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Introduction & reminder

Last year...

I We demonstrated how it is possible for an attacker to take full
control of a computer

I by exploiting a vulnerability in the network adapter, and
I adding a back-door in the OS kernel using DMA accesses ;
I the back-door opens a reverse shell when the kernel processes an

ICMP message with a particular type.
I We showed a live demo, using a real world vulnerability

I the vulnerability lied in the ASF remote administration function of
the network adapter of the target machine.

I it was unconditionally exploitable when the ASF function was acti-
vated to any attacker that would be able to send UDP packets to
the machine.
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Introduction & reminder

This is how it worked

See http://www.ssi.gouv.fr/trustnetworkcard
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Introduction & reminder

And...

We presented possible countermeasures, but none of them seemed
really convincing:

I patching is the most obvious countermeasure, however
I you can only patch vulnerabilities you know of,
I patching applications on an OS isn’t simple at all (and not always

done), patching firmwares is even harder,
I firmwares in ROM can’t be patched;

I I/O MMUs can help, but are not a 100% efficient (see later).

This year we study what an efficient countermeasure would be.
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Introduction & reminder

Finding efficient countermeasures is critical

In the last few years, people have been looking at firmware and
embedded software:

I Basebands (Weinmann [17])
I Network cards (Triulzi [15], Delugré [4])
I Keyboard controllers (Chen [3], Gazet [6])
I Chipsets (Ortega and Sacco [8])

Defending a system against such attacks is difficult as firmware are
running out of the scope of the operating system.
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Integrity verification

Problem statement

I We have a machine (smartphone, computer, tablet PC) accessing
the network through a network adapter.

I This network adapter is running a firmware
I We need to check the integrity of the firmware

I Firmware’s integrity must be checked
I at load time
I during run time
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Integrity verification Load-time

Verification at load-time

I Firmware load-time integrity can be checked using a TPM
I A TPM is a secure cryptographic chip present on most platforms,

whose primary goal is to assure the integrity of a platform.
I Specific software (incl. embedded software) can be measured to

detect changes to previous configurations.
I Peripherals’ firmware should be part of the components that are

measured during the trusted boot pathway.
I Using Dynamic Root of Trusts can even solve race conditions at

boot time.
I So we can pretty much consider that the problem is solved.

But how can we check the integrity of the platform during its
execution?
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Integrity verification Run-time

Verification at run-time

I Run-time integrity verification basically consists in checking that
an untrusted target is running untampered

I The verification is performed by a trusted verifier during the exe-
cution of the target

I Can be achieved with software-based remote attestation
I In this case,

I The target would be the network adapter
I The verifier would be the operating system
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Integrity verification Run-time

Remote firmware attestation [7]

Remote device attestation is based on a challenge-response
protocol

1. The verifier sends a random nonce to the target
I The nonce is used as a seed to prevent replay attacks

2. The target computes a checksum over its entire memory and returns
it to the verifier

3. The verifier checks the correctness of the result
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Remote firmware attestation [7]

Remote device attestation is based on a challenge-response
protocol

1. The verifier sends a random nonce to the target
2. The target computes a checksum over its entire memory and returns

it to the verifier
I Data and unused code memory is erased with a predictable value
I Memory is read in a pseudo-random traversal to prevent checksum

precomputation
I All interrupts are disabled during the computation of the checksum
I The device is reset after the checksum is returned

3. The verifier checks the correctness of the result

SGDSN/ANSSI 9/40



Integrity verification Run-time

Remote firmware attestation [7]

Remote device attestation is based on a challenge-response
protocol

1. The verifier sends a random nonce to the target
2. The target computes a checksum over its entire memory and returns

it to the verifier
3. The verifier checks the correctness of the result

I The verifier has a copy of the expected target’s memory content
and compares the checksum returned by the target with its own
computation

I The verifier also checks that the computation time is within fixed
bounds
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Integrity verification Run-time

Remote firmware attestation [7]
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Integrity verification Run-time

Remote firmware attestation is difficult [2, 9, 5]
Challenges

I A malware could keep a (compressed) copy of the legitimate firmware
code in memory and redirect memory reads to compute the correct
checksum

I Data memory is unpredictable and may contain malware code

Solutions
I Checksum computation time must be predictable and near-optimal

in order to detect checksum computation overheads caused by
memory redirects

I The verifier must know the exact target hardware configuration

I Data memory is reset into a predictable state before attestation
with pseudo-random values
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Integrity verification Run-time

Remote firmware attestation is very difficult

Is remote firmware attestation adequate for complex devices
such as network adapters?

I The assumption that the device cannot communicate with a third-
party machine during computation may not hold (especially for a
network adapter...)

I The checksum function imposes severe constraints
I It requires to reset the memory of the device and block all interrupts
I It can be time consuming for the device

Firmware attestation might not be suited for devices with harsh
time constraints
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Integrity verification Run-time

Host-based IPS

I Other approaches have been proposed to monitor the integrity of
a system at a low level.

I By using a dedicated hardware coprocessor to monitor the integrity
of the memory (Copilot [10]),

I By using an embedded microcontroller in the chipset (DeepWatch [1]),
I By embedding the verifier in System Mode Management (Hyper-

Guard [12], HyperCheck [16]).
I However, these mechanisms are designed to protect the main op-

erating system
I ... and it is unclear whether they can be used to monitor the in-

tegrity of peripherals.
I ... moreover, some require a trusted network card for remote attes-

tation, e.g. [16]
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Integrity verification What next?

Assumptions

I First, we need to assume that the host operating system is trusted
I I/O MMU can be used to protect the operating system

kernel: DMAR:[DMA Write] Request device [08:00.0] fault addr 0

kernel: DMAR:[fault reason 05] PTE Write access is not set

kernel: DRHD: handling fault status reg 2

kernel: DMAR:[DMA Write] Request device [08:00.0] fault addr 1282000

kernel: DRHD: handling fault status reg 2

kernel: DMAR:[fault reason 05] PTE Write access is not set

I ... however, a compromised network adapter may still attack other
peripherals [13]
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Integrity verification What next?

So what do we do?

The solution is (unfortunately) likely to be specific to the adapter.
The kind of live verifications that we will be able to carry out will
depend on the architecture of the controller we are considering.

I What kind of interface is available to the host?
I and what does this interface allow us to do?

In the remainder, we consider the case of the Broadcom NetXtreme
network adapter.
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Broadcom NetXtreme architecture Specifications and documentation

Case study on Broadcom NetXtreme architecture

I Broadcom provides a complete set of specifications of their network
adapter for open source driver development.

I From last year’s study, we know that many interesting components
of the network card are directly accessible to the host :

I registers (control, state, status, breakpoint registers)
I internal memory

I Everything is accessible in the MMIO region dedicated to interac-
tions between the network card and the driver.
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Broadcom NetXtreme architecture Specifications and documentation

Internal architecture of NetXtreme network card
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Broadcom NetXtreme architecture Specifications and documentation

Full access to internal memory
I Access to internal memory is achieved by using a memory window

to browse the content of the memory
I This mechanism provides direct access to the firmware running on

the adapter
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Broadcom NetXtreme architecture Specifications and documentation

Access to control registers

Among the registers that are accessible from the host:
I state registers indicate whether the embedded CPU is stalled or

not (and if so, why),
I control registers allow us to run the embedded CPU of the network

adapter step by step,
I breakpoint registers allow us to selectively enable debug condi-

tions associated with addresses.
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Broadcom NetXtreme architecture Specifications and documentation

Running the network adapter in step by step mode

I Last year we used such an interface to craft an external debugger
I However, we could also use the interface to analyse the behaviour

of the firmware in real time :
I to monitor the activity of the firmware from the host, and
I to detect strange or unusual behaviours.
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Broadcom NetXtreme architecture Firmware verifications

Search for MIPS code in memory (idea rejected)

I We could periodically search memory areas (stack, scratchpad,
heap) for anything that looks like MIPS executable code

I Conceptually similar to emulation-based shellcode detection [11,
14]

I Such data locations are used to store ethernet packets
I There is no reason why data stored there should meet the statis-

tical profile of MIPS II instructions.
I Depending on the analysis strategy, we might get false positives.
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Broadcom NetXtreme architecture Firmware verifications

Step-by-step instruction comparison

I Basic code integrity check procedure:
I at initialisation phase, we record a golden model of the firmware
I for every single step, we check that the instruction that is to be run

is the same as the golden model’s one
I otherwise we stop the network adapter.

I This technique only works if the code is not self modifying (which
is the case for the firmware we are considering)
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Broadcom NetXtreme architecture Firmware verifications

Step-by-step instruction address checking

We can also very easily check at each step if the instruction pointer
value is consistent.

I if the instruction pointer says that the network card is running code
in the heap, in the stack or in the memory scratchpad, something
is wrong

I this requires to be able to identify where code and data are lo-
cated.
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Broadcom NetXtreme architecture Identifying code and data areas

Identifying code and data area

I Broadcom docs and driver code tells us firmwares files have three
areas:

I text (code),
I data,
I rodata

I we don’t have the mappings into the card memory
I maybe we can find them?
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Broadcom NetXtreme architecture Identifying code and data areas

Finding memory mappings

I We can watch the RX RISC and monitor:
I code execution: instructions executed by the CPU
I CPU writes: addresses written by the CPU (SH, SB, SW)
I CPU reads: addresses read by the CPU (LH/LHU, LB/LBU, LW)
I other writes: network packets written to the card memory by DMA

from host and by PHY from the wire
I By monitoring these events we can map the CPU activity.
I The mapping will be highly NIC and firmware specific, but the

same analysis could be done for other combinations.
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Broadcom NetXtreme architecture Identifying code and data areas

Implementation

I We can make our integrity verifier:
I check bounds for the CPU: two areas means four bounds, easy
I check read and write access (but there will still be plenty of room

to put stuff)
I What we can’t do:

I prevent arbitrary writes in code area (since standard behavior seems
to allow it)
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Broadcom NetXtreme architecture Shadow call stack

Maintaining a shadow stack

I Something else that we can do is maintain a shadow call stack:
I the idea is to keep a reconstructed copy of the call stack of the

firmware on the host.
I each time we identify a CALL-like instruction, we push the corre-

sponding return address on the shadow stack.
I each time we identify a RET-like instruction, we check that the

address where the firmware is trying to return meets the one that
we saved on the stack

I If it is not the case, then something is definitely wrong

I However, maintaining a shadow stack on the host is not easy
I We need to identify function CALLs and RETs
I The firmware runs on a MIPS architecture and there is no CALL/RET

instruction in MIPS assembly language
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Broadcom NetXtreme architecture Shadow call stack

Basics of the MIPS CPU

RISC architecture with 32 internal general purpose registers

******** CPU Registers **************************************

$0 = 00000000 $1 = 00010000 $2 = 00000000 $3 = 40000000

$4 = 0001b4b8 $5 = 0001b8e6 $6 = 00000000 $7 = 0001bfc4

$8 = 00000040 $9 = 00000050 $10 = 0001b8bc $11 = 0001bfc0

$12 = 80000000 $13 = 00000001 $14 = 00000000 $15 = ffffffbf

$16 = a4020000 $17 = aaaaaaaa $18 = 00000000 $19 = 0001af48

$20 = 0000ad60 $21 = 018004f1 $22 = 000000fc $23 = 00010000

$24 = ffffffff $25 = 80000000 $26 = 00000b50 $27 = 00011104

$28 = c0000000 $29 = 0001bfd8 $30 = 0001c000 $31 = 000111f8

I r29 is usually used as a stack pointer
I r31 is usually used to hold a return value
I r0 must be zero
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Broadcom NetXtreme architecture Shadow call stack

Branching instructions on a MIPS CPU

I Only Jump and Branch instructions. Some examples:
I BEQ Branch on equal
I JAL Jump and link: jump to immediate address and store return

address in r31
I JR r: Jump to address stored in register r
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Broadcom NetXtreme architecture Shadow call stack

Characteristics of the firmware (from experimentations)

I Fortunately for us, the firmware that we are monitoring is pretty
simple:

I function calls are done through the JAL instructions
I There are no function pointers. JAL are always performed on ab-

solute values.
I returns from functions are done through JR 31.

I Locating function call and RET is not that hard... Except...
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Broadcom NetXtreme architecture Shadow call stack

Interrupt management

I Interrupts can be triggered in the network adapters.
I Interrupt are asynchronous
I some of them can be predicted (by looking at the MIPS CPU status

registers)
I but it is hard to predict the exact CPU cycle when the interrupt

will be triggered.
I Interrupts cause unexpected changes in the control flow of the

network adapter.
I they can cancel instructions (because of the MIPS delay slot)
I so we need to take them into account
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Broadcom NetXtreme architecture Shadow call stack

Identifying and dealing with interrupts

I In the firmware we are looking at:
I there is only one interrupt handler starting at a fixed address (in-

terrupt vector)
I return from the handler is done through JR r27

I So identifying interrupts is not so hard:
I detect unexpected jumps to the interrupt vector and check that the

program will go back using JR r27

I But sometimes, interrupts cause errors on the shadow stack:
I The MIPS delay slot is ignored on interrupt, so we need to take

that into account.
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Broadcom NetXtreme architecture Shadow call stack

Limits

I This allows to detect any unexpected change in the control flow
I When a return value is modified on the stack
I But data on the stack, heap and scratchpad can still be modified

by the attacker.
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Broadcom NetXtreme architecture Shadow call stack

Demo

Demonstration of an attack being prevented.
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Broadcom NetXtreme architecture Shadow call stack

Performance

I Surprisingly enough, performance is not that poor.
I we run the MIPS in step-by-step mode
I at each MIPS cycle we do various tests (bounds, call stack...)
I so each MIPS cycle leads to a lot of host CPU cycles

I We still manage to achieve gigabit speed
I 100% CPU usage on one core
I the overhead is due to ASF processing, not network traffic

I Performances might not be that good with other firmwares which
need to touch every network package
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Broadcom NetXtreme architecture Shadow call stack

Conclusions

I firmware integrity attestation is a hard problem
I proof of concept exists but it’s highly firmware and adapter specific

You still need to trust your network card

and protect your OS as much as you can.
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Broadcom NetXtreme architecture Shadow call stack

Question & answers

?
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