

MultiApp Platform Security Target

TABLE OF CONTENTS

1	ST INTRODUCTION	. 5
1.1 1.2	ST OVERVIEW	
2	TOE DESCRIPTION	. 7
3	CONFORMANCE CLAIM	. 9
4	SECURITY PROBLEM DEFINITION	10
4.1 4.2 4.3 4.4 4.5	AssetsSubjects Threats Assumptions Organizational Security Policies	10 10 10 11 11
5	SECURITY OBJECTIVES	12
5.1 5.2	SECURITY OBJECTIVES FOR THE TOE	12 12
6	SECURITY REQUIREMENTS	13
6.1	TOE SECURITY FUNCTIONAL REQUIREMENTS	13
6.1.	1 Platform security functional requirements list	13
6.1.	2 FAU Security audits	13
6.1.	2.1 FAU_ARP.1 Security alarms	13
6.1.	2.2 FAU_SAA.1 Potential violation analysis	14
6.1.	3 FCS – Cryptographic support	14
0.1. 6 1	3.1 FCS_CCM.1/TDES Cryptographic appration	14
6.1	3.2 FCS_COP.1/TDL3 Cryptographic operation	14
6.1	3.4 FCS_COP 1/SHA Cryptographic operation	14
6.1	3.5 FCS_COP_1/BNG Cryptographic operation	15
6.1.	<i>4 FDP</i> – User data protection	.15
6.1.	4.1 FDP ACC.1 Subset access control	15
6.1.	4.2 FDP ACC.2 Complete access control	15
6.1.	.4.3 FDP_ACF.1 Security attributes based access control	15
6.1.	4.4 FDP_IFC.1 Subset information flow control	17
6.1.	4.5 FDP_IFF.1 Simple security attributes	18
6.1.	4.6 FDP_RIP.1 Subset residual information protection	18
6.1.	4.7 FDP_SDI.2 Stored data integrity monitoring and action	18
6.1.	4.8 FDP_UIT.1 Data exchange confidentiality	19
6.1.	5 FIA - Identification and Authentication	19
0.1.	5.1 FIA_ATD.1 User dillibule definition	19
6.1	5.2 FIA_URD 1 Timing of identification	19
6.1	5.4 FTA_USB.1 User-subject binding	19
6.1	5.5 FMT MOF.1 Management of security function behavior	20
6.1.	5.6 FMT MSA.1 Management of security attributes	20
6.1.	.5.7 FMT_MSA.3 Static attribute initialization	20
6.1.	.5.8 FMT_MTD.1 Management of TSF data	20
6.1.	5.9 FMT_SMF.1 Specification of Management function	20
6.1.	5.10 FMT_SMR.1 Security roles	20
6.1.	5.11 FPT_RVM.1 Non-Bypassability of the TSP	21
6.1.	5.12 FP1_SEP ISE Domain separation	21
6.1.	5.13 FY1_IDC.1 Inter-ISF data consistency	21
<i>b.1.</i>	ס רור – ורעגנפט path/channels	21

Smart Cards

gemalto[×]

6.1.6	.1 FTP_TRP.1 Trusted path	21
6.2 9	SECURITY REQUIREMENTS FOR THE IT ENVIRONMENT	22
7	TOE SUMMARY SPECIFICATION	23
7.1	TOE SECURITY FUNCTIONS	23
7.1.1	SF_CARD_AUTHENTICATION: Card authentication	23
7.1.2	SF_CARD_CRYPTO: Card cryptographic algorithm and keys managements	23
7.1.3	SF_CARD_EMANATION: Emanation protection	24
7.1.4	SF_CARD_INTEGRITY: Card objects integrity	24
7.1.5	SF_CARD_MGR: Card manager	24
7.1.6	SF_CARD_PROTECT: Card operation protection	25
7.1.7	' SF_CARD_ SECURE_MESSAGING: Card secure messaging	25

Figures

Figure 1. MultiApp platform architecture

Tables

Table 1.	Platform security functional requirements list	13
Table 2.	TOE security functions provided by the platform	23

1 ST introduction

1.1 ST overview

This document is not a complete security target itseft. Indeed, the document describes the security services provided by the platform to a SSCD application. We aim to factorize as much as possible the common part (in particular the platform) of the two SSCD evaluations.

The security target of the IC is described in its turn in [ST_SAMSUNG].

1.2 References

Reference	Title
[CC-1]	Common Criteria for Information Technology Security
	Evaluation Part 1: Introduction and general model CCIMB-2005-08-001, version 2.3, August 2005 (conform to ISO 15408).
[CC-2]	Common Criteria for Information Technology Security
	Evaluation Part 2: Security Functional Requirements CCIMB-2005-08-002, version 2.3, August 2005 (conform to ISO 15408).
[CC-3]	Common Criteria for Information Technology security
	Evaluation Part 3: Security Assurance Requirements CCIMB-2005-08-003, version 2.3, August 2005 (conform to ISO 5408).
[CEM]	Common Methodology for Information Technology Security
	Evaluation CCIMB-2005-08-004, version 2.3, August 2005.
[PP/JCS]	Java Card System Protection Profile Version 1.0b, August 2003.
[PP/BSI-0002]	Smart Card IC Platform Protection Profile, version 1.0, registered by BSI in 2001 under PP-BSI-0002, Eurosmart document (SSVG Protection Profile).
[ST_SAMSUNG]	Security Target of S3CC91C 16-bit RISC Microcontroller for smart card. Version 1.0, August 2007.
[FIPS 46-3]	FIPS 46-3: DES Data Encryption Standard (DES and TDES). National Institute of Standards and Technology
[FIPS 197]	FIPS 197: AES Advanced Encryption Standard. National Institute of Standards and Technology.
[AIS20]	AIS20, Functional Classes and Evaluation Methodologiy for Deterministic Random Number Generator, version 1, December 1999, BSI.
[RSA PKCS#1]	PKCS #1 v2.1: RSA Cryptography Standard
[FIPS 180-2]	FIPS-46-3: Secure Hash Standard (SHA). National Institute of Standards and Technology.
[ISO 7816-4]	Identification cards - Integrated circuit(s) cards with contacts, Part 4: Interindustry commands for interchange
[ISO 7816-6]	Identification cards - Integrated circuit(s) cards with contacts, Part 6: Interindustry data elements

Reference	Title
[ISO 7816-9]	Identification cards - Integrated circuit(s) cards with contacts, Part 9:
	Additional Inter industry commands and security attributes.
[ISO 9796-2]	ISO/IEC 9796-2
[JCAPI221]	Application Programming Interface
	Java Card [™] Platform, version 2.2.1
	Sun Microsystems, Inc., June 23, 2003
[JCRE221]	Runtime Environment Specification
	Java Card [™] Platform, version 2.2.1
	Sun Microsystems, Inc., June 2003
[JCVM221]	Virtual Machine Specification
	Java Card [™] Platform, version 2.2.1
	Sun Microsystems, Inc., June 2003
[JCAPN221]	Application Programming Notes for the Java Card [™] Platform, Sun
	Microsystems, Inc, version 2.2.1, October 2003.
[JVM]	The Java Virtual Machine Specification. Lindholm, Yellin. ISBN 0-201-43294-3.
[GP]	Global Platform. Card Specification – v2.1.1, March 2003.

2 TOE Description

Most of the TOE information is provided in the security target of the SSCD applications. In this section, only the platform description is provided.

MultiApp is a Java Open Platform that complies with two major industry standards:

- 1. Sun's Java Card 2.2.1, which consists of the Java Card 2.2.1 Virtual Machine, Java Card 2.2.1 Runtime Environment and the Java Card 2.2.1 Application Programming Interface.
- 2. The GlobalPlatform Card Specification version 2.1.

MultiApp contains the following components (see Figure 1):

- The *Native Layer* that provides the basic card functionalities (memory management, I/O management and cryptographic libraries) with native interface with the dedicated IC. The cryptographic library includes TDES, RSA standard and CRT (up to 2048), hashing (SHA-1, SHA-256), OBKG (RSA), and RNG.
- The *Java Card Runtime Environment*, which provides a secure framework for the execution of Java Card programs and data access management (firewall).
- The Java Card Virtual Machine, which provides the secure interpretation of bytecodes.
- The *API* including the standard Java Card API, the JCF API (Biometry) and Gemalto proprietary API (SecureAPI, GemUtil, Mifare, CryptoTest).
- The *Open Platform Card Manager*, which provides card, key and application management functions (contents and life-cycle) and security control.

The MultiApp platform provides the following services:

- 1. Initialization of the Card Manager and management of the card life cycle,
- 2. Secure installation of the application under Card Manager control,
- 3. Extradition services to allow several applications to share a dedicated security domain,
- 4. Deletion of applications under Card Manager control,
- 5. Secure operation of the applications through the API,
- 6. Card basic security services as follows:
 - Checking environmental operating conditions using information provided by the IC,
 - Checking life cycle consistency,
 - Ensuring the security of the PIN objects,
 - Generating random number,
 - Handling secure data object and backup mechanisms,
 - Managing memory content,
 - Providing mechanisms to prohibit other applets to interfere with the electronic signature applet.

Figure 1. MultiApp platform architecture

3 Conformance claim

The PP claim is presented in the SSCD Security Targets.

Security problem definition 4

4.1 Assets

The platform assets are presented in the following table.

D. CODE	Applets code, the platform code and the corrective softmask (if necessary).
D.GP_REGISTRY	GP registry that contains Card Manager data for card management operations.
D.LOCK_STATE	The availability of applet loading on the card (by the Card Manager or any other entity)
D.ISD_KEYS	ISD keys, <i>i.e.</i> the Card Manager keys used during applet initialization and card personalization. Those include keys for authentication, encryption and integrity (MAC).
D.JAVA_OBJECT	Any Java data objects (owned by an application or by the platform)

4.2 Subjects

The platform subjects are presented in the following table:

S.Card_Manager	Card Issuer , which manages the card contents and controls application privileges.
S. Package	Java Card packages loaded on the platform and acts on behalf of the applet developer.
S.JCRE	JCRE acts with the "system priviledge" when accessing to D.JAVA_OBJECT
S.OFFCARD	Attacker. A human or process acting on his/her behalf being located outside the TOE. The main goal of the S.OFFCARD attacker is to access application sensitive information. The attacker has a high level potential attack and knows no secret .

4.3 Threats

The platform threats are presented in the following table:

T.Plt_Integrity	Integrity of the platform data and code. S.OFFCARD tries to alter platform stored sensitive data (assets) or code to gain access to unauthorized data or operations. This threat concerns D.ISD_KEYS , D.GP_REGISTRY , D.LOCK_STATE and D.CODE .
T.Plt_Confidentiality	Confidentiality of platform data. S.OFFCARD tries to disclose platform-stored data to gain access to unauthorized operations. This threat concerns D.ISD_KEYS.
T.Plt_Install	S.OFFCARD fraudulently install an applet on the card. This concerns either the installation of an unauthorized applet or an attempt to induce a malfunction in the TOE through the installation process. This threat concerns applets installation and mainly D.GP_REGISTRY .

T.Plt_Execution	S.OFFCARD or S.Package executes code in order to gain illegal access to platform or applet resources. This threat deals with D.CODE and D.JAVA_OBJECT access.
T.Plt_Operate	S.OFFCARD or S.Package tries to modify the platform behavior by unauthorized or incorrect use of commands, or by producing malfunction conditions. This includes bad command, authentication bypass, in-secure state by insertion or interruption of session. This threat concerns all platform assets.

4.4 Assumptions

The platform assumption is presented in the following table:

A.Applets It is assumed that the other instanciable applets (than the electronic signature applet) on the platform are safely installed through the Card Manager and they operate under the Card Manager control. This applies to the applets defined as instanciable in the SSCD security targets

4.5 Organizational Security Policies

The OSPs of the IC are described in its security target [ST_SAMSUNG]. The following table contains the OSP of the platform:

P.Plt_Support	The platform is built with Java Card 2.2.1 and GP 2.1.1 and allows the electronic signature application to operate in a secure environment. The platform support: - Secure electronic signature application installation and extradition,
	 Secure deletion of the application instantiation, Secure operating environment with detection of environmental trouble shooting Secure execution environment and data sharing
	The Platform shall provide cryptographic services for the electronic signature applets in particular, RSA (up to 2048), TDES, SHA-1, SHA-256, OBKG (RSA), RNG.

5 Security objectives

5.1 Security objectives for the TOE

The security objectives of the IC are described in its security target [ST_SAMSUNG]. The security objectives of the platform are presented in the following table:

	The platform shall ensure that the sensitive data (assets) stored in the
OT.Plt_Integrity	memory is protected against corruption or unauthorized modification.
	The platform shall provide means to verify the integrity of its code.
OT.Plt_Confidentiality	The platform shall ensure that the sensitive information is protected
	against disclosure while being stored or used.
	The platform shall provide mechanisms to securely manage keys to
	avoid unauthorized access, disclosure or snooping.
OT Dit. Deplication	The platform shall ensure that the re-allocation of a memory block does
OT.Plt_Reallocation	not disclose the sensitive information previously stored in that block.
	The platform shall ensure that only the authorized administrator is
OT Dit. Install	allowed to install/delete applets.
OT.PIC_INStall	The platform must ensure that applet initialization performed under
	secure conditions.
OT.Plt_Execution	The platform shall ensure that only the authorized administrator is
	allowed to manage the card content through the dedicated commands.
	The platform shall ensure controlled sharing of data containers owned
OT.Plt_Firewall	by applets of different packages, and between applets and the TSFs.
	The platform shall ensure correct operation of its security function and
	guarantee that the environment, in which the application operates, is
OT.Plt_Operate	safe.
	The platform shall provide appropriate feedback information upon
	detection of potential violation.
	The platform is built with Java Card 2.2.1 and GP 2.1.1 and allows the
	electronic signature application to operate in a secure environment.
	The platform will support:
	- Secure electronic signature application installation and extradition,
	- Secure deletion of electronic signature instantiation.
OT.Plt_Support	- Secure operating environment with detection of environmental trouble
	shooting,
	- Secure execution environment and data sharing
	The platform shall provide cryptographic services for the electronic
	signature applications in particular, RSA (up to 2048), TDES, SHA-1,
	SHA-256, OBKG (RSA), RNG.

5.2 Security objectives for the environment

OE.Applet	Instanciable applets (which are not the electronic signature applet) on the platform shall be safely installed through authorized platform administrator, under the Card Manager control. This applies to the applets defined as instanciable in the SSCD security target.
-----------	---

6 Security requirements

6.1 TOE security functional requirements

[ST_SAMSUNG] deals with the security functional requirements of [PP/BSI-0002]. In this section, we only provide the security functional requirements of th platform.

6.1.1 Platform security functional requirements list

Identification	DESCRIPTION		
FAU	Security audit		
FAU_ARP.1	Security alarms		
FAU_SAA.1	Potential violation analysis		
FCS	Cryptographic support		
FCS_COP.1	Cryptographic operation		
FDP	User data protection		
FDP_ACC.1	Subset Access control		
FDP_ACC.2	Complete Access control		
FDP_ACF.1	Security attributes based access control		
FDP_IFC.1	Subset information flow control		
FDP_IFF.1	Simple security attributes		
FDP_RIP.1	Subset residual information protection		
FDP_SDI.2	Stored data integrity monitoring and action		
FDP_UIT.1	Basic data exchange intergrity		
FIA	Identification and Authentication		
FIA_ATD.1	User attribute definition		
FIA_UAU.1	Timing of authentication		
FIA_UID.1	Timing of identification		
FIA_USB.1	User-subject binding		
FMT	Security management		
FMT_MOF.1	Management of security function behavior		
FMT_MSA.1	Management of security attributes		
FMT_MSA.3	Static attribute initialization		
FMT_MTD.1	Management of TSF data		
FMT_SMF.1	Specification of Management Function		
FMT_SMR.1	Security roles		
FPT	Protection of the TOE Security function		
FPT_RVM.1	Non bypassability of the TSP		
FPT_SEP.1	TSF Domain separation		
FPT_TDC.1	Inter TSF Basic TSF Data consistency		
FTP	Trusted path/Channel		
FTP TRP.1	Trusted Path		

Table 1. Platform security functional requirements list

6.1.2 FAU Security audits

6.1.2.1 FAU_ARP.1 Security alarms

FAU_ARP.1.1	The TSF shall take one of the following disruptive actions upon detection of a
	potential security violation.

Lis	List of disruptive actions:		
1.	Reset the card and clear all volatile memory.		
2.	Block the action that produced the security violation and throw an exception.		
3.	Terminate the card (put the card life cycle to TERMINATED) and mute		
4.	Mute the card.		

6.1.2.2 FAU_SAA.1 Potential violation analysis

a	nd based upon these rules indicate a potential violation of the TSP.
FAU_SAA.1.2 T a 1 2 3 4 b	 he TSF shall enforce the following rules for monitoring audited events: Accumulation or combination of the following auditable events known to indicate a potential security violation: Card Manager life cycle state inconsistency (D.GP_REGISTRY) Integrity errors on D.ISD_KEYS Illegal Access to D.JAVA_OBJECT Unavailability of resources audited through the object allocation mechanism Any other rules: none.

6.1.3 FCS – Cryptographic support

6.1.3.1 FCS_CKM.1/TDES Cryptographic key generation

FCS_CKM.1.1/	The TSF shall generate cryptographic keys in accordance with a specified
TDES	cryptographic key generation algorithm TDES for the generation of session
	keys and specified cryptographic key sizes 128 bits, 168 bits that meet the
	following standards: None.

6.1.3.2 FCS_COP.1/TDES Cryptographic operation

FCS_COP.1.1/	The TSF shall perform TDES encryption and decryption in accordance with a
TDES	specified cryptographic algorithm TDES-CBC , TDES-EBC and cryptographic key
	sizes 112 bits for TDES 2 keys, 168 bits for TDES 3 keys that meet the
	following: [FIPS 46-3].

Application note:

The TOE can also encrypt and decrypt using DES algorithm with 56 bits key, but this is to be considered as a service. The DES algorithm is no longer considered as resistant to high level attacks.

6.1.3.3 FCS_COP.1/RSA Cryptographic operation

FCS_COP.1.1/	The TSF shall perform RSA encryption and descryption in accordance with a
RSA	specified cryptographic algorithm RSA and cryptographic key sizes 1024,
	1152, 1280, 1536 or 2048 bits that meet the following: standard and CRT.

6.1.3.4 FCS_COP.1/SHA Cryptographic operation

FCS_COP.1.1/	The TSF shall perform secure hashing in accordance with a specified
SHA-1	cryptographic algorithm SHA-1, SHA-256 and cryptographic key sizes none
	that meet the following: FIPS 180-2.

Application note:

This cryptographic operation does not use key.

6.1.3.5 FCS_COP.1/RNG Cryptographic operation

FCS_COP.1.1/	The TSF shall perform Random Number Generation in accordance with a
RNG	specified cryptographic algorithm Random Number Generator and
	cryptographic key sizes None that meet the following: ANSI X9.17 Appendix
	C.

Application note:

This cryptographic operation does not use key.

6.1.4 FDP – User data protection

6.1.4.1 FDP_ACC.1 Subset access control

FDP_ACC.1.1/ Card Manager SFP	The TSF shall enforce the Card Manager SFP on the following list of subjects, objects and operations.	
Subjects	Objects	Operations
S.Card_Manager	D.GP_REGISTRY	Applet installation and deletion
		Change the Card Life Cycle state
		Change the Application Life Cycle state

6.1.4.2 FDP_ACC.2 Complete access control

FDP_ACC.2.1/ Firewall SFP	The TSF shall enfo D.JAVA_OBJECT and the SFP.	rce the Frewall SFP on S.Package, S.JCRE, all operations among subjects and objects covered by
Ор	eration	Description
OP.ARRAY_ACCESS (D.JAVA_OBJECT, field)		Read/Write an array component.
<i>OP.INSTANCE_FIELD (D.JAVA_OBJECT,</i> field)		Read/Write a field of an instance of a class in the Java programming language
<i>OP.INVK_VIRTUAL (D.JAVA_OBJECT,</i> method, arg1,)		Invoke a virtual method (either on a class instance or an array object)
<i>OP.INVK_INTERFACE (D.JAVA_OBJECT,</i> method, arg1,)		Invoke an <i>interface</i> method.
OP.THROW (D.JAVA_OBJECT)		Throwing of an object (athrow).
OP.TYPE_ACCESS (D.JAVA_OBJECT, class)		Invoke checkcast or instanceof on an object.
OP.JAVA ()		Any access in the sense of [JCRE221], §6.2.8.
OP.CREATE (Sharing, LifeTime)		Creation of an object (new or makeTransient call).

Operations (prefixed with " *OP* ") of this policy are described above. Each operation has a specific number of parameters given between brackets, among which there is the "**accessed object** ", the first one, when applicable. Parameters may be seen as security attributes that are under the control of the subject performing the operation. Note that accessing array's components of a **static** array, and more generally fields and methods of **static** objects, is an access to the corresponding *D.JAVA_OBJECT*.

FDP_ACC.2.2/FIREWALL The TSF shall ensure that all operations between any subject in the TSC and any object within the TSC are covered by an access control SFP.

6.1.4.3 FDP_ACF.1 Security attributes based access control

FDP_ACF.1.1/ Card_Manager SFP	The TSF shall of following att	enforce the Card Manager SFP to objects based on ributes.
Subject/object	Attribute	Values
S.Card_Manager	Authentication	Yes, No
	Secure Channel	Open, Not Open
D.GP_REGISTRY	Card Life Cycle state	OP_READY, INITIALIZED, SECURED,
		CARD_BLOCKED, TERMINATED
D.LOCK_STATE	Available Load	Yes, No

FDP_ACF.1.2/ Card_Manager SFP	The TSF shall enforce the following rules to determine if an operation among controlled subjects and controlled objects is allowed.
Attributes	Rules
Authentication Secure Channel Card Life Cycle state Available Load	 The Secure Channel is set to Open only if Card Manager has been correctly authenticated and Authentication [Card Manager] is set to Yes. Operations on applications are allowed only if Card life Cycle state is set to OP_READY, INITIALIZED or SECURED and if Card Manager has been correctly authenticated with Authentication [Card Manager] set to Yes. Only Card Manager correctly authenticated with Authentication [Card Manager] set to Yes is allowed to update D.GP_REGISTRY during Applet Install/Delete. Only Card Manager correctly authenticated with Authentication [Card Manager] set to Yes is allowed to set the Applet Life Cycle in GP_REGISTRY to INSTALL.

FDP_ACF.1.3/	The TSF shall explicitly authorize access of subjects to objects based							
Card Manager SFP	on the following additional rules: none.							
	The TSF shall explicitly deny access of subjects to objects based on							
FDP_ACF.1.4/	the rule:							
Card Manager SFP	• No body can modify the Available Install attribute of							
_	D.ISD LOCK STATE.							

FDP_ACF.1.1/ Firewall SFP	The TSF shall enforce the Firewall SFP to objects based on the following: (1) the security attributes of the covered subjects and objects, (2) the currently active context and (3) the SELECTed applet context.								
Subject/object	Attribute	Values							
S.JCRE	None								
S.Package	Context	Package AID or "JCRE"							
D.JAVA_OBJECT	Context	Package AID or "JCRE"							
	Sharing	Standard (both filed sand methods are under							
		firewall policy), or							
		Shareable Interface Object (SIO), or							
		JCRE Entry Point (temporary or permanent), or							
		Global Array							
	Lifetime	CLEAR_ON_DESELECT or PERSISTENT							
	SELECTed applet	Package AID or "None"							
	context								

Both "the currently active context" and "the SELECTed applet context" are internal security attributes to the platform, that is, not attached to any specific object or subject. The currently active context is defined in Section 6.1.2.1 of [JCRE221]. The SELECted applet context is the context of the selected applet and so, must be either a package AID or "None" (when no applet is selected.

EDP ACE 1 2/	The TSF shall enforce the following rules to determine if an							
Firewall SED	operation among controlled subjects and controlled objects is							
allowed: by the Firewall SFP.								
• R.JAVA.1 ([JCRE2	221] §6.2.8) An <i>S.PACKAGE</i> may freely perform any of							
OP.ARRAY_ACCESS,	OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE,							
OP. THROW or OP. 7 value "JCRE Entry Pe	<i>"YPE_ACCESS</i> upon any <i>D.JAVA_OBJECT</i> whose Sharing attribute has ont" or "Global Array".							
 R.JAVA.2 ([JCRE2 	221] §6.2.8) An <i>S.PACKAGE</i> may freely perform any of							
OP.ARRAY_ACCESS,	, OP.INSTANCE_FIELD, OP.INVK_VIRTUAL, OP.INVK_INTERFACE or							
OP. THROW upon an	ny D.JAVA_OBJECT whose Sharing attribute has value "Standard" and							
whose Lifetime attr	ribute has value "PERSISTENT" only if <i>D.JAVA_OBJECT</i> 's Context							
attribute has the sar	ne value as the active context.							
 R.JAVA.3 ([JCRE221] §6.2.8.10) An S.PACKAGE may perform OP.TYPE ACCESS upon an 								
D.JAVA_OBJECT whose Sharing attribute has value "SIO" only if D.JAVA_OBJECT is being								
cast into (checkcast) or is being verified as being an instance of (instanceof) an interface								
that extends the Shareable interface.								
R.JAVA.4 ([JCRE221]§6.2.8.6) An S.PACKAGE may perform OP.INVK_INTERFACE upon								
an D.JAVA_OBJECT whose Sharing attribute has the value "SIO" only if the invoked								
interface method extends the Shareable interface.								
<u> </u>								
The TSE s	hall explicitly authorise access of subjects to objects based on the							

FDP_ACF.1.3/ Firewall SEP	The TSF shall explicitly authorise access of subjects to objects based on the following additional rules:				
	The subject <i>S.JCRE</i> can freely perform <i>OP.JAVA()</i> and <i>OP.CREATE</i> , with the exception given in <i>FDP_ACF.1.4/Firewall SFP</i> .				
FDP_ACF.1.4/ Firewall SFP	 The TSF shall explicitly deny access of subjects to objects based on the rules: 1. Any subject with <i>OP.JAVA</i> upon an <i>D.JAVA_OBJECT</i> whose LifeTime attribute has value "CLEAR_ON_DESELECT" if <i>D.JAVA_OBJECT</i> 's Context attribute is not the same as the SELECTed applet Context. 2. Any subject with <i>OP.CREATE</i> and a "CLEAR_ON_DESELECT" LifeTime parameter if the active context is not the same as the 				

SELECTed applet Context.

6.1.4.4 FDP_IFC.1 Subset information flow control

FDP_IFC.1.1/JCVM SFP	he TSF shall enforce the JCVM information flow control SFP on he following subjects, information and operations .					
Subject/Information	Description					
S.LOCAL	Operand stack of a JCVM frame, or local variable of a JCVM frame containing an object or an array of references.					
S.MEMBER	Any object's field, static field or array position.					
I.DATA	JCVM Reference Data: <i>objectref addresses of temporary JCRE Entry</i> <i>Point objects and global arrays.</i>					
Operation	Description					
OP.PUT(S ₁ , S ₂ , I)	Transfer a piece of information I from S_1 to S_2 .					

<u>Application note</u>: References of temporary *JCRE entry points*, which cannot be stored in *class* variables, instance variables or array components, are transferred from the internal memory of the

JCRE (TSF data) to some stack through specific APIs (*JCRE* owned exceptions) or *JCRE* invoked methods (such as the **process(APDU apdu)**); these are causes of *OP.PUT*(S_1 , S_2 , I) operations as well.

6.1.4.5 FDP_IFF.1 Simple security attributes

FDP_IFF.1.1/JCVM SFP	The TSF shall enforce the JCVM information flow control SFP
	based on the following types of subject and information security attributes: S.LOCAL, S.MEMBER, I.DATA and the currently
	active context.

FDP_IFF.1.2/JCVM SFP	The TSF shall permit an information flow between a controlled subject and controlled information via a controlled operation if the following rules hold: An operation <i>OP.PUT(S₁, S.MEMBER, I)</i> is allowed if and only if the active context is "JCRE"; other <i>OP.PUT</i> operations are allowed regardless of the active context's value.
----------------------	--

FDP_IFF.1.3/JCVM SFP	The TSF shall enforce the none .
FDP_IFF.1.4/JCVM SFP	The TSF shall provide the following the none .

	The TSF shall explicitly authorise an information flow based on the
FDP_IFF.1.5/JCVM SFP	following rules: all JCRE Permanent Entry Point Object may be
	stored in a S.MEMBER.

FDP_IFF.1.6/JCVM SFP	The	TSF	shall	explicitly	deny	an	information	flow	based	on	the
	follo	wing	rules:	the stor	age o	f th	e reference	of a	n obje	ct v	vith
	attri	ibute	e JCR	E Tempoi	rary E	ntry	y Point Obje	ect or	r Globa	il Ai	rray
	in a	stat	ic fiel	d, instan	ce fie	ld o	r array elen	nenti	is forbi	idde	en.

6.1.4.6 FDP_RIP.1 Subset residual information protection

FDP_RIP.1.1/Card Manager SFP	resource is made unavailable upon the deallocation of i for the following objects: • D.ISD_KEYS	r esource
	The TSE shall ensure that any previous information cont	tent of a

6.1.4.7 FDP_SDI.2 Stored data integrity monitoring and action

The following data persistently stored by the TOE have the user attribute "**integrity checked persistent stored data**":

- Keys: D.ISD_KEYS
- Card Life Cycle state and the Applet Life Cycle state (in D.GP_REGISTRY)

FDP_SDI.2.2/ KEYSUpon detection of a data integrity error, the • Prohibit the use of the altered data • Inform S.Card_Manager about integrity • Mute the card	ing attributes: integrity
• Mute the Caru	TSF shall: Jrity error.

FDP_SDI.2.1/	The	TSF	[:] sh	all	monitor	user	data	store	ed within	the TSC for	integrity
Card_life_cycle	erro	ors (on	all	objects,	base	ed on	the	following	attributes:	integrity

	checked persistent stored data.
FDP_SDI.2.2/ Card_life_cycle	 Upon detection of a data integrity error, the TSF shall: Prohibit the use of the altered data Inform S.Card_Manager about integrity error. Terminate the card
FDP_SDI.2.1/ Applet_life_cycle	The TSF shall monitor user data stored within the TSC for integrity errors on all objects, based on the following attributes: integrity checked persistent stored data .
FDP_SDI.2.2/ Applet_life_cycle	 Upon detection of a data integrity error, the TSF shall: Prohibit the use of the altered data Inform S.Card_Manager about integrity error. Terminate the card

6.1.4.8 FDP_UIT.1 Data exchange confidentiality

FDP LIIT 1 1	The	TSF	shall	enforce	the	Card	Ma	ana	ger	SFP,	to	be a	able to
	tran	smit	and	receive	e ol	ojects	in	а	man	ner	prot	ected	from
	moc	lifica	tion a	ind inser	tion	errors							

6.1.5 FIA – Identification and Authentication

6.1.5.1 FIA_ATD.1 User attribute definition

FIA_ATD.1.1	The TSF shall maintain the following list of security attributes							
	belonging to individual users:							
	- Authentication							
	 Context (i.e. Package AID) 							

6.1.5.2 FIA_UAU.1 Timing of authentication

	The TSF shall allow the following TSF mediated actions on behalf of the user to be performed before the user is authenticated.							
FIA_UAU.1.1	S.Card_Manager	Get Data Select Initialize Update Manage Channel						
FIA_UAU.1.2	The TSF shall require each before allowing any other T user.	user to be successfully authenticated SF-mediated actions on behalf of that						

6.1.5.3 FIA_UID.1 Timing of identification

FIA_UID.1.1	The TSF shall allow the selection of an application on behalf of
	the user to be performed before user is identified.
FIA_UID.1.2	The TSF shall require each user to be successfully identified before
	allowing any other TSF-mediated actions on behalf of that user.

6.1.5.4 FIA_USB.1 User-subject binding

FIA_USB.1.1	The TSF shall associate the user security attributes with subjects acting
	on behalf of that user.

<u>Application Note</u> (dependencies): the security attributes are listed in FIA_ATD.1.

6.1.5.5 FMT_MOF.1 Management of security function behavior

	The TSF	shall	restrict	the	ability	to	modify	the	behavior	of	the
	functions	listed	l below	to S.	Card_	Mai	nager:				
FMT_MOF.1.1	•	Delet	e applica	ation							
	•	Insta	II applica	tion							
	•	Upda	te D.ISD).KE	ſ						

<u>Application Note</u>: S.Card_Manager may assign a delegated security domain (at the installation of this SD) that represents S.Card_Manager in loading and installating an application.

6.1.5.6 FMT_MSA.1 Management of security attributes

FMT_MSA.1.1/	The TSF shall enforce the Card Manager SFP to restrict the ability to perform
Card Manager	the following operations on the security attributes defined below to the Card
	manager.

Object	Security attribute	Operation	SFP	Role
			See FDP_ACF.1	See FMT_SMR.1
D.GP_REGISTRY	Card Life Cycle state	Modify	Card Manager	Card Manager (phase 6)

Application Note: The delegated application (by S.Card_Manager) has the same role as the Card Manager itself.

FMT_MSA.1.1/	The TSF shall enforce the FIREWALL SFP and the JCVM SFP to restrict the
JCRE	ability to modify the security attributes the active context and the SELECTed
	applet Context to the JCRE (<i>S.JCRE</i>).

6.1.5.7 FMT_MSA.3 Static attribute initialization

FMT_MSA.3.1	The TSF shall enforce the Card Manager SFP , the Firewall SFP , and the JCVM SFP to provide restrictive default values for security attributes that are used to enforce the SFP.
FMT_MSA.3.2	The TSF shall allow none to specify alternative initial values to override the default values when an object or information is created.

6.1.5.8 FMT_MTD.1 Management of TSF data

FMT_MTD.1.1	The TSF shall restrict the ability to access or modify the following TSF data to
	the <i>Card Manager</i> role: D.ISD_KEY.

6.1.5.9 FMT_SMF.1 Specification of Management function

FMT_SMF.1.1	The	TSF	shall	be	capable	of	performing	the	following	security	management
	functi	ions:									
		٠	Delete	e app	olication						
		•	Instal	app	olication						
		٠	Updat	e D.	ISD.KEY						
		٠	Modify	/ D.(GP_REGIS	TR'	Y				

6.1.5.10 FMT_SMR.1 Security roles

FMT_SMR.1.1	The TSF shall maintain the roles defined in the following list.
	The roles list:
	1. The Card Manager role (phase 5, 6)
	The Card Manager is the personalizer of the Card and the Card Issuer as there is no

	post issuance loading of application.
	The Card Manager may be in charge of application install operation and for setting
	the application state to INSTALLED and SELECTABLE, then for setting the Card Life
	Cycle state to SECURED.
	The Card Manager may be in charge of deleting an application.
	2.The Application User role (phase 7).
	After application installation, the platform only sees application users. The access to
	platform resources is granted according to Java Card firewall access conditions.
FMT_SMR.1.2	The TSF shall be able to associate users with roles.

6.1.5.11 FPT_RVM.1 Non-Bypassability of the TSP

FPT_RVM.1	The TSF shall ensure that TSP enforcement functions are invoked and succeed
	before each function within the TSC is allowed to proceed.

6.1.5.12 FPT_SEP TSF Domain separation

FPT_SEP.1.1	The TSF shall maintain a security domain for its own execution that protects it from					
	interference and tampering by untrusted subjects.					
FPT_SEP.1.2	The TSF shall enforce separation between the security domains of subjects in the TSC.					

6.1.5.13 FPT_TDC.1 Inter-TSF data consistency

FPT_TDC.1.1	The TSF shall provide the capability to consistently interpret the CAP files (shared between the Byte Code Verifier and the TOE), the bytecode and its data arguments (shared between applets and API packages) when shared between the TSF and another trusted IT product.
FPT_TDC.1.2	The TSF shall use the following interpretation rules when interpreting the TSF data from another trusted IT product. Interpretation rules list: The [JCVM221] specification; Reference export files; The [ISO 7816-6] rules; The [GP] specification

6.1.6 FTP – Trusted path/channels

6.1.6.1 FTP_TRP.1 Trusted path

FTP_TRP.1.1	The TSF shall provide a communication path between itself and local users that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from modification or disclosure.
FTP_TRP.1.2	The TSF shall permit local users to initiate communication via the trusted path.
FTP_TRP.1.3	The TSF shall require the use of the trusted path for D. ISD_KEYS load and application Install/Extradite operation.

6.2 Security requirements for the IT environment

Threre is no security requirement for the IT environment on the platform.

7 TOE summary specification

This section describes the seucurity functions of the platform. The security functions of the IC are described in its security target [ST_SAMSUNG].

7.1 TOE security functions

SF_CARD_AUTHENTICATION	Card authentication
SF_CARD_CRYPTO	Card cryptographic algorithm & key management
SF_CARD_EMANATION	Emanation protection
SF_CARD_INTEGRITY	Card objects integrity
SF_CARD_MGR	Card Manager
SF_CARD_PROTECT	Card operation protection
SF_CARD_SECURE_MESSAGING	Card Secure Messaging

Table 2.	TOE security	functions	provided	by the	platform
----------	--------------	-----------	----------	--------	----------

7.1.1 SF_CARD_AUTHENTICATION: Card authentication

This security function ensures the management of the administrator authentication:

- The terminal is authenticated through the administrator authentication mechanism, based on a one-time cryptographic challenge-response protocol.
- The administrator is the only card user authorized to open a secure channel.

As the user PIN is managed by the application itself, this security function manages administrator authentication that opens secure channel for communication with the terminal. Authentication failure is managed using a retry counter. When the predefined number of unsuccessful authentication is reached the card will be BLOCKED.

This function is SOF-High.

7.1.2 SF_CARD_CRYPTO: Card cryptographic algorithm and keys managements

This security function provides the cryptographic algorithm and functions used by the TSF:

- <u>TDES algorithm</u> only support 112-bit key and 168-bit key
- <u>RSA algorithm</u> supports 1024-to-2048 bits keys. The RSA algorithm is SW and does not use the IC cryptograhic library. The platform supports both standard and CRT RSA.
- <u>Random generator</u> uses the certified Hardware Random Generator that fulfils the requirements of AIS20 (see [ST_SAMSUNG]).
- SHA-1 and SHA-256 algorithms

This security function controls all the operations relative to the card keys management.

• <u>Key generation</u>: The TOE provides the following:

RSA key generation manages 1024 to 2048-bits long keys. The RSA key generation is SW and does not use the IC cryptographic library.

The TDES key generation (for session keys) uses the random generator.

• <u>Key destruction</u>: the TOE provides a specified cryptographic key destruction method that makes Key unavailable.

This security function ensures the confidentiality of keys during manipulation and ensures the deallocation of memory after use.

This security function is supported by the IC security function **SF5 (Cryptography)** for Random Number Generator (see [ST_SAMSUNG]).

7.1.3 SF_CARD_EMANATION: Emanation protection

This SF protects the electronic signature application data RAD and SCD against snooping. The SF ensures that:

- The TOE shall not emit electromagnetic radiation in excess of unintelligible emission enabling access to RAD and SCD.
- The TOE shall ensure that the attacker S.OFFCARD is not able to use I/O, VCC or Ground interface to gain access to RAD and SCD.

This security function is supported by the IC security function SF4 (Hardware countermeasures for unobservability) (see [ST_SAMSUNG]).

7.1.4 SF_CARD_INTEGRITY: Card objects integrity

This security function provides a means to check the integrity of data stored in EEPROM: the cryptographic keys, including the persistently stored data SCD, RAD and SVD of the electronic signature application, and the card life cycle state.

In case of integrity error detection, this SF will prohibit the use of the altered data, and take appropriate actions: mute or terminate the card.

This SF also ensures that no residual information is available after a PIN update or clearance.

This SF supports SF_CARD_PROTECT by checking platform data integrity before use.

This SF also provides the authorized users with the capability to verify the integrity of stored TSF executable code.

7.1.5 SF_CARD_MGR: Card manager

This security function ensures the administration of the card during its life-cycle: personalization phase, and usage phase. This SF enforces the following access control policies:

- Applet installation, extradition, deletion
- Java objects access control (firewall)

This SF analyzes the incoming commands and checks the access rights, according to the life-cycle and the required secure environment.

This SF ensures that only authorized administrator can manage card contents and manages the following access control policies:

- At the end of the platform initialization, the Card Manager (Issuer) security domain is created and the associated Card Manager keys are loaded before the Card Life Cycle state is set to OP-READY. Once in OP-READY state, the card is under Card Manager control.
- Once the platform is set to OP-READY, applets can be installed by the authenticated Card Manager, through a successfully opened secure channel. Application security domains are created and the associated keys are loaded. Only an authenticated Card Manager is allowed to modify the card life-cycle, lock the load operation, and update the keys. Access to Java objects is controlled by the firewall using the security context attached to each objects.
- During usage phase, the Card Manager controls access to a Java object through the Firewall, using the Security context associated with each object.
- The selection of an application is always allowed.

This security function is dependent on SF_CARD_AUTHENTICATION and SF_CARD_SECURE_MESSAGING.

gemalto

7.1.6 SF_CARD_PROTECT: Card operation protection

This security function ensures the protection of the TSF and supports the following operations.

- Analyze potential violation on the card life-cycle inconsistency, the PIN and keys integrity error, the illegal access to Java objects, and the unavailability of resources.
- Take action upon violation detection: reset the card, block the action, terminate or mute the card.
- Check start-up security conditions: the consistency of life-cycle, the intergrity of specific data area.
- Check operating conditions periodically by listening the IC sensors.
- Resist to physical attacks (such as out-of-bound voltage, clock frequency and temperature, etc)

In case of error detections this function returns an error or an exception and takes appropriate shield action. If during the TSF execution an unexpected error or an abortion occurs, a secure state will be preserved by resetting security attributes to secure values and if necessary recover the persistently stored data to a secure consistent state.

This security function ensures the atomicity of Java objects update in EEPROM:

- The content of the data that are modified within a transaction is copied in the transaction dedicated EEPROM area. The TSF manages an optimistic backup: the optimistic backup mechanism includes a backup of the previous data value at first data modification, and previous value restoring at abort.
- Commit operation closes the transaction, and de-activates the dedicated transaction area.
- Rollback operation restores the original values of the objects (modified during the transaction) and de-activates the dedicated transaction area.
- The security function ensures that the EEPROM containing sensitive data is in a consistent state whatever the time when EEPROM programming sequence stops, either during copying, invalidating, restoring data to or from the backup dedicated EEPROM area or updating sensitive data in EEPROM.

This SF is supported by the IC security function **SF1 (Environmental security violation recording and reaction)** (see [ST_SAMSUNG]) for attack detecting and resisting.

7.1.7 SF_CARD_ SECURE_MESSAGING: Card secure messaging

This security function ensures the integrity and/or the confidentiality of command/message transmission in a secure channel. The integrity is achieved by adding a message authentication code to the message. The confidentiality is achieved by APDU message data field encryption. These features are used in accordance with the security mode applied to the secure channel.

This SF is activated after a Card Manager authentication that allows the open of the secure channel. This SF ensures that the secure channel is closed after a select application command or in case of error detected within the session.

The secure channel is required for the applet Install or Extradition and Card Manager keys loading (ISD Keys).

This SF depends on SF_CARD_AUTHENTICATION.

MODIFICATION SHEET

Date	Modifications	Author
April 23, 2009	Creating from evaluated ST (V1.5)	Quang-Huy Nguyen

END OF DOCUMENT