Blocking DNS Messages is Dangerous

Florian Maury, Mathieu Feuillet

October 5-6, 2013

- Created in 2009, the ANSSI is the French national authority for the defense and the security of information systems
 - in French, ANSSI, Agence Nationale de la Sécurité des Systèmes d'Information
- Under the authority of the Prime Minister
- Main missions are:
 - prevention
 - defense of French information systems
- One of its priorities is DDoS prevention and mitigation

http://www.ssi.gouv.fr/en

State of the art regarding DNS-related DDoS

Threat: on IP networks, sender address can be spoofed

Principle:

- Based on reflection attacks
- Increase the attacker throughput by leveraging non-malicious nameservers
- DNS answer IP packets are often 40-50 times the size of the associated query IP packets
- 2 Mbps (attacker) \Rightarrow 100 Mbps (target)

What can an operator do?

DNS messages can be filtered at different levels:

L3 Drop packets

L4-7 Drop DNS datagrams or queries

L7 Response Rate Limiting (RRL):

- Identical DNS answers detection
- Bind, NSD, Knot
- ► Slips a truncated answer every X queries
 - e.g. 2 Mbps (attacker) \Rightarrow up to 2 Mbps (target)

Can anti-DDoS technologies be useful for cache poisoning attacks?

Cache poisoning attacks reminder

Principle:

Insert forged data in cache

Example:

2008: Kaminsky attack

Current Fix:

Source Port Randomization

Long Term Fix:

- DNSSEC
 - Requires large adoption

Our cache poisoning attack: Step by step

Our cache poisoning attack: Step by step

Our cache poisoning attack: Step by step

2: Perform the recursive resolution

Our cache poisoning attack: Step by step

2 bis: Trigger anti-DDoS mechanism against the resolver

Our cache poisoning attack: Step by step

3: Either answer with a truncated answer or drop the query **Dropping answers lead to resolver timeouts and retries**

Our cache poisoning attack: Step by step

3 bis: Send lots of Kaminsky-style answers to poison the cache

Experiments & results

A single authoritative nameserver

- Realistic thanks to authoritative nameserver selection attacks (Shulman fragment attacks, SRTT tricks...)
- A single outbound IP on resolver
- 100 Mbps of spoofed traffic
 - would go unnoticed by most ISP
- RRL with slip=2

Validation of the theoretical model

Time

We mathematically modeled the attack Details available on demand

Blocking DNS Messages is Dangerous

Blocking DNS Messages is Dangerous

Based on the model, real-world attacks can be successful with a probability P in less than the following time estimates:

P: Probability of a successful cache poisoning attack

P = 10%	pprox 1h 15min
P = 50%	pprox 8h

Are firewalls doing any better?

ANSSI recommendations

Always answer queries

Never drop DNS queries when you can't tell which are legitimate

Slip 1 is the only RRL safe configuration against our cache poisoning attack

Disclosure timeline

Timeline and feedbacks

Disclosure timeline:

- June: DNS Software Vendors, Packagers
- August: NIC and root operators
- May-August: CERTs

Security notifications:

- CVE-2013-5661 and CVE-2013-5752
- CERTA and NCSC advisory bulletin (September 9th, 2013)

All have confirmed the vulnerability

Some raised concerns

Is slip 1 dangerous?

courtesy of Pnetnod

As slip 1 grants an even payback, is this configuration dangerous for PPS attacks?

Facts:

- Current attacks are volumetric/bandwidth-related DDoS
- More susceptible protocols available for PPS attacks

Network DDoS on the authoritative nameservers because of slip 1?

Facts:

- Amplification factor: 1:1
- Operators have symmetric bandwidth

Investigation should be led if upload capacity is reached

Computational DDoS on the authoritative nameservers because of slip 1?

Fact^a:

 Slip 1 increases CPU consumption by less than 5% depending on implementations

atested on Xeon X5650 @2.67Ghz with 4000 qps

courtesy of Pnetnod

Network DDoS on the resolver because of slip 1 on the authoritative nameserver?

Fact:

- On average, the number of packets exchanged between a resolver and authoritative nameserver per query:
 - ► Slip 1: 9
 - ► Slip 2: 9.68

Computational DDoS on the resolver because of slip 1 on the authoritative nameserver?

Fact^a:

 Slip 1 decreases CPU consumption by up to 20%, depending on implementations

atested on Xeon X5650 @2.67Ghz with 4000 qps

Summary

RRL with Slip 1:

- Is worthless for attackers performing volumetric or PPS DDoS attacks
- ► is less CPU consuming for flooded resolvers
- Is a negligibly more CPU consuming for authoritative nameservers

TL;DR summary: Slip 1 is OK

- Timeouts lead to more efficient cache poisoning attacks
- Always answering queries:
 - Thwarts our attack
 - Offers no benefit for attackers
- ► RRL Slip=1 mitigates DDoS
 - RRL Slip=2 is overkill for current DDoS attacks and is vulnerable to our cache poisoning attack
- Always answering is a temporary fix:
 - DNSSEC wake-up call?

Thank you for your attention

Any questions?

Blocking DNS Messages is Dangerous

Packets count for DOS of recursive servers

$E(PC) = \sum_{i=1}^{n} \left(1 - \frac{1}{s}\right)^{i-1} \left(1 + \frac{8}{s}\right)$

with E(PC) being the mean packet count, n being the number of retries by the resolver and s being the slip value