-
merated type but lacks a case for one or more of the named constants defined with this type)

n -Wmissing-prototypes

n -Wundef

n -Wvla

The following options are specific to GCC:

n -Wduplicated-branches

n -Wduplicated-cond

n -Wformat-signedness

n -Wjump-misses-init

n -Wlogical-op (warns about suspicious uses of logical operators)

n -Wnested-externs (warns on declarations that use the extern storage class specifier within a
function)

n -Wnormalized (warns about any identifier that is not in normalized form)

n -Wold-style-definition

n -Wshift-negative-value

n -Wshift-overflow=2

n -Wstrict-overflow=3 (warns about a number of cases where the compiler optimizes based on
the assumption that signed overflow does not occur)

n -Wsuggest-attribute=format (warns for cases where adding a format GCC attribute may be
beneficial)

n -Wsuggest-attribute=malloc (warns for cases where adding a malloc GCC attribute may be
beneficial)

n -Wswitch-default (warns whenever a switch statement does not have a default case)

n -Wtraditional-conversion (warns if a prototype causes a type conversion that is different from
what would happen to the same argument in the absence of a prototype)

154 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

n -Wtrampolines (warns if trampolines, mentioned in a footnote in subsection 5.3.5, are gener-
ated)

n -Wwrite-strings (adds type qualifier const to constant strings so that copying the address of
one into a pointer to a non-const-qualified type produces a warning; this helps the developer
to find at compile-time code that tries to write into a string constant — provided that the const
keyword has indeed been used in declarations and prototypes, otherwise this warning becomes
unhelpfully very noisy)

The following options are specific to CLANG:

n -Warray-bounds-pointer-arithmetic

n -Wassign-enum (warns whenever an integer constant assigned to a variable of an enumerated
type does not belong to the range of values defined for this type)

n -Wcast-function-type

n -Wcomma

n -Wcovered-switch-default

n -Wduplicate-enum

n -Widiomatic-parentheses (warns whenever an assignment expression is used as a condition
without being enclosed in parentheses)

n -Wloop-analysis

n -Wformat-non-iso

n -Wformat-pedantic

n -Wformat-type-confusion

n -Wfour-char-constants

n -Wimplicit-fallthrough

n -Wpointer-arith

n -Wpragmas

n -Wreserved-identifier

n -Wshift-sign-overflow

n -Wsigned-enum-bitfield

n -Wstatic-in-inline

n -Wtautological-constant-in-range-compare

n -Wthread-safety

n -Wunreachable-code

n -Wunreachable-code-aggressive

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 155

n -Wunused-macros

n -Wused-but-marked-unused

n -Wvariadic-macros

n -Wzero-as-null-pointer-constant

Information
With CLANG, option -Wall automatically enables option -Wmost, which itself enables
many additional warnings. Therefore, the options that correspond to the latter are
not listed above.

B.3 Clang and the -Weverything option
CLANG features a -Weverything option 16 which enables all of the warnings supported by CLANG
without exception.

Using -Weverything may be interesting to discover new warnings supported by the compiler or
in case of highest level of requirement on a given code base. It should not be used systematically
though, since it might for instance cause trouble for project builds following a tool update.

16. Not to be confused with -Wall, -Wextra and -Wmost.

156 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Appendix C
C++ reserved words

The following list contains reserved words from C++ that do not belong to the C language. Words
suffixedwith an asterisk are reservedwords added in C++11. Additional semantics have been added
to the reserved word delete in C++11 when declaring a class.

alignas * const_cast not_eq this
alignof * decltype * nullptr * throw
and delete * operator
and_eq dynamic_cast or try
asm explicit or_eq typeid
thread_local * export override * typename
bitand final* private using
bitor friend protected virtual
char16_t * mutable public xor
char32_t * namespace reinterpret_cast xor_eq
catch new static_assert *
class noexcept * static_cast
compl template
constexpr *

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 157

Appendix D
Operator priority

The order adopted is in descending order of priority. Operators present in the same cell of the
table have the same priority level, even if they are located on a different row of the cell.

L. to R. stands for “left-to-right associativity”, and R. to L. stands for “right-to-left associativity”.

Category Operator Name Associativity
Reference () Function call L. to R.

[] Access to an element in an array
-> Access to a field of a given address in a struc-

ture
. Access to a field of a structure

Unary + Identity R. to L.
- Opposite
++ Increment
-- Decrement
! Logic negation
~ Inversion of all bits
& Pointer referencing

Pointer dereferencing
(cast) Type conversion
sizeof Size of an object

Arithmetic * Product L. to R.
/ Division
% Modulo
+ Sum of two numbers or a pointer and a num-

ber
- Substraction of two numbers or two pointers

Shift << Binary shift to the left L. to R.
>> Binary shift to the right

Comparison < <= Strictly less than, less than or equal to L. to R.
> >= Strictly greater than, greater than or equal to
== Equal à
!= Different from

Bit processing & Bitwise And L. to R.
^ Bitwise exclusive Or
| Bitwise Or

Logic && Logic And L. to R.
|| Logic Or

158 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Conditional ?: Ternary conditional operator R. to L.
Assignment = Assignment R. to L.

+= -= *= /= Increment, decrement, product, division
then assignment

%= &= ^=
|= <<= >>=

Modulo, logic operation, shift then assign-
ment

Sequence , Argument or expression separator L. to R.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 159

Appendix E
Example of development conventions

At the beginning of an IT project, the development team should always agree on the coding con-
ventions to be applied. The aim is to produce a coherent source code. Furthermore, the right
choice of conventions helps to reduce programming errors.

Information
The following points are an example of coding conventions. Some choices are arbi-
trary and open for discussion. This example of conventions can be used or taken as
a foundation, if no development convention has been defined for the project to be
produced. Different tools or advanced editors are able to automatically implement
some of these coding conventions.

Where agreements have been defined in the context of the implementation of a project, the docu-
ment clearly specifying these conventions must accompany the project in question.

E.1 Files encoding
The source files are encoded in UTF8 format.

The line feed character is \n (“line feed” in Unix format).

E.2 Code layout and indentation
E.2.1 Maximum lengths
A line of code or comment should not exceed 100 characters.

A line of documentation should not exceed 100 characters.

A file should not exceed 4000 lines (including documentation and comments).

A function should not exceed 500 lines.

E.2.2 Code indentation
The code is indented with spaces: one level of indentation corresponds to 4 space characters. The
use of the tab character as an indentation character is prohibited.

160 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

The declaration of variables and their initialisation must be aligned using indentations.

A space character is systematically left between a keyword and the opening parenthesis that follows
it.

The opening brace of a block is placed on a new line. The block closing brace is also placed on a
new line.

A space character is left before and after each operator.

A space character is left after a comma.

The semicolon indicating the end of a statement is stuck to the last operand of the statement.

For a function call with many parameters, if it is necessary to place the parameters on several lines,
these parameters are indented to be positioned at the opening parenthesis of the function call.

Good example
...
uint32_t processing_function(linked_list_t *p_param1, uint32_t ui32_param2,

const unsigned char *s_param3)
{

uint32_t ui32_result = 0;
element_t *pp_out_param4 = NULL;

if ((NULL == p_param1) || (NULL == s_param3))
{

ui32_result = 0;
goto End;

}

ui32_result = function_with_many_params(p_param1, ui32_param2, s_param3,
pp_out_param4);

if (1 == ui32_result)
{

...
}

End:
return ui32_result;

}

E.3 Standard types
If the stdint.h header is present, it must be included in order to benefit from the integer types
that it defines. In its absence, it is necessary to define the integer types as presented in section 7.

If the stdbool.h header is present, it must be included in order to benefit from the boolean type it
defines. In its absence, the bool type must be defined as presented on the following code (header
file from GCC version 4.8.2). The _Bool type is defined for the compilers compatible with standard
C99 and subsequent standards.
/* Copyright (C) 1998-2013 Free Software Foundation , Inc. */

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 161

/*
* ISO C Standard: 7.16 Boolean type and values <stdbool.h>
*/

#ifndef _STDBOOL_H
#define _STDBOOL_H

#ifndef __cplusplus

#define bool _Bool
#define true 1
#define false 0

#else // __cplusplus

/* Supporting <stdbool.h> in C++ is a GCC extension. */
#define _Bool bool
#define bool bool
#define false false
#define true true

#endif // __cplusplus

/* Signal that all the definitions are present. */
#define __bool_true_false_are_defined 1

#endif // stdbool.h

E.4 Naming
E.4.1 Language for implementation
The language used for naming libraries, header files, source files, macros, types, variables and func-
tions must be English. This use of English avoids mixing words in French with the keywords of the
C language which are in English within the code. The entire source code produced is thus more
coherent.

The language used for documentation and comments should be English from the beginning of
development and for all documentation and comments.

E.4.2 Naming of source file directories
The source files must be organised in libraries. In the case of a large library, it is recommended to
create a tree structure to organise the source files. The top-level directory must be named with the
name of the library. Sub-directories must be named in such a way that they reflect the criteria for
grouping source files.

The following example shows the organisation of directories for a library containing utility func-
tions:

162 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Tree structure Comment
utils Basic directory of the library
utils/includes Directory containing all the header files of the library (API)
utils/collection Directory containing the implementation of all collection type data

structures (lists, stack, array, hash table, etc.)
utils/concurrency Directory containing the implementation of mutex, semaphores, condi-

tional variables
utils/threads Directory containing the implementation of threads
… …

E.4.3 Naming of header files and implementation files
Header files and source files must be prefixed with the name of the library to which they belong.
If the library name is long, it is advisable to use an abbreviation as a prefix. This abbreviation must
be chosen in such a way that it does not conflict with an already existing library (standard libraries,
third party libraries, etc.).

The following list gives examples of header file and source file names: utils_linked_list.h,
utils_linked_list.c, utils_mutex.h, utils_mutex.c, utils_thread.h, utils_thread.c …

E.4.4 Naming of macros
Preprocessor macros must have upper case names. The words making up a macro name must be
separated by the underscore character. The name of a macro should not match an already existing
name of another macro: for example a macro belonging to a header file of a standard library. The
parameters of a macro must respect the variable naming convention.

Good example
#define LOG_DEBUG(sMessage) write_log_message(sMessage)

The name of a macro, defined to avoid the multiple inclusion of a header file, uses the name of the
header file in upper case. The full stop character is replaced by an underscore character.

Good example
#define UTILS_LINKED_LIST_H

E.4.5 Naming of types
The name of a type defined using the keyword typedef must be written in lower case, with the
suffix _t. The words making up the type name must be separated by the underscore character.

When defining a type for an enumeration or structure, the name following the keyword enum or
struct must have the suffix _tag. The name of the type after the closing brace defining the type
must be the same name, with _tag replaced by _t.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 163

Good example
typedef enum status_tag {

...
} status_t;
typedef signed long sint32_t;
typedef struct linked_list_tag
{

...
} linked_list_t;

E.4.6 Naming of functions
The name of a function must be prefixed by the name (or abbreviation of the name) of the library
to which it belongs. The words making up the name of the function must be separated by the
underscore character. The name of a function must be written in lower case.

Good example
status_t utils_create_linked_list(linked_list_t **pp_list);
status_t utils_delete_linked_list(linked_list_t *pp_list);

E.4.7 Naming of variables
Variable identifiers will consist of words separated by the underscore character, without spaces or
upper case letters. Each element of the identifier is used to specify the associated variable (type,
sign, size, role, etc.).

The following table shows the prefixes for the variable names according to type, as well as an
example for each type of variable:

Prefix Variable type Example

i8 Signed 8-bit integer int8_t i8_byte = 0;
ui8 Unsigned 8-bit integer uint8_t ui8_byte = 0U;
i16 Signed 16-bit integer int16_t i16_option = 0;
ui16 Unsigned 16-bit integer uint16_t ui16_port = 0U;
i32 Signed 32-bit integer int32_t i32_value = 0L;
ui32 Unsigned 32-bit integer uint32_t ui32_counter = 0UL;
i64 Signed 64-bit integer int64_t i64_big_value = 0LL;
ui64 Unsigned 64-bit integer uint64_t ui64_big_counter = 0ULL;
b Boolean bool b_is_set = false;
c Character char c_letter = ’\0’;
f Float float f_value = 0.0f;
d Double double d_precised_result = 0.0d;
sz Type size_t size_t sz_string_length = 0U;
e Enumerated type variable status_t e_status_code = STATUS_ERR;
st Structure type variable linked_list_t st_list;
a Array uint32_t a_values[10];
p Pointer type variable linked_list_t* p_list = NULL;

164 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

Prefix Variable type Example

pp Pointer of pointer type variable linked_list_t** pp_list = NULL;
s String type variable char* s_message = NULL;
ws String type variable in unicode wchar_t* ws_message = NULL;

E.5 Documentation
E.5.1 Format of tags for documentation
The source code documentation must be produced using the Doxygen tool’s tag system. Doxygen
tags must all begin with the @ character. The Doxygen tool also allows the backslash character.
However, in order to have uniformity for the documentation of the source code, the at-sign prefix
for Doxygen commands is imposed.

A documentation comment begins with /*! and ends with */.

The following points outline the minimum documentation that must be present in a header file.

E.5.2 File header title block
All header files and all source files must begin with a header title block used to identify:

n the software and / or the library to which the header/source file belongs;

n the company (and if necessary the author) and copyright associated with the file;

n the Doxygen @file tag. The @file tag can optionally be followed by the file name. In the
absence of the file name, the file name is automatically deduced from the file in which the
@file tag is located.

It is essential to use the @file tag in the header files and the source files. In its absence the
documentation on functions, global variables, type definitions and enumerations present in the
file is not included in the Doxygen documentation produced.

If the file is part of a library, the command @addtogroup <label> [title] must be used. This
serves to group the documentation of all the functions of a library within a module in the docu-
mentation produced. The label is the name of the group to be used in all files belonging to the
library. The title is optional. It is used to name the group in the documentation.

The @addtogroup command must be supplemented by the @{ and @} tag pair in order to delimit
the elements of the file belonging to the group.

E.5.3 Documentation of a structure
The definition of a structure must be documented with a comment preceding its definition. This
comment must indicate the role of the structure. Each field of the structure must be documented.

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 165

E.5.4 Documentation of an enumeration
The definition of an enumeration must be documented with a comment preceding its definition.
This comment must indicate in which framework the enumeration is to be used. Each value in the
enumeration must be documented.

E.5.5 Documentation of a global variable
A global variable must be documented with a comment preceding its definition. This comment
must indicate the role of the variable, its initialisation value, and any invariants that must be
respected.

E.5.6 Documentation of a function
The documentation of a function must precede the definition of the function prototype in the
header file. The documentation of a function consists of:

n a brief comment;

n a detailed comment explaining the feature offered by the function;

n the presentation of each parameter, specifying whether it is an input, output or both input and
output parameter;

n the value returned by the function. In the case of an error code, the success case(s) must be
indicated, along with the different error codes that can be returned and their priority;

n a pre-condition, if any, when the function is called;

n a post-condition, if any, after calling the function;

n any additional remarks or warnings.

Good example
The following lines show the minimum documentation for a header file.
#ifndef UTILS_LINKED_LIST_H
#define UTILS_LINKED_LIST_H

/*!
* @file linked_list.h
* @author DEV 1
*
* @brief Linked List
*
* Function declarations for the manipulation of linked list.
*
* @addtogroup utils Library Utils
* @{
*/

/*!
* @brief Enumeration of status codes
*
* Status codes to indicate the success or the failure of functions
*/
typedef enum status_tag {

STATUS_SUCCESS = 0, //!< success

166 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

STATUS_GENERIC_ERROR , //!< generic error
STATUS_MEMORY_ERROR , //!< memory allocation error
STATUS_INVALID_PARAM //!< invalid parameter

} status_t;

/*!
* @brief Element of the linked list
*/
typedef struct linked_list_element_tag
{

struct linked_list_element_tag* pNext; //!< next element
struct linked_list_element_tag* pPrevious; //!< previous element
void* pData; //!< data of the element

} linked_list_element_t;

/*!
* @brief Double linked list
*
* Structure to define a double linked list. The type data of the list is void.
*/
typedef struct linked_list_tag
{

linked_list_element_t *pHead; //!< first element
linked_list_element_t *pTail; //!< last element

} linked_list_t;

/*!
* @brief New linked list
*
* Creation of a new linked list by allocating the memory for the structure and by

initializing the list.
* The new list is empty.
*
* @param[out] ppList is the new list
* @return #STATUS_SUCCESS the creation and the initialization are done with

success
* @return #STATUS_INVALID_PARAM if ppList is NULL or
* if (*ppList) != NULL
* @return #STATUS_MEMORY_ERROR fail of the memory allocation
* @pre ppList != NULL and (*ppList) == NULL
* @note the created list has to be deleted
* by calling #utils_delete_linked_list
*/
status_t utils_create_linked_list(linked_list_t **ppList);

/*!
* @brief Deletion of the list
*
* All the elements of the list are deleted and the used memory is freed.
* @warning The memory used by the data in the list is not freed..
*
* @param[in, out] ppList the list to delete.
* @return #STATUS_SUCCESS if the deletion of the list is a success
* @return #STATUS_INVALID_PARAM if ppList is NULL
* or if (*ppList) is NULL
* @pre ppList != NULL and (*ppList) != NULL
* @post (*ppList) == NULL
*/
status_t utils_delete_linked_list(linked_list_t **ppList);

...

/*! @} */

#endif // UTILS_LINKED_LIST_H

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 167

Index

->, 73
#, 18
FAM, Flexible Array Member, 80
VLA, variable length array, 66
bit-field, 79
compound literals, 47
dangling pointer, 70
debug, 36
debug mode, 36
release, 36
release mode, 36
use-after-free, 70
++, 122
,, 121
--, 122
?:, 123
##, 18
#define, 41
#pragma, 30
#undef, 25
#, 18
_Bool, 88
bool, 88
complex, 96
const, 40, 111
errno, 133
float, double, 94
for, 100
goto, 104, 105
inline, 112
int, 57
realloc, 126
restrict, 71
sizeof, 127
static, 14, 44, 112
switch-case, 98
typedef, 46, 58
volatile, 45

/*, 149
//, 149

alias, 71

analysis, 144
array, 64

boolean expression, 86

C++, 147, 157
canary, 34, 149
cast, 57
comment, 149
compilation, 27
conditional, 97
constant, 40
convention de codage, 8
cyclomatic complexity, 146

dead code, 145
declaration of function, 107
durcissement, 30

error, 133
expression, 65

function, 107
function definition, 107
function prototype, 107

good practice, 7

implementation-defined, 30
indentation, 144

jump, 104

literal, 40
Lvalue, 65

mémoire, 125

opérateur de stringification, 18
opérateur de concaténation, 18

padding, 78
parameter passing by copy, 109
parameter passing by pointer, 109
parameter passing by reference, 109
parameter passing by value, 109
pointer, 64
pointer arithmetic, 74
proofreading, 144

168

préprocesseur, 11

recommendation, 6
rule, 6

standard library, 140
structure, 77

trigraph, 25
type conversion, 57

typedef, 46

undefined behaviour, 9
union, 77, 80
unreachable code, 145
unspecified behavior, 9
using variables, 38

variable definition, 38
variadic function, 119

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 169

List of rules, recommendations and good
practices

1 RULE — Application of clear and explicit coding conventions 8
2 RULE — Only C coding in accordance with the standard is authorised 9
3 RECOMMENDATION — Limit and justify header file inclusions in another header file 11
4 RULE — Only the necessary header files should be included 11
5 RULE — Use multiple include guard macros for a file 12
6 RULE — Header file inclusions are grouped at the beginning of the file 12
7 RECOMMENDATION — System header file inclusions are made before user header file

inclusions 12
8 GOOD PRACTICE — Use alphabetical order in the inclusion of each type of header files 12
9 RULE — Do not include a source file in another source file 14
10 RULE — File paths must be portable and case sensitive 15
11 RULE — The name of a header file must not contain certain characters or sequences of

characters 16
12 RECOMMENDATION — Preprocessor blocks must be commented on 16
13 GOOD PRACTICE — Double negation in the expression of preprocessor block conditions

should be avoided 16
14 RULE — Definition of a preprocessor block in a single file 17
15 RECOMMENDATION — Preprocessor directive control expressions must be correctly

formed 17
16 RULE — Do not use more than one of the preprocessor operators # and ## in the same

expression 18
17 RULE — Understand the macro replacement when using the preprocessor operators # and

18
18 RULE — Macros must be specifically named 20
19 RULE — Do not end a macro with a semicolon 20
20 RECOMMENDATION — Use static inline functions instead of multi-statement macros 22
21 RULE — The replacement of a developer-defined macro must not create a function 22
22 RULE — Macros containing multiple statements must use a do { ... } while(0) loop for

their definition 23
23 RULE — Mandatory parentheses around the parameters used in the body of a macro 24
24 RECOMMENDATION — Arguments of a macro carrying out an operation should be

avoided 24
25 RULE — Arguments in a macro must not contain side effects 24
26 RULE — Do not use preprocessor directives in macro arguments 24
27 RULE — The #undef directive should not be used 25
28 RULE — Do not use trigraphs 26
29 RECOMMENDATION — Successive question marks should not be used 26

170 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

30 RULE — Precisely define compilation options 27
31 RECOMMENDATION — Master actions performed by the compiler and the linker 28
32 GOOD PRACTICE — Make use of build automation software 28
33 RULE—Compile the code without any error nor warning while enabling strict compilation

options 29
34 RULE — Enable a reasonably high optimization level 29
35 RECOMMENDATION — Use the strictest compilation options 29
36 RULE — Make use of security features offered by compilers 30
37 RULE— Enable warnings that focus on detecting security bugs and deal with any reported

issue 31
38 RULE — Enable the use of hardened variants of unsafe functions 31
39 RULE — Enable compiler warnings related to the use of uninitialized variables 32
40 RULE — Enable forced initialization of automatic variables by the compiler 32
41 RECOMMENDATION — Enable compiler options that allow for detecting signed integer

overflows 33
42 RULE — Do not use executable stack 34
43 RULE — Enable stack canaries 34
44 RECOMMENDATION — Use per-thread canaries 34
45 RULE — Produce position independent executables 35
46 RULE — Use relromode of linkers 35
47 RECOMMENDATION — Do not use lazy binding 35
48 GOOD PRACTICE — Ensure reproducible builds 36
49 RULE — All production-ready code must be compiled in release mode 36
50 RECOMMENDATION — Pay special attention to debug and release modes when building

a project 37
51 RECOMMENDATION — Only multiple declarations of simple variables of the same type

are authorised 38
52 RULE — Do not make multiple variable declarations associated with an initialisation 38
53 RECOMMENDATION—Group variable declarations at the beginning of the block inwhich

they are used 39
54 RULE — Do not use hard-coded values 40
55 GOOD PRACTICE — Centralise the declaration of constants at the beginning of the file 41
56 RULE — Declare constants in upper case 41
57 RULE—Constants that do not require type checking are declared with the #define prepro-

cessing directive 41
58 RULE — Constants requiring explicit type checking must be declared with the keyword

const 41
59 RULE — Constant values must be associated with a suffix depending on the type 41
60 RULE — The size of the type associated with a constant expression must be sufficient to

contain it 42
61 RECOMMENDATION — Prohibit octal constants 42
62 RULE — Limit global variables to what is strictly necessary 43
63 RULE — Systematically use the static specifier for declarations 45

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 171

64 RULE—Only variables that can bemodified outside the implementation should be declared
volatile 45

65 RULE — Only volatile-qualified pointers can access volatile variables 45
66 RULE — No type omission is accepted when declaring a variable 46
67 RECOMMENDATION — Limit the use of compound literals 47
68 RULE — Do not mix explicit and implicit constants in an enumeration 49
69 RULE — Do not use anonymous enumerations 49
70 RECOMMENDATION — Variables should be initialised at or immediately after declaration 50
71 RULE — Use only one initialisation syntax for structured variables 51
72 RULE — Structured variables must not be initialised without specifying the initialisation

value and each field/element of the structured variable must be initialised 52
73 RECOMMENDATION — Every declaration must be used 53
74 RULE — Use separate variables for sensitive data and non-sensitive data 54
75 RULE—Use different variables for sensitive data that are protected in confidentiality and/or

integrity than the ones used for unprotected sensitive data 55
76 RULE — Never hard-code sensitive data 55
77 RECOMMENDATION — Only integer types with an explicit size and sign should be used 57
78 RULE — Only signed char and unsigned char types must be used to handle numeric

values 57
79 RECOMMENDATION — Do not redefine type aliases 58
80 RULE — Detailed and precise understanding of the conversion rules 60
81 RULE — Explicit conversions between signed and unsigned types 60
82 RECOMMENDATION — Do not use pointer type conversion on types structured differently 62
83 RULE—Access to the elements of an arraywill always be by designating as the first attribute

the array and as the second attribute the index of the element concerned 66
84 RECOMMENDATION — Access to elements in an array should be using square brackets 66
85 RULE — Do not use VLAs 67
86 RECOMMENDATION — Do not use an implicit size for arrays 67
87 RULE — Use unsigned integers for array sizes 68
88 RULE — Do not access an array element without checking the validity of the used index 68
89 RULE — A NULL pointer must not be dereferenced 69
90 RULE — A pointer must be assigned to NULL after deallocation 70
91 RULE — Do not use the restrict pointer qualifier 72
92 RECOMMENDATION — The number of levels of pointer indirection should be limited to

two 73
93 RECOMMENDATION — Give preference to the use of the indirection operator -> 74
94 RULE — Only incrementing or decrementing array pointers is authorised 74
95 RULE — No arithmetic on void* pointers is authorised 74
96 RECOMMENDATION — Controlled pointer arithmetic on arrays 75
97 RULE — Subtraction and comparison between pointers in the same array only 75
98 RECOMMENDATION — A fixed address should not be assigned directly to a pointer 75
99 RULE — A structure must be used to group data representing the same entity 77

172 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

100 RULE — Do not calculate the size of a structure as the sum of the size of its fields 78
101 RULE — All bit-fields must be explicitly declared as unsigned 79
102 RULE — Do not make assumptions about the internal representation of structures with

bit-fields 79
103 RULE — Do not use FAMs 80
104 RECOMMENDATION — Do not use unions 81
105 RULE — Remove all possible value overflows for signed integers 82
106 RECOMMENDATION — Detect all possible value wraps for unsigned integers 82
107 RULE — Detect and remove any potential division by zero 83
108 RECOMMENDATION—Arithmetic operations should be written in a way that assists with

readability 84
109 RULE— Explanation of the order of evaluation of calculations through the use of parenthe-

ses 85
110 RECOMMENDATION — Avoid expressions of comparison or multiple equality 86
111 RULE — Always use parentheses in expressions of comparison or multiple equality 87
112 RULE — Parentheses around the elements of a boolean expression 88
113 RULE — Implicit comparison with 0 prohibited 88
114 RECOMMENDATION — Using the bool type in C99 89
115 RECOMMENDATION — Bitwise operators must be used with unsigned operands only 90
116 RULE — No bitwise operator on an operand of type boolean or similar 90
117 GOOD PRACTICE — Do not use the value returned during an assignment 91
118 RULE — Assignment prohibited in a boolean expression 91
119 GOOD PRACTICE — Comparison with constant operand on the left 91
120 RULE — Multiple assignment of variables prohibited 92
121 RULE — Only one statement per line of code 93
122 GOOD PRACTICE — Avoid floating constants 94
123 RECOMMENDATION — Limit the use of floating-point numbers to what is strictly neces-

sary 94
124 RULE — No float type loop counter 95
125 RULE — Do not use floating-point numbers for comparisons of equality or inequality 95
126 RECOMMENDATION — No use of complex numbers 96
127 RULE — Systematic use of braces for conditionals and loops 97
128 RULE — Systematic definition of a default case in switch 98
129 RECOMMENDATION — Use of break in each case of switch statements 99
130 RECOMMENDATION — No nesting of control structure in a switch-case 99
131 RULE — Do not insert statements before the first label of a switch-case 99
132 RULE — Correct construction of for loops 100
133 RULE — Change to a counter of a for loop forbidden in the body of the loop 102
134 RULE — No use of backward goto 104
135 RECOMMENDATION — Limited use of forward goto 105
136 RULE — Any (non-static) function defined must have a function declaration/prototype 107
137 RULE — The prototype declaration of a function must be consistent with its definition 107

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 173

138 RULE — Every function must have an explicit return type and parameter list associated
with it 108

139 RECOMMENDATION — Documentation of functions 109
140 RECOMMENDATION — Specify call conditions for each function 109
141 RULE — The validity of all the parameters of a function must systematically be questioned 110
142 RULE—Pointer-type function parameters which point tomemory that is not to be changed

must be declared as const 111
143 RULE — inline functions must be declared as static 112
144 RULE — Do not redefine functions or macros from the standard library or another library 113
145 RULE — The return value of a function must always be tested 114
146 RULE — Implicit return prohibited for non-void type functions 115
147 RULE — Structures must be passed by reference to a function 116
148 RECOMMENDATION — Passing of an array as a parameter for a function 117
149 RECOMMENDATION — Mandatory use in a function of all its parameters 118
150 RULE — Do not call variadic functions with NULL as an argument 119
151 RULE — Use of the comma prohibited for statement sequences 121
152 RECOMMENDATION — The prefix operators ++ and -- should not be used 122
153 RECOMMENDATION — No combined use of postfix operators with other operators 122
154 RECOMMENDATION — Avoid the use of combined assignment operators 122
155 RULE — No nested use of the ternary operator ?: 124
156 RULE — Correct construction of the expressions with the ternary operator ?: 124
157 RULE — Dynamically allocate sufficient memory space for the allocated object 125
158 RULE — Free dynamically-allocated memory as soon as possible 125
159 RULE — Sensitive memory areas must be reset before being freed 125
160 RULE — Do not free memory not allocated dynamically 126
161 RULE — Do not change the dynamic allocation via realloc 126
162 RULE — Correct use of the sizeof operator 128
163 RULE — Mandatory verification of the success of a memory allocation 129
164 RULE — Sensitive data must be isolated 130
165 RULE— Initialise and view the value of errno before and after any execution of a standard

library function that changes its value 133
166 RULE — All errors returned by standard library functions must be handled 134
167 RULE — Error code documentation 135
168 RECOMMENDATION — Structuring of return codes 136
169 RULE — Return code of a C program according to the result of its execution 136
170 RECOMMENDATION—Give preference to error returns via return codes in themain func-

tion 137
171 RULE — Do not use the abort() or _Exit() functions 137
172 RECOMMENDATION — Limit calls to exit() 137
173 RULE — Do not use the setjmp() and longjump() functions 138
174 RULE — Do not use the setjmp.h and stdarg.h standard libraries 140

174 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

175 RECOMMENDATION — Limit the use of standard libraries handling floating-point num-
bers 141

176 RULE—Do not use the functions atoi(), atol(), atof() and atoll() from the library
stdlib.h 141

177 RULE — Do not use the rand() function of the standard library 141
178 RULE — Use the “more secure ” versions for standard library functions 142
179 RULE — Do not use obsolete library functions or those which become obsolete in subse-

quent standards 142
180 RULE — Do not use library functions that handle buffers without taking the buffer size as

an argument 142
181 GOOD PRACTICE — All code should be proofread 144
182 RECOMMENDATION — Indentation of long expressions 144
183 RULE — Identify and remove any dead code 145
184 RULE— The code must have no unreachable code other than defensive code and interface

code 145
185 RECOMMENDATION — Tool-based evaluation of the source code to limit the risk of exe-

cution errors 146
186 RECOMMENDATION — Limitation of cyclomatic complexity 147
187 RECOMMENDATION — Limitation of the length and complexity of a function 147
188 RULE — Do not use C++ keywords 147
189 RULE — Prohibited character sequences in comments 149
190 RULE — Manually implement a “canary ” mechanism when not already supported by the

toolchain 150
191 RULE — No development assertion on a code in production 151
192 RECOMMENDATION — Management of integrity assertions should include emergency

data deletion 151
193 RULE—All non-empty files must end with a line break and the preprocessor directives and

comments must be closed 151

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 175

Bibliography

[float] IEEE Standard for Floating-Point Arithmetic.
Standard, IEEE.

[AnsiC90] ISO/IEC 9899:1990, Programming Languages - C.
Standard, International Organization for standardization.

[AnsiC99] ISO/IEC 9899:1999, Programming Languages - C.
Standard, International Organization for standardization.

[Cert] SEI CERT C Coding Standard.
Standard, Carnegie Mellon University.

[ClangRef] CLANG’S Documentation.
Public documentation, https://clang.llvm.org/docs/.

[Cwe] CWE Common Weakness Enumeration.
Technical report, MITRE.

[ETALAB] Licence ouverte / Open Licence v2.0.
Page web, Mission Etalab, avril 2017.
https://www.etalab.gouv.fr/licence-ouverte-open-licence.

[GccRef] GCC: Reference Documentation.
Public documentation, http://www.gnu.org/software/gcc/onlinedocs.

[IsoSecu] ISO/IEC TS 17961 Information Technology - Programming languages, their envrionments
and system software interfaces - C Secure Coding Rules.
Technical report, Switzerland, Genève.

[Misra2012] MISRA-C:2012 Guidelines for the use of the C language in critical systems.
Guidelines, https://www.misra.org.uk/MISRAHome/MISRAC2012.

176 – RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT

https://www.etalab.gouv.fr/licence-ouverte-open-licence

RULES FOR SECURE C LANGUAGE SOFTWARE DEVELOPMENT – 177

Version 1.4 - 24/03/2022 - ANSSI-PA-073
Licence ouverte / Open Licence (Étalab - v2.0)

AGENCE NATIONALE DE LA SÉCURITÉ DES SYSTÈMES D'INFORMATION

ANSSI - 51, boulevard de La Tour-Maubourg, 75700 PARIS 07 SP

www.ssi.gouv.fr / conseil.technique@ssi.gouv.fr

	Introduction
	Coding convention
	Undefined and unspecified behaviours
	Preprocessor and macros
	Inclusion of the necessary header files
	Non-inclusion of source files
	Format of a file inclusion directive
	Comment and definition of preprocessor blocks
	Using the preprocessor operators # and ##
	Specific naming of macros
	A macro must not end with a semicolon
	Give preference to static inline functions in "function type" macros
	Multi-statement macros
	Arguments and parameters of a macro
	Using the #undef directive
	Trigraph and double question mark

	Compilation
	Mastery of the compilation phase
	Compilation without errors nor warnings
	Use of security features provided by compilers
	Debug and release modes

	Declaration, definition and initialisation
	Multiple variable declarations
	Free declaration of variables
	Declaration of constants
	Limited use of global variables
	Use of the static keyword
	Use of the volatile keyword
	Implicit type declaration is prohibited
	Compound literals
	Enumerations
	Initialising variables before use
	Initialisation of structured variables
	Mandatory use of declarations
	Naming of variables for sensitive data

	Types and type conversions
	Explicit size for integers
	Type alias
	Type conversions
	Type conversion of pointers to structured variables of different types

	Pointers and arrays
	Standardised access to the elements of an array
	Non-use of VLAs
	Explicit array size
	Systematic check for array overflow
	Do not dereference NULL pointers
	Assignment to NULL of deallocated pointers
	Use of the restrict type qualifier
	Limit on the number of pointer indirections
	Give preference to the use of the indirection operator ->
	Pointer arithmetic

	Structures and unions
	Declaration of structures
	Size of a structure
	bit-field
	Use of FAMs
	Do not use unions

	Expressions
	Integer expressions
	Readability of arithmetic operations
	Use of parentheses to make explicit the order of the operators
	No multiple comparison of variables without parentheses
	Parentheses around elements of a boolean expression
	Implicit comparison with 0 prohibited
	Bitwise operators
	Boolean assignment and expression
	Multiple assignment of variables prohibited
	Only one statement per line of code
	Use of floating-point numbers
	Complex numbers

	Conditional and iterative structures
	Use of braces for conditionals and loops
	Correct construction and use of switch statements
	Correct construction of for loops
	Changing of a for loop counter forbidden in the body of the loop

	Jumps in the code
	Do not use backward goto
	Limited use of forward goto

	Functions
	Correct and consistent declaration and definition
	Documentation of functions
	Validation of input parameters
	Use of the qualifier const for pointer-type function parameters
	Using inline functions
	Redefining functions
	Mandatory use of the return value of a function
	Implicit return prohibited for non-void functions
	No passing by value of a structure as function parameter
	Passing an array as a parameter for a function
	Mandatory use in a function of all its parameters
	Variadic functions

	Sensitive operators
	Use of the comma prohibited for statement sequences
	Using pre/postfix ++ and -- operators and compound assignment operators
	No nested use of the ternary operator "?:"

	Memory management
	Dynamic memory allocation
	Use of the sizeof operator
	Mandatory verification of the success of a memory allocation
	Isolation of sensitive data

	Error management
	Correct use of errno
	Systematic consideration of errors returned by standard library functions
	Documentation and structuring of error codes
	Return code of a C program depending on whether it executed successfully
	Ending of a C program following an error

	Standard library
	Prohibited standard library header files
	Not recommended standard libraries
	Prohibited standard library functions
	Choice between different versions of standard library functions

	Analysis, evaluation of the code
	Proofreading of the code
	Indentation of long expressions
	Identifying and removing any dead or unreachable code
	Tool-based evaluation of the source code to limit the risk of execution errors
	Limiting cyclomatic complexity
	Limiting the length of functions
	Do not use C++ keywords

	Miscellaneous
	Comment format
	Implementation of a "canary" mechanism
	Assertions of development and assertions of integrity
	Last line of a non-empty file must end with a line break

	Acronyms
	Further information on gcc and Clang options
	Definition of the C language standard in use
	Additional warnings
	Clang and the -Weverything option

	C++ reserved words
	Operator priority
	Example of development conventions
	Files encoding
	Code layout and indentation
	Standard types
	Naming
	Documentation

	Index
	List of rules, recommendations and good practices
	Bibliography

