
General Secretariat for Defence and National Security
French Network and Information Security Agency

Pierre et Marie Curie University
Paris 6 Computer Sciences Laboratory

Study of the Benefits of Using Deductive

Formal Methods for Secure Developments

by Éric Jaeger

Thesis submitted for the degree of
Doctor of Philosophy in Computer Sciences

Approved by the Examining Committee:

(Advisors) C. Dubois – CEDRIC, ENSIIE

T. Hardin – LIP6, UPMC

(Reviewers) G. Dowek – LIX, Ecole Polytechnique

C. A. Muñoz – LaRC, NASA

(Chair) B. Bérard – LIP6, UPMC

(Examiners) S. Boulmé – VERIMAG

L. Duflot – ANSSI, SGDSN

F. Kamareddine – ULTRA, Heriot-Watt University

EDITE Doctoral School

Defended on 8 March 2010

at LIP6, 104 boulevard Kennedy, 75016 Paris, France

2

Abstract

The use of formal methods in general, and of deductive formal methods in particular, for
the development of systems aims at providing mathematical guarantees, for example about
their correctness. For this reason, the use of formal methods is recommended or required
by safety or security standards, such as the IEC 61508 or the Common Criteria.

Whereas formal approaches indeed induce important benefits, one may wonder about
the exact extent of those. For example, some aspects of a system can be left out of
the scope of formalisation, but it may not be easy to identify such restrictions or their
consequences. If the validity of mechanically checked proofs is generally accepted, their
applicability for justifying actual confidence in the physical systems is often questionned.

These question are especially relevant in the field of security, when the considered
systems are targetted by intelligent agents; compared with the field of safety, there is a
paradigm shift, preventing the application of well known facts or practices.

This memoir addresses the question of the benefits and the confidence resulting of the
application of deductive formal methods for the development or the verification of systems
having security requirements. But it also illustrates how it is possible to abuse inade-
quate specifications or inconsistencies in the theories or the tools, for example allowing a
malicious developer to trap a system while providing a formal certificate, or a malicious
user to identify possible ways around proofs of compliance. Based on these observations,
various strategies are considered to mitigate the risks and improve the overall security of
a formally developed system.

More specifically, a detailed study of the concept of refinement is presented, providing a
generic vision which is applied to several deductive formal methods. It is used to highlight
interesting points, and to understand the essence of possible abuses of the so-called Re-
finement Paradox. We identify for example the influence of parameters of the refinement
relation which are generally left implicit in formal developments.

This memoir also discusses at length the question of the validation of the theories
and tools supporting formal methods, through a deep embedding of the B logic in Coq.
Several shortcomings of the B theory are identified and corrected – illustrating the interest
of such a validation – and a proven prover is developed. New results for the B logic are
also presented, dealing with the replacement of subterms whose free variables are bound
by the context.

This embedding further leads to technical considerations about the mechanisation of
languages, comparing for example various forms of de Bruijn representations. We study
approaches with finer context management, enriched de Bruijn indexes, parallel substi-
tutions, before deriving from our work a representation of the simply typed λ-calculus
without typing context.

3

Remerciements

Je tiens tout d’abord à remercier Florent Chabaud, qui en 2004 a considéré avec bienveillance
ma candidature d’ingénieur enthousiaste mais non initié et m’a mis au défi de développer
une expertise personnelle dans le domaine des méthodes formelles. Je remercie également
Patrick Pailloux, qui a permis que cette thèse soit menée dans le cadre de mes activités
professionnelles à la Dcssi puis à l’Anssi.

Je remercie Thérèse Hardin d’avoir accepté de prendre en thèse un étudiant atypique,
aux idées parfois bien arrêtées et ne consacrant qu’une partie de son temps à la recherche.
Sa disponibilité, son écoute et ses questions tout autant que ses suggestions ont permis à ces
travaux d’aboutir. Je remercie également Catherine Dubois, qui a accepté de co-encadrer
cette thèse, pour ses nombreux conseils.

Je remercie Gilles Dowek et César Muñoz, qui ont accepté de rapporter cette thèse et
ont contribué par leurs commentaires à son amélioration. Je remercie également Béatrice
Bérard, Sylvain Boulmé, Löıc Duflot et Fairouz Kamareddine pour avoir accepté d’en être
les examinateurs.

Je remercie l’ensemble des personnes que j’ai pu rencontrer au travers des projets Fo-
CaLize et Ssurf, pour de nombreuses discussions – parfois animées – sur la théorie comme
sur la pratique de l’informatique et d’autres sciences plus ou moins exactes. Je pense no-
tamment, sans que cette liste ne soit exhaustive, à Philippe Ayrault, Julien Blond, Richard
Bonichon, Mathieu Carlier, David Delahaye, Véronique Delebarre, Damien Doligez, Lionel
Habib, Mathieu Jaume, Charles Morisset, Ivan Noyer, François Pessaux, Renaud Rioboo,
Pierre Weis. Ces discussions ont souvent contribué, de manière directe ou indirecte, au
contenu de cette thèse.

Je remercie également mes collègues de la Dcssi puis l’Anssi, qui ont su tolérer mes
périodes d’introversion comme de prolixité (ces dernières étant sans doute les plus pénibles
pour eux). Je remercie notamment Mathieu Baudet, Dominique Chandesris, Julie Chuzel,
Olivier Grumelard, Olivier Levillain, Louis Mussat pour des discussions sur les méthodes
formelles, ainsi que Philippe Blot, Pierre-Alain Drucbert, Löıc Duflot, Frédéric Gauche,
Fabien Germain, Sébastien Héon, Véronique Joubert, Julien Kaci, Philippe Le Moigne,
Benjamin Morin, Yves-Alexis Perez, Pascale Pouliquen, Pierre Durieux, Vincent Strubel,
Guillaume Valadon pour d’autres discussions toutes aussi instructives sur les différents
aspects de la sécurité. Ici encore, les contributions furent nombreuses, trop pour être
citées exhaustivement ici.

Enfin, je remercie mon épouse et mes enfants, qui ont accepté les contraintes que
représente une telle thèse.

4

Contents

1 Introduction 9
1.1 Formal methods and high assurance systems 9
1.2 Deductive formal methods and security . 10
1.3 Preliminary warning . 10
1.4 A remark about results and proofs . 11
1.5 Plan of the document . 11

2 Conventions 13
2.1 Styles . 13
2.2 Environments . 13
2.3 Notations . 14

3 Formal Methods 17
3.1 The B method . 18
3.2 The Coq proof assistant . 21
3.3 The FoCaLize environment . 23

4 Security 27
4.1 Security requirements and practices . 27
4.2 Characterising the threat . 29
4.3 Security certification . 30

5 Remarks about Formal Methods and Security 31
5.1 Preliminary considerations . 32

5.1.1 Formal specification . 32
5.1.2 Refinement . 32
5.1.3 About logic . 33

5.2 Specifying secure systems . 34
5.2.1 Inconsistent specifications . 34
5.2.2 Possible misunderstandings . 37
5.2.3 About partial specifications . 40
5.2.4 About elusive properties . 42
5.2.5 About the refinement paradox . 46

5.3 Building on sand? . 46
5.3.1 Consistency of the logic . 46
5.3.2 Validity of the tools . 46
5.3.3 Mastering the tools . 48
5.3.4 Further leaps of faith . 49

5.4 Stepping out of the model . 52

5

6 CONTENTS

5.4.1 About closure . 53
5.4.2 About typing . 54

5.5 Reminder . 56

6 Generic Refinements 57
6.1 An informal description of refinement . 57

6.1.1 About specifications . 57
6.1.2 Expected properties of a refinement . 58
6.1.3 Constituents of a refinement step . 59

6.2 Simplified forms of refinement . 60
6.2.1 Relational toolbox . 60
6.2.2 Data-refinement . 61
6.2.3 Choice-refinement – a first approach . 65
6.2.4 Preconditions and guards . 67
6.2.5 Choice-refinement – a second approach 68

6.3 A generalized refinement . 69
6.3.1 Definition . 69
6.3.2 Properties of gen-refinement . 70
6.3.3 A few illustrations . 70
6.3.4 Preconditions, interpretations, and simplifications 71

6.4 Some observations using gen-refinement . 73
6.4.1 The distracted composer . 73
6.4.2 About the refinement arrow . 74
6.4.3 The refinement paradox . 75

6.5 A few last remarks . 76

7 BiCoq and B 79
7.1 Deep and shallow embeddings . 80

7.1.1 A quick comparison . 82
7.1.2 Why embedding B? . 83

7.2 Embedding the B logic . 84
7.2.1 Syntax . 84
7.2.2 Inference rules . 88
7.2.3 Raw inference rules . 91
7.2.4 A remark about notations . 92
7.2.5 Checking standard B results . 92
7.2.6 About B sets constructs . 93
7.2.7 Validity of the B logic . 94
7.2.8 Shallow embeddings revisited . 95
7.2.9 About the consistency of the B logic . 96

7.3 Embedding the Gsl . 97
7.3.1 Syntax . 97
7.3.2 Substitutions as predicate transformers 99
7.3.3 About refinement . 99

7.4 A proven prover . 100
7.4.1 Implementing decidable properties . 101
7.4.2 A proven prover . 102
7.4.3 Toward a certifying prover . 103

7.5 New results for the B logic . 104

CONTENTS 7

7.5.1 Substituting predicates . 105
7.5.2 Grafting . 106
7.5.3 Validity of the new results . 107

8 Technical Review of BiCoq 109
8.1 De Bruin representations . 109

8.1.1 Using indexes in λ-calculus: The λdBI notation 110
8.1.2 Managing indexes in λdBI . 111
8.1.3 Comparing indexes and levels in λ-calculus 113
8.1.4 Operations on B terms in BiCoq . 114
8.1.5 Context awareness . 116
8.1.6 Representing application . 119

8.2 Proving by induction . 121
8.3 Grafting, congruence and namespaces . 123

8.3.1 A missed attempt: collapsing terms . 124
8.3.2 A (nearly) successful attempt: grafting 124
8.3.3 Introducing namespaces . 126
8.3.4 Sketch of the congruence proof . 127

8.4 The λTdB notation . 133
8.4.1 Using types as part of variable identifiers 133
8.4.2 The λTdB syntax . 134
8.4.3 Typing . 135
8.4.4 Standard operations for λTdB . 135
8.4.5 Context aware operations for λTdB . 137
8.4.6 A quick analysis . 139
8.4.7 β-reduction and normal form . 140
8.4.8 Grafting . 141
8.4.9 Namespaces and meta-variables . 142

9 Conclusion 145
9.1 Security traps and oversights . 145
9.2 Validation of theories and tools . 146
9.3 A few perspectives . 146
9.4 On the interest of formal methods . 147

A Cross References 157
A.1 Refinement . 157
A.2 BiCoq . 158

A.2.1 BiCoq 2 . 158
A.2.2 BiCoq 3 . 159

A.3 λTdb representation . 161

8 CONTENTS

Chapter 1

Introduction

1.1 Formal methods and high assurance systems

The development of software, equipments or systems has been for long a source of engi-
neering challenges, and various forms of flaws, either in the specification, the design or
the implementation, are frequent. Such flaws are at best nuisances, but for systems hav-
ing strong safety or security requirements, the consequences can be inacceptable: huge
financial losses, injuries or even deaths.

Numerous approaches have been proposed to tackle the development of such critical
systems, aiming at providing high assurance about their reliability, dependability, safety
or security. These approaches include for example recommendations regarding the design
(e.g. modularity through Object-Oriented Programming), the existence of appropriate
documentation, the amount of testing, the setup of reviews by independent peers. The
multiplication of practices and controls is expected to reduce as much as possible the
likelihood of flaws in the final system.

Formal methods represent a very distinct approach in this domain: they aim at errad-
icating errors – at least of some sorts – on the basis of mathematically justified analyses.
For this reason, their use is encouraged, or sometimes required, when dealing with critical
systems requiring high assurance. Typical examples are provided by the higher Evaluation
Assurance Levels (EALs) of the Common Criteria (ISO/IEC 15408) [CC] in the field
of security, or the higher Safety Integrity Levels (SILs) of the Iec 61508 [IEC] in the field
of safety and dependability.

There are numerous types of formal methods. A formal method is first characterised
by the scope of problems that it can tackle, and its (justified) completeness – whether or
not it detects all errors of a certain kind – and correctness – whether or not all reported
problems are actual errors. Indeed, nearly any interesting problem that can be consid-
ered is associated to undecidability results, proving the absence of generic algorithms;
therefore some formal methods aiming at automation work by approximation (leading to
false positives, that is reporting a problem without actual error, or false negatives, that is
undetected errors).

A formal method is also characterised by its automation and its complexity – that is the
level of expertise required to use it. Indeed, when dealing with undecidable problems, the
alternative to approximation is to rely on user guidance. The formal spectrum therefore
goes from lightweight approaches such as typing systems, in which very specific classes
of problems are automatically detected without any guidance of the user, to deductive
formal methods, able to tackle a much more wider scope of aspects, but requiring the
user to specify, implement, and prove – such interventions definitely justifying appropriate

9

10 CHAPTER 1. INTRODUCTION

training and possibly increasing development time.

1.2 Deductive formal methods and security

In this thesis, we provide a detailed analysis of the benefits resulting from the use of formal
methods for development of high assurance sytems, but also of the possible limitations,
problems and traps.

More specifically, we are concerned with the applications of the so-called deductive
formal methods, that is logic-based approaches for the development of systems correct with
regard to their specification, such as B, Coq or FoCaLize. Furthermore, we focus on the
development of systems having strong security requirements – that is able to withstand
attacks by intelligent agents – by contrast with safety or dependability requirements.

Indeed, whereas deductive formal methods aim at a form of perfection and can tackle a
wide range of situations through very expressive languages (relying on extensive guidance
by the user), there are various reasons for which “proven security” does not mean absolute
and inconditional security in the physical world.

We identify these potential pitfalls by considering the whole process of formal devel-
opments, from the specification to the implementation through refinements. This analysis
can be seen as a guide for independent evaluators – which are important actors of the
security certification defined in the Common Criteria – by helping them to understand
the true benefits of the use of formal methods and to identify some of the critical aspects
that need specific checking.

In parallel, we also discuss possible improvements in the formal techniques or practices,
alternative presentation of theoretical subtleties, and the risks induced by potential errors
in the theories or the tools implementing formal methods. This leads us to propose an
intuitive and generic theory of refinement, to validate the B method through a deep
embedding in Coq, and to illustrate the development of mechanically checked tools with
a prover for the B logic. We also present side results of these activities: new theorems
for the B logic, and some techniques for the mechanisation of languages, including an
improved de Bruijn representation.

1.3 Preliminary warning

It seems important to emphasise in this introduction that there is no doubt, for the author
of this memoir, on the interests and benefits resulting of the application of formal methods.

They indeed provide a form of silver bullet for system engineering in general, and
software engineering in particular: they have the potential to eradicate many forms of
errors, a perspective not even dreamed of with other approaches. The impact on de-
velopment costs are minor with regard to the gains in terms of confidence; furthermore
the overall cost, taking into account not only the development but also the testing, the
certification and the maintenance, is likely to be reduced when using formal methods
[BDM98, WLBF09, Hal90].

But even considering formal methods as the silver bullet of system development, one
has to realise that such a weapon can slay werewolves, but not the other strange creatures
that may be lurking around. This is especially relevant when dealing with security, facing
intelligent agents that can adapt their attacks when facing formal developments.

The genuine extent of the benefits of the application of formal methods has to be
explicited and understood; the worst situation in security is not to use an unsecure system,
but to use an unsecure system while assuming it is secure.

1.4. A REMARK ABOUT RESULTS AND PROOFS 11

1.4 A remark about results and proofs

Readers of the memoir may be intrigued that whereas we discuss at length results and
theorems, some of them being rather complex, we never provide any proof. Indeed, they
are in fact formalised and proven in Coq, the corresponding developments being freely
accessible and reusable (cross-references between this memoir and the developments are
provided in Annex A).

We have several motivations for having adopted this approach. First, the use of a proof
assistant checking proofs prevents oversights and errors. Second, by managing technical
and administrative details, a proof assistant in fact leads to dare to tackle more complex
results. Last but not least, we advocate the use of formal methods, and it seems to us that
our message is much more likely to be considered if we apply our recommendations to our-
selves. We expect this memoir to clearly illustrate the feasibility of complex developments
using formal methods.

1.5 Plan of the document

After the introduction of a few conventions in Chapter 2, we provide in Chapter 3 a quick
overview of formal methods in general, and of deductive formal methods in particular.
It includes a more detailed presentation of B, Coq and FoCaLize, the three deductive
formal methods which are used for later illustrations and discussions.

Chapter 4 discusses various notions about security, and the associated problems and
practices. More specifically, we put the emphasis on those differences with safety consider-
ations that are of interest with regard to the subject of this memoir. The threat model that
we consider in later illustrations is also discussed, describing the objectives and abilities
of an attacker.

In Chapter 5, we make a general review of the benefits, but also of the limitations and
possible difficulties resulting of or associated to the application of formal methods to secu-
rity developments. This review is organised according to the different steps encountered
during a typical V-cycle development (a popular standard approach for project manage-
ment, proposing a decomposition of development and acceptance activities); we discuss
specification, design and implementation, as well as the tools that are part of the formal
development environment.

Refinement, which is one of the key concepts discussed in the general review of Chap-
ter 5, clearly deserves additional consideration. It is therefore analysed in Chapter 6, in
which we propose a simple and generic vision of a sometimes elusive concept. Instead of
providing illustrations of traps, we explore the associated underlying mechanisms, consid-
ering for example the so-called Refinement Paradox, as well as other items of interest.

Chapter 5 also discusses the problems that can result of oversights in the theory of a
formal method, or of invalid implementations in formal tools. We focus on these questions
in Chapter 7, which deals with the validation of a formal method. We discuss how it
is possible to verify a formal method and to develop mechanically checked tools for this
method. This is illustrated through an embedding of the B method in the Coq proof
assistant. In the same chapter we also present new results for the B logic, proven using
this embedding.

The development of such an embedding is a relatively complex and long process. The
embedding of B in Coq is therefore further considered in Chapter 8, that addresses tech-
nical aspects. It discusses for example de Bruijn representations and some associated
optimisation that we have designed, and present various proof strategies. Whereas these

12 CHAPTER 1. INTRODUCTION

technical elements are not directly relevant with the main guideline of this memoir, they
are provided for the sake of completion and can have wider applications, for example with
regard to language mechanisation or proof automation.

Chapter 9 finally concludes this memoir, and considers possible further activities.

Chapter 2

A Few Conventions

2.1 Styles

For the sake of readability, specific styles are used in this memoir to distinguish between
mathematical concepts, names, pieces of code, etc.

Proper names are emphasised, as in N.G. de Bruijn. The same style is also used to
mark the first introduction of important concepts, later appearances of the term being not
emphasised, as well as important remarks.

Tools, languages, standards and organisations are denoted using small capital letters,
as in FoCaLize.

Logical propositions, theorems, or other mathematical notations can either be included
directly in the text of a paragraph, as in x∈S, or on the contrary be provided separately:

member (x, S) := x∈S

We also distinguish pieces of code using a dedicated style. Small snippets, for example
identifiers, can be included directly in the text of a paragraph, as in let x=y, whereas longer
pieces of code are provided separately, in a framed paragraph:

let x=y*3 in

x*x;;

Note that we generally favour, for the sake of simplicity, the presentation of code as
pieces of mathematical notations. In such a case we distinguish keywords by using a
bold style, e.g. “Variabletest :N.”. When using the mathematical presentation for code, we
tolerate a few deviations from the genuine syntax (for example by omitting delimiters such
as “;” or “.”, or even keywords such as end); on the contrary when we use the dedicated
code style, we stick to the concrete syntax, and these snippets can normally be interpreted
or executed without modification.

2.2 Environments

Several LATEX environments are defined and used in this document; their uses are marked
by a category, a reference (chapter, section, number), and an optional title:

Example 2.2.1 (Environment) This is an illustration of the example category.

The different categories are as follows:

- Example: examples and illustrations;

13

14 CHAPTER 2. CONVENTIONS

- Definition: definition of terms, symbols and concepts;

- Notation: introduction of additional notations and symbols;

- Fact: granted results, for example theorems that are proven elsewhere but are just
admitted in this memoir;

- Proposition: theorems that have been proved during the preparation of this memoir
(the proofs are generally not provided in here, as it is explained in Section 1.4).

2.3 Notations

This document considers several formal methods and several logics – in some cases in
the same example or theorem. We therefore need to deal with numerous concepts and
notations. To the extent possible, we have tried to adopt standard notations, and to use
them consistently throughout this document. In some cases however it has been considered
preferable to reuse the same symbols with different meanings in different chapters, or on
the contrary for a specific chapter to use a different notation.

Most of the notations are defined on the fly. They are introduced in the relevant
chapter and section, just before using them. We just detail a few basic and common
notations hereafter.

Standard notations are used for the logical operators, that is for example ∀ for the
universal quantification, ⇒ for the implication, ¬ for the negation. We also use standard
notations for arithmetic operations such as +, set operations such as ∪, etc. id denotes
the identity function.

Doubled capital letters, as in S, denote sets and types. In particular, we use the
following notations in this memoir:

- N is the set of natural numbers;

- Z is the set of integers;

- Q is the set of rational numbers;

- W is the set of boolean (binary) words;

- B is the set of boolean values, containing > (for true) and ⊥ (for false);

- U is the set containing only the value unit;

- ∅ is the empty set.

We also consider the logical counterpart of U and ∅, that is True for the proposition that
has a proof (that is a tautology) and False for the proposition that has no proof – not to
be mistaken with the boolean values > and ⊥.

x :T means that x is of type T , T1→T2 is the type of functions whose parameter is in T1

and the returned value is in T2.
x 7→ y is the couple whose constituents are x at the first position and y at the second

position. The symbol 7→ is also used for the definition of anonymous functions (such as in
fun (x :T) 7→ x+1), or in pattern matching constructs (e.g. match b with> 7→ ⊥ |⊥ 7→ >).

As usual, the symbol = is associated to many concepts; to avoid confusions we have
therefore adopted the following notations:

2.3. NOTATIONS 15

- x=y is the equality predicate;

- x,y means that x is defined by y;

- x :=y means that x gets the value of y (that is the assignment);

- [x\T1]T2 is the term obtained by replacing all the free occurrences of the variable x

by the term T1 in the term T2.

16 CHAPTER 2. CONVENTIONS

Chapter 3

Deductive Formal Methods

The development of software, equipments or systems has been for long a source of engi-
neering challenges. And whereas recent techniques and technologies offer opportunities
to reduce costs or to address richer requirements, they also tend to increase the overall
complexity of this task. It is therefore not a surprise that such developments often suffer
from various forms of flaws, either in specification, design or implementation.

Various approaches have been proposed to develop better – or at least less flawed –
systems, trying for example to improve the development process, to promote good prac-
tices, to guide design, or to ensure an appropriate level of testing. In this domain, formal
approaches are characterised by strict and scientific visions with the objective of devel-
oping correct systems. To take the example of software, using formal methods, whereas
programming is still an art, the verification is definitely promoted into a science. Formal
methods often offer level of guarantees that are unreachable by more classical approaches;
for example they can consider exhaustively the cases of use, whereas tests generally cover
only a part of the possible executions.

Unfortunately, one has to recognise that the wide application of formal methods in
industry is still an expectable prospect rather than a reality. Most of the industrial appli-
cations seem to be justified by certification objectives for high assurance systems, when
applicable safety or security standards require formal methods applications. However, for-
mal methods appear to be a mature subject, numerous tools exist, and there has been quite
significant achievements on academic and industrial projects1: see for example [WLBF09]
for a recent survey on the application of formal methods in industry, and for the latest
significant developments in the domain of tools or environments the projects CompCert
[Ler09], Sel-4 [KEH+09] or the Integrity operating systems [GHS].

In their most general definition formal approaches encompass the methods, techniques
and tools using mathematically justified approaches for the analysis and the verifica-
tion of specification, design, implementation and other related activities, including testing
[WLBF09]. That is, they include for example rich type systems, static analyses, semantic
interpretations, model checking, and so on.

Whereas any given formal method has a limited scope, either with regard to the phases
of the lifecycle that it addresses or the type of verification that it provides, it comes with
justified claims about the correctness or the completeness of its analyses. For example,
a given static analysis may ensure an exhaustive identification of all buffer overflows in
a program – but not of any other bug, and possibly to the cost of false positives; the
important point is that the abilities and limitations of such an analyser are known and

1Additional results can be expected for example through the projects financed by the European Union,
dedicated to the promotion of formal methods for industrial developments (e.g. Deploy and Quasimodo).

17

18 CHAPTER 3. FORMAL METHODS

documented. The other typical criteria that can be considered to characterise a formal
method, beyond expressivity, scope, completeness and correctness, are the existence of
tools and their automation, the required expertise, and the accuracy, that is the difference
between the considered system and its representation in the method.

We introduce in the rest of this chapter deductive formal methods, that is logic-based
methods in which it is possible to reason by deduction on specifications and implementa-
tions, used in specification-driven developments. They are indeed the methods that are
the most frequently encountered when dealing with secure systems2 – probably because
the security properties that one can try to capture are, to some extent, non-standard, and
require expressive specification languages as well as advanced proof techniques.

This does not mean, however, that other formal approaches are useless or meaningless.
In fact, as we point out later in this memoir, on the contrary we consider that the associ-
ation of different types of methods is likely to be the most efficient approach to deal with
security.

Note that whereas model-oriented methods (such as model checking) proceed by build-
ing a model satisfying a specification, deductive methods are based on inference rules op-
erating at a nearly syntactical level to produce proofs. That is, whereas a model-oriented
method identifies P = > and Q = > as the only possible model for the formula P ∧Q, a
deductive method apply a rule claiming that the proof of P ∧Q is build from a proof of P

and a proof of Q.
We describe in the following the B method, the Coq proof assistant and the FoCaLize

environment.

3.1 The B method

The B method, developed mainly by J-R. Abrial, is a popular formal method widely used
by both the academic world and the industry. It has been applied, among other things, for
industrial projects where safety or security is mandatory, such as transportation systems
[BDM98, ED07], network devices [Bie96] or smartcards [Jaf07, SL00]. Several development
environments for the B method exist, either industrial (e.g. the AtelierB or the B-
Toolkit) or academic, such as the Brillant project [CPR+05].

The title of the so-called B-Book ([Abr96]), “Assigning Programs to Meanings”, ap-
pears to be a reference to an earlier paper of R. J. Floyd [Flo67], titled “Assigning Meanings
to Programs”. Indeed, the B primary objective is to allow for the derivation of a correct
imperative program from a specification, rather than to reverse-engineer existing code.

In a nutshell, the B method defines a logic, a language of specification and program-
mation, and a methodology of development based on the explicit concept of refinement.

The logic is a first-order predicate logic completed with elements of set theory. It is
used to express preconditions, state invariants, etc. and to conduct proofs.

The language of specification and programmation is the Generalised Substitution
Language (Gsl). It defines substitutions that can be abstract, declarative and non-
deterministic (i.e. specifications) as well as concrete, imperative and deterministic (i.e.
programs). Let us consider for example the following substitution:

Example 3.1.1 (Square root)

ANY x WHERE x2≤n<(x+1)2 THEN s :=x

2At the date of the writing of this memoir, and as far as we consider certification requests in France
(Anssi), all projects are based or use deductive formal methods, with a strong dominance of the B method.

3.1. THE B METHOD 19

It specifies the extraction of a square root (i.e. s :=
√

n) using the non-deterministic
substitution ANY (a magic operator finding a value which satisfies a property). This
specification looks like an imperative program, but it is not; indeed there is no indication
on how such a value can be computed. Note that the Gsl is a language with side-effects;
it includes an imperative executable sublanguage, name B0, whose translation e.g. into
C or Ada is straightforward.

Regarding the methodology, B developments are made of machines, that is modules
combining a state (in the form of variables), invariants on this state, and operations de-
scribed as generalised substitutions to read or alter the state. A typical development starts
with the description of abstract machines, that are pure specifications. The design and
implementation then consist into providing, for any abstract machine, a succession of ma-
chines that have the same signature but are always more concrete, detailed and effective
– until an executable code is produced.

The correctness is ensured by showing that any new machine is a refinement of the
previous one; intuitively, a machine MC refines a machine MA if any observable behaviour
of MC is a possible behaviour of MA. In other words, an implementation is compliant
if it always stays within the limits defined by the specification. The verifications are
incorporated into the methodology (and the tools) by the automated generation of proof
obligations at each refinement step.

B refinement is defined in such a way that it is independent of the internal repre-
sentation of the state of the machines, as illustrated hereafter by a system returning the
maximum of a set of stored natural values. This example is very typical and is often
referred to in the rest of this memoir under the name Maximier :

Example 3.1.2 (Maximier)

MACHINE MA

VARIABLES S

INVARIANT S⊆N
INITIALISATION S :=∅
OPERATIONS

store(n) , PRE n∈N THEN S :=S∪{n}
m←get , PRE S 6=∅THEN m :=max(S)

MACHINE MC REFINES MA

VARIABLES s

INVARIANT s=max(S∪{0})
INITIALISATION s :=0

OPERATIONS

store(n) , IF s<n THEN s :=n

m←get , m :=s

The state of a machine is described in the VARIABLES clause, and the INVARIANT

clause defines a constraint over this state; for MA the state is described by a variable
S which is a subset of N, whereas for MC it is a variable s which is a value of N. The
INVARIANT clause in MC also describes the so-called Glue Invariant between the states
of MA and MC . This is an important concept in B, describing the transformation of the
representation of the state during refinement; here this invariant intuitively claims that if
both machines are used in parallel then s is always equal to max(S).

The INITIALISATION clause sets the initial state and the OPERATIONS clause details

20 CHAPTER 3. FORMAL METHODS

the operations used to read or alter it. The two machines differ yet MC refines MA: roughly
speaking one cannot exhibit a behaviour of MC which contradicts MA.

Note the use of the PRE P THEN S substitution (also denoted P |S) defining a precon-
dition, that can be seen as a requirement to enforce P before calling the operation (to
avoid undefined, i.e. possibly undesirable, behaviours). This is an offensive approach; an
operation (should not but) can be used when this condition is not satisfied, yet in such a
case there is no guarantee about the result (it may even cause a crash). By opposition the
defensive approach is represented in B by using guards, that is an IF P THEN S1 ELSE S2

substitution (also denoted P =⇒ S18¬P =⇒ S2) that prevent unauthorised uses. These no-
tions are important and standard in formal methods; they will be discussed further later
in this thesis.

More formally, a machine MC refines a machine MA if they have the same operations
and that each operation of MC refines the associated operation of MA. This definition
prevents changes of the representation of the inputs or outputs of operations (n and m in
our example), which is fixed through the whole development; only the representation of
the internal state can be modified during refinement.

B-refinement is based on semantics of specifications and programs as predicate trans-
formers (cf. for example [HR84, Hoa92]), and refinements concepts similar to those in-
troduced e.g. in [Dij76, Bac81, Bac88, Mor90, BvW00]. These are elegant approaches
bridging the gap between imperative programs and stateless logic, yet they can be diffi-
cult to master for a developer.

B operations are substitutions, that is predicate transformers, and [S]P denotes the
predicate obtained by the application of the operation (substitution) S to the predicate
P . The substitutions are then systematically defined by standard operations or logical
equivalence, for example:

Definition 3.1.1 (Substitutions semantics)

[x :=E]P ⇔ [x\E]P Affectation

[S18S2]P ⇔ [S1]P ∧ [S2]P Choice

[C|S]P ⇔ C ∧ [S]P Pre-condition

[C =⇒S]P ⇔ C ⇒ [S]P Guard

Remember that we have chosen our notations so that in the first line we distinguish
the B substitution, which is a predicate transformer used to program, and the standard
substitution. This line therefore expresses that the application of the B assignment x :=E

to the predicate P is equivalent to the standard substitution of x by E in P – this justifies
the notation [S]P , as well as the name of the Gsl.

The intuitive interpretation of these semantics is that if [S]P is provable, then the
substitution S is such that its execution ensures that P is satisfied; for example, we have
[x :=1](x>0)⇔ 1>0, that is executing the assignment x :=1 ensures that x>0.

Provided these semantics, SC refines SA (denoted SAvSC) iff:

Definition 3.1.2 (Refinement)

SAvSC ⇔ [SA]P⇒ [SC]P for any predicate P

A first-order definition is derived in [Abr96] from this definition, the intuition being that
refinement weakens preconditions (if P1⇒P2 then P1|SvP2|S) and reduces non-determinism

3.2. THE COQ PROOF ASSISTANT 21

([S18S2]P v [S1]P). The refinement can also be presented using the relational presentation
introduced in the B-Book as follows:

Fact 3.1.1 (Refinement)

SAvSC ⇔ pre(SA) ⊆ pre(SC) ∧ rel(SC) ⊆ rel(SA)

Intuitively, pre(S) represents the precondition of the substitution S and rel(S) the oper-
ational aspects of S as a relation that associates to any point of its domain one or several
points of its co-domain.

3.2 The Coq proof assistant

Coq [Coq, BC04] is a proof assistant based on a type theory. It offers a higher-order
logical framework that allows for the construction and verification of proofs, as well as the
development and analysis of functional programs in a Ml-like functional language with
pattern-matching.

It is possible in Coq to define values and types; any value has a type, and any type is
a value. Types of sort Set represent sets of computational values, while types of sort Prop

represent logical propositions. For example, the natural number 0 is of type N, whose type
is Set, whereas a proposition such as 0<1 is a type whose type is Prop.

Coq is based on the Calculus of Inductive Constructions [CP88, Wer94] and provides
powerful inductive features. Let us first illustrate this with the definition of natural num-
bers:

Example 3.2.1 (Inductive definition of a datatype)

Inductive N :Set , 0:N | S :N→N

It defines N as the smallest set of terms stable by application of the constructors 0 and S. N
is exactly made of the terms 0 and S(. . . S(0) . . .) for any finite iteration. Being well-founded,
induction is possible, and the associated structural induction principles are automatically
provided by Coq at the definition of this type, such as for example:

Fact 3.2.1 (Structural induction principle for N)

∀ (P :N→Prop), P 0→ (∀ (n :N), P n→P (S n))→ ∀ (n :N), P n

That is, for a predicate P over N, if one can prove P (0) and that when P (n) then P (S(n)),
then P is true (provable) for any n.

But it is also possible to inductively define propositions, such as the even predicate:

Example 3.2.2 (Inductive definition of a predicate)

Inductive even :N→Prop , ev0 :even 0 | ev2 :∀(n :N), even n→even S(S n)

It defines a family of logical types: even 0, even 1 and even 2 are different types. It is
worthwhile to note that reading this definition, ev0 is a value of type even 0 and (ev2 0ev0) a
value of type even 2, while there is no way to build a value of type even 1, that is this type
is empty. The standard interpretation of this observation is that ev0 is a proof of even 0,
(ev2 0 ev0) a proof of even 2, and that there is no proof of even 1, that is we have ¬even 1.

22 CHAPTER 3. FORMAL METHODS

The intuitive view of these examples is that N is a set of terms, and even a predicate
marking some of them, defining a subset of N; its inductive definition describes paths in
N, starting from 0, along which the predicate is true:

ev0
+3 0

S //

ev2

4<1
S // 2

S //

ev2

4<3
S // . . .

The Coq logic is by default a constructive logic (a.k.a. intuitionnistic logic) in which
the excluded middle is not provable. For example, the standard inductive definition of the
disjunction is such that to prove P∨Q one has either to provide a proof of P or a proof of Q;
therefore indeed P∨¬P is not always provable, as this would mean being always capable, for
any proposition P , to prove either P or ¬P . An interesting consequence of the constructive
vision is that programs can be extracted from proofs (Curry-Howard isomorphism). In
essence, a proof of the proposition ∀ (mn :N), m≤n∨m>n can be transformed automatically
into a functional program that, given two values m and n in N, returns a boolean indicating
whether m≤n or m>n.

This approach, extracting programs from proof, is representative of the so-called strong
specification style, illustrated here by the division by 2:

Example 3.2.3 (Strong specification style)

Require Import Arith.

Theorem div2:forall (n:nat), {m:nat | n=m+m \/ n=S(m+m)}.

Proof.

induction n as [| n Hind].

exists 0; left; apply refl_equal.

destruct Hind as [m Hind].

destruct (eq_nat_dec n (m+m)) as [Heq | Hdiff].

exists m; rewrite Heq; right; apply refl_equal.

assert (Heq:n=S(m+m)).

destruct Hind as [Hind | Hind].

destruct (Hdiff Hind).

apply Hind.

exists (S m); rewrite Heq; left; simpl;

rewrite <- plus_n_Sm; apply refl_equal.

Defined.

In essence, div2 is presented as a theorem that claims that for any value n in N there exists
(at least) one value m that is the half of n. In the constructive logic of Coq however, the
only way to prove the existence of such a value is to exhibit it – and the proof is therefore
in fact a procedure, a program to build a value, and a few checks that indeed this value
satisfies the required property. It is then possible to use the command Extraction div2,
that automatically produces the following code:

Example 3.2.4 (Code extraction)

let rec div2 = function

| O -> O

| S n0 ->

let hind = div2 n0 in

(match eq_nat_dec n0 (plus hind hind) with

| Left -> hind

| Right -> S hind)

3.3. THE FOCALIZE ENVIRONMENT 23

The structure of this code is intimately related to the structure of the Coq proof, and
appear to be rather exotic; even using the same algorithm, a developer is much more likely
to propose something like the following code:

let rec div2 (x :N) :N := match x with S(S(x′))→ S(div2 (x′)) | → 0 end.

There is however no enforced development methodology in Coq; the user can choose
between several styles of specification and implementation, and has to decide on its own
about the properties to be checked. In addition to the strong specification style described
just before, it is for example possible to use the weak specification style. It consists
into defining functions as programs in the internal ML-like language and to later check
properties of these functions, as illustrated here by the multiplication by 2:

Example 3.2.5 (Weak specification style)

Fixpoint double(n:nat){ struct n}:nat :=

match n with

| 0 => 0

| S n’ => S(S(double n’))

end.

Theorem double_correct:forall (n:nat), double n=n+n.

Proof.

induction n as [| n]; simpl.

apply refl_equal.

rewrite IHn; rewrite <- plus_n_Sm; apply refl_equal.

Qed.

One should note that the availability of inductive constructions can, to some extent,
leads to use implementations as specifications: see the previous definition of N which is
an implementation that can be completed e.g. with a program representing Peano’s addi-
tion. Yet, to have efficient computations, the binary representation W can be considered.
Programs on W can be validated against the N library using an interpretation J K : W→N,
to prove for example:

∀ (w1 w2 :W), Jplus w1 w2K = Jw1K+ Jw2K

that is an homomorphism property. We consider such approaches, in which various con-
crete representations are considered, as a form of refinement that can be encountered
in Coq, using implementations as specifications and changing data representations (cf.
[Mag03a, Mag03b] for further illustrations).

3.3 The FoCaLize environment

FoCaLize [Foc] is a formal method to specify and incrementally progress towards imple-
mentations, while proving compliance.

Promoting a form of object-oriented approach, the brick development in FoCaLize is
the species, which is a kind of record grouping declarations (types), definitions (Ml pure
functions), properties, proofs, and the representation (a datatype) of the data manipulated
in the species. A species can be built and enriched by parameterisation, multiple inheri-
tance and new declarations, late binding, definitions or redefinition, properties or proofs.

24 CHAPTER 3. FORMAL METHODS

The representation can be declared (being then a type variable) and progressively defined
along the development process until it becomes a concrete datatype. Once all declarations
are defined and all properties are proved, a species is complete (it is an implementation)
and can give rise to a collection, a sort of Abstract Datatype obtained by abstracting its
representation and masking definitions, whose values can only be manipulated through
the provided interface – ensuring the preservation of the proven properties.

Note that late binding allows for redefinition of previously defined methods, but not
of the representation: once the concrete support is detailed, it is maintained through the
development cycle down to the collections.

The parameters of a species are either collections, whose interface can be used in
the species, or values of a parameter collection. In the following example, the species
Ω specifies any collection which has a decidable equivalence relation (denoted = as we
intuitively expect this relation to represent equality) on its elements:

Example 3.3.1 (Superset)

species Ω ,

signature (=) : Self→Self→B
property =refl : ∀ s :Self , s=s

property =symm : ∀ s1, s2 :Self , s1 =s2⇒s2 =s1

property =tran : ∀ s1, s2, s2 :Self , s1 =s2⇒s2 =s3⇒s1 =s3

We can then define a species ℘ specifying any collection implementing subsets of values
from its parameter ω, which represents a collection implementing Ω:

Example 3.3.2 (Powerset)

species ℘(ω is Ω) ,

signature ∅ : Self

signature (∈) : ω→Self→B
signature (+) : ω→Self→Self

property ∈∅: ∀ s :ω, ¬s∈∅
property ∈+: ∀ s1, s2 :ω, ∀ S :Self , s1∈(S+s2)⇔ s1∈S ∨ s1 =s2

Note that in the species ℘, the symbol = appearing in the property ∈+ is the one introduced
in the species Ω, that is x = y is more explicitly denoted Ω!(=)(x, y).

In essence, ℘(ω) represents any implementation of subsets of values of ω having a
decidable membership ∈. That is, it can be implemented for example by lists of values
of ω – only allowing the representation of finite sets – but also by functions in ω→ B to
represent possibly infinite sets.

Using the latter, there would be no way to implement inclusion provided ω is infinite. To
specify extensionally comparable subsets, that is subsets with an inclusion (and therefore
an equality) we can define a further species F inheriting from ℘ – as we want to represent
subsets – but also of Ω to reuse its specification of equality. A property =ext is also added
to further specify this equivalence and ensure that it represents the extensional equality:

Example 3.3.3 (Extensional subsets)

species F(ω is Ω) ,

inherit Ω, ℘(ω)

signature (⊆) : Self→Self→B
property ⊆spec : ∀ S1, S2 :Self , S1⊆S2⇔(∀ s :ω, s ∈ S1⇒s ∈ S2)

property =ext : ∀ S1, S2 :Self , S1 =S2⇔S1⊆S2 ∧ S2⊆S1

3.3. THE FOCALIZE ENVIRONMENT 25

Note that another consequence of having F inheriting of Ω is that provided an implemen-
tation of Ω, for example int for the machine integers, and an implementation lstset of F for
example using sorted lists, it is possible to immediatly derive an implementation lstset(int),
to manipulate subsets of machine integers, but also an implementation lstset(lstset(int)),
to manipulate subsets of subsets of machine integers, and so on.

Note that in FoCaLize, inheritance encompasses two concepts. The first one is a
composition of specifications to describe specific entities through a richer interface (more
operations or more properties), and is illustrated by our examples of ℘ and F. The second
concept maintains the same interface but provides more details about the effective imple-
mentation, for example implementing F by sorted lists. The latter is a form of refinement
whose validity is ensured by type-checking, dependency analysis and verification that all
the properties have been proved.

26 CHAPTER 3. FORMAL METHODS

Chapter 4

Information System Security

As mentioned in the previous chapter, this memoir deals with critical systems, for which
errors can have inacceptable consequences, and with the application of formal methods to
ensure their validity, in particular with regard to security objectives.

This chapter aims at providing some notions about security. It does not intend to
cover the subject exhaustively, of course, but just discusses some relevant aspects, such as
typical security requirements, or threat descriptions. It emphasises, where required, the
differences between the security perspective and the more usual safety (or dependability)
perspective. Indeed, one should not confuse safety with security: the former mostly aims at
preventing or limiting the consequences of random events, using probabilities as a relevant
measure; on the contrary, security concerns are related to malicious actions by intelligent
agents, and it is generally much more appropriate to consider a form of cost to evaluate
the likelihood of an attack.

The distinction is important, especially as these two fields may use a common vo-
cabulary, but with different definitions; we will for example discuss about the notions
of integrity and availability. Similarly, security and safety can deal with non functional
requirements, and share some techniques, such as various form of redundancy, but with
different – or even contradictory – objectives. It is important to realize the difference
between these perspectives, as trying to tackle security using safety reasonnings is error
prone.

4.1 Security requirements and practices

Security requirements traditionnally fall into three categories, confidentiality, integrity, and
availability. This classification, introduced in by R. Courtney (Ibm) in the early 70’s, is
still in use today even if it is generally considered as a structure rather than an exhaustive
list; it is often enriched with other notions, such as authentication or accountability.

There are several definitions associated to these terms – the recognised standards in
security do not provide a commonly agreed definition. They can be applied to information,
data, processes, services, or other objects; for the sake of clarity, we just discuss in this
chapter the application of these notions to data. It is however essential, of course, to
understand what we want to protect, and against what type of threat.

The confidentiality is more specifically related to security. It describes the fact that a
datum should not be known – in whole or in part – by unauthorised entities.

Integrity, on the contrary, is a characteristic that can be required in safety as well as
in security. In both cases, the associated objectives are related to changes of a data, either
to ensure that they are impossible (immuability), or that they can be repaired, or more

27

28 CHAPTER 4. SECURITY

simply that they can be detected. However, safety integrity and security integrity are very
different.

When dealing with safety considerations, integrity can for example be ensured by
error detection and correction codes or other similar techniques: a datum D is encoded as
Enc(D), producing a new representation with redundant information; it is then possible to
evaluate the probability that a random change to Enc(D) occurs but is neither corrected
nor detected. Of course, this type of approach is inappropriate when dealing with security:
an attacker is assumed to know the encoding scheme Enc, and is therefore able to alter
the data without being detected.

Availability is another frequent source of confusion between safety and security. In both
cases, the objective is to ensure that a datum is accessible when required. But whereas in
safety this is associated for example to requirements about Mtbf (Mean Time Between
Failures) or priority management, in security it is also often a problem of survivability.
For a network device, for example, security availability can be translated into the fact that
the equipment should not crash when fuzzed.

More generally, the security requirements for a system can be described in a so-called
Security Policy. It will for example describe, for a given entity and a given state, the set
of authorised actions. They can provide a more dynamic vision of security objectives, for
example the fact that a given datum is accessible by a given entity in some states of the
system, and not accessible in the other states.

To enforce security requirements, different techniques can be applied. A very specific
family of techniques for security is related to the use of cryptographic schemes. The confi-
dentiality of the data can be ensured by ciphering, the integrity – in the sense of detecting
unauthorised modifications – by signature. Interestingly, in general cryptographic schemes
transpose security requirements to the keys; for example the confidentiality of the ciphered
data is only ensured provided the key is kept secret, but also unmodified: if the attacker
is not able to read the value of the key, he may more simply modify it to set it to a value
chosen by him.

Another frequent technique is the use of security monitors enforcing security policy,
for example access control. According to the Orange Book [TCS], a security monitor
is a tamperproof, unavoidable, and “simple enough to be trusted” mechanism filtering
accesses, and is for example realised by appropriate mechanisms checking rights of users
before executing their requests in operating systems.

In both safety and security, it is also a common practice to ensure defence in depth.
The idea is to have several layers of mechanisms to enforce expected properties. In the case
of safety, if for example the objective is to ensure resistance to random failures, a simple
redundance of safety mechanisms can ensure defence in depth. If the feared problem is
a design flaw, then a duplication will not be sufficient, either for safety or security. A
possible approach of the defence in depth concept in security is to ensure that more than
one of the following axes is addressed for any security objective:

- Prevention: there is no weakness;

- Protection: weaknesses are not exploitable;

- Detection: attacks are detected;

- Limitation: consequences of attacks are limited;

- Reparation: consequences of attacks can be overcomed.

4.2. CHARACTERISING THE THREAT 29

For example, considering stack overflow attacks leading to arbitrary code execution, a
formal design proven to forbid overflows is a prevention, the marking of parts of the memory
as non executable is a protection, protecting the integrity of the stack with canaries1

ensures detection, limited privileges (a user process cannot modify the operating system)
is a limitation, and backups guarantee reparation.

As a last remark, we mention in the introduction of this chapter the existence of non
functional requirements for safety or security. In safety, this can for example encompass
objectives about the maximum amount of memory required by a program; it is non func-
tional in the sense that it does not describe a constraint over the inputs and outputs of
the program seen as a black box, but on what’s going on inside this black box.

Non functional requirements also exist in security. A typical example is the secure
erasing of a secret value, such as a session key stored only – expectingly – in the memory.
A standard practice is to ensure secure erasing by repeatedly writing different values, and
its application can have rather unexpected effects, such as for example:

- A compiler, discovering that the memory location is not read during or after secure
erasing, can optimize the program by removing the useless write operations;

- A Flash memory, due to specific technological constraints, if required to make
multiple writings at the same address, will distribute these writings at different
physical locations, preventing effective overwriting.

These deviations are direct consequences of the non functional nature of secure erasing: it
has no influence on the result of the execution of the program, and it is therefore considered
“irrelevant” in many situations. And the point is, standard formal methods typically only
deal with functional requirements. In the rest of this memoir, functional requirements are
said to be extensional, and of non functional requirements intensional.

4.2 Characterising the threat

The safety analysis for a system is always conducted according to a model of the random
events that can have disastrous consequences – adverse weather conditions, failure of
components, and so on.

Similarly, in a security analysis, a model of the threat is required. Having identified
for a system what we want to protect, against which type of threats, we have to assess
the possible attackers, to eventually develop appropriate protection mechanisms. As men-
tioned, probabilities are generally inadequate for security analyses; an evaluation of the
cost of an attack is preferable. Such a cost can include several types of considerations,
such as the required expertise, the required time, computing power, network bandwidth
or other resources, the location of the attack (in space and in time) but also the risk for
the attack to be detected or the attacker to be identified, as well as the consequences of
the attack, both in terms of gain for the attacker or in term of losses for the defendant.

In this memoir, we often consider powerful attackers in our illustrations; they have,
after all, to attack formally proven systems. One of the worst case situations is the mali-
cious developer. Indeed, whereas in safety developers are trusted (but can be inattentive),
in security the developer – or at least a person able to influence the implementation in a
team – can be an attacker. Its objective is then to implement inappropriate features in
the system, while getting a formal specification. This type of attacker is not always with

1A canary is a randomly chosen value placed on the stack and checked regularly to detect unauthorised
changes, e.g. of the return pointer.

30 CHAPTER 4. SECURITY

a very high profile, only applicable at governmental level; consider for example a payment
application in a company, and the potential benefits for a developer able to trap it.

We will generally not need further hypotheses regarding our attackers. In particular,
we do not need for our illustration to consider social engineering, important resources
(such as powerful computing power for cryptanalyses), and so on.

4.3 Security certification

Critical systems need high levels of assurance, that can be obtained through a certification
process accordingly to a procedure set forth in an applicable standard. In the field of
security, the Common Criteria [CC] are the current reference; inheriting from the United
States TCSec and the European ITSec, they are used worldwide, and mutual recognition
of certificates is ensured between nations by multinational agreements. The full details
of the Common Criteria certification process are not discussed here, we just mention a
few aspects which are relevant for our concerns.

When a developer decides to start a Common Criteria certification process for a
product, the first step is to describe the associated security objectives in the so-called
Security Target. This document includes a description of the assets that have to be pro-
tected, and the type of threats that are considered applicable, as well as the chosen Eal
(Evaluation Assurance Level), between 1 (basic) and 7 – which basically describes the level
of effort dedicated to ensuring that the system is indeed secure.

The certificate itself is delivered by a national authority, that is for France the Anssi
(the French network and information security agency), on the basis of a report provided
by independent evaluators working for an agreed security laboratory. The mission of these
experts is to ensure that the developer applies the procedures associated to the chosen Eal
(development practices, documentation, testing, etc.), and to conduct further evaluations,
such as vulnerability analyses.

Currently, the assurance components for a given level are systematically included in the
higher levels. That means for example that the use of formal methods, mandatory at the
highest levels2, does not reduce the amount of testing required. One of the motivation of
the work described in the next chapter is to assess whether the use of formal methods could
indeed justify the relaxation of other assurance components, possibly provided additional
verifications by the independent evaluators.

2For the version 2.3 of the Common Criteria, a formal model of the security policy is required at
Eal-5, and a full formal development is required at Eal-7. For the version 3.1 of the Common Criteria,
formal methods are mandatory only for Eal-6 and Eal-7.

Chapter 5

Using Deductive Formal Methods
for Secure Developments

As pointed out, the use of formal methods is encouraged, when not required, by standards
for the development of systems in which safety is mandatory, e.g. IEC 61508 [IEC].
The situation is similar for the development of secure systems: for the highest levels of
assurance the Common Criteria [CC] for example require the use of formal methods
to improve confidence in the development, as well as to ease the independent evaluation
process. Indeed, the verification that the delivered product complies with its specification
is expected to rely, at least to some extent, on the use of an automated tool, for example
mechanically checking a proof of correctness provided by the developer.

Note that safety and security standards generally enforce the typical V-cycle vision; we
refer to such type of developments, in this memoir, as being specification-driven1. The V-
cycle identifies several phases such as specification, design, implementation and verification
operations. Different languages can be used to describe the system in the different phases;
beyond programming languages it is frequent to use natural language, automata, graphical
languages, Uml, etc. In a specification-driven development, the problem of the correctness
can then be seen as a problem of traceability between the various descriptions of the system
produced at the different phases of its lifecycle.

Book of
Specifications

New description

&.

em
Traceability

Specification

New description

(0

fn
Traceability

Design

New description

(0

go

Traceability

. . .

New description
%-

iq

Traceability

Implementation

The deductive formal methods also allow for multiple descriptions of a system; they
differ from standard approaches by enforcing the use of languages with explicit and clear

1By contrast with other methodologies, for example Test Driven Development.

31

32 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

semantics, and by providing a logical framework to reason on them. Ensuring the correct-
ness then becomes a mathematical analysis of the traceability (or consistency) between
these different descriptions.

The intent of this chapter is to show that whereas the use of deductive formal methods
for specification-driven development of secure systems is perfectly relevant, and provide
a priceless mechanical support to tackle complex problems, specifying a secure system or
deriving a secure implementation can still be rather tricky. We analyse the various steps
of a development, considering for each of them possible pitfalls, limitations, and problems.
These concerns are illustrated through simple examples (sometimes involving a malicious
developer) in Coq, B or FoCaLize but most of them are relevant for other deductive
formal methods such as Pvs, Isabelle, etc. More generally, some of the problems de-
scribed here can be applicable to other types of formal methods (e.g. Model Checking) or
to developments with safety objectives.

5.1 Preliminary considerations

5.1.1 Formal specification

At least two descriptions of a system are generally considered in formal developments, a
formal specification and an implementation. The specification is often written in a logical
language (e.g. based on predicates) and is ideally declarative, abstract, high-level and
possibly non-deterministic, describing the what. On the other hand, the implementation
is imperative, concrete, low-level, and deterministic, describing the how.

To emphasise the difference between declarative and imperative approaches, consider
the specification of the integer square root function provided in Section 3.1:

Example 5.1.1 (Square root specification in B)

ANY x WHERE x2≤n<(x+1)2 THEN s :=x

It is fully deterministic (for any n there is at most one acceptable value for s), but it is not
a program: how the relevant value is computed is left to the developer. The specification
can be seen as an oracle to check whether or not an implementation is correct – this is one
of the ideas applied in test tools using formal specifications.

The simple fact of writing a formal specification is already an improvement compared
to standard approaches. Indeed, by using a formal language, ambiguities are resolved, and
to some extent some forms of common mistakes can be identified. Furthermore, formal
methods allow for the assessment, at least partial, of the consistency – that is the absence
of internal contradictions – or the completeness of a specification. For example, it is
possible to check that a set of basic properties expressed in a specification indeed allows
for the derivation of the expected high-level properties – before even starting design or
implementation.

5.1.2 Refinement

The term refinement is often encountered when dealing with formal methods to describe
the underlying development process during the design and the implementation of a system.
Numerous formal or semi-formal methods provide a specific definition of this concept (cf.
[GFL05] for a few examples). As far as deductive formal methods are concerned, it is
more specifically associated to the formalisation of traceability using for example predicate
transformers semantics [HR84, Hoa92], such as in Z, B or Event-B.

5.1. PRELIMINARY CONSIDERATIONS 33

In this memoir, however, we generalize the concept of refinement to apply it to any
specification-driven development using a deductive formal method. Refinement is there-
fore the process of going from a formal specification to an implementation, while checking
the compliance of the latter to the former. It captures the engineering of a system and
encompasses a lot of subtle activities, including for example in the case of software de-
velopment the choice of concrete representations for abstract data or the production of
operational algorithms satisfying declarative descriptions. From a logical point of view,
a formal specification describes a family of models (that is, intuitively, implementations)
and the refinement process consists in choosing progressively one of those models.

Note that one has to assume that the formal specification is sufficient with regard to
the intent of its developer, that is the properties of the final implementation are either
part (or consequences) of the formal specification, or on the contrary are incidental and
irrelevant, in the sense that they do not represent a genuine requirement. Let us illustrate
our point with the specification of a very simple library for manipulating sets: it introduces
and describes the empty set ∅, singletons {x}, membership ∈ and union ∪ as well as their
relationship, that is:

Example 5.1.2 (Specification of set operations)

¬x∈∅ x∈{y} ⇔ x=y x∈S1∪S2 ⇔ x∈S1 ∨ x∈S2

This specification is sufficient, and implemented for example using lists. Such imple-
mentations de facto introduce additional properties, for example they define an order of
appearance of the elements of a set in the list implementing it, an order which can become
observable for example using a pretty-printing function. Yet these additional properties
do not result from the requirements, but are artificial and irrelevant. This is typical of
refinement. On the contrary if a new description is introduced to provide additional re-
quirements, then we are still in a specification stage; in such a case this is not a refinement
but a form of composition of specification. In both cases the number of acceptable models
– in the logical sense, that is the number of acceptable implementations – decreases, but
the intentions fundamentally differ.

Note that formal methods do not automatically produce refinements2 but explain how
to check that a refinement is valid, that is they ensure that very different objects (a logical
description and an operational implementation) are sufficiently “similar”.

5.1.3 About logic

Behind any deductive formal method, there is logic – or more accurately, a logic. We do
not want here to discuss at length the various types of logic, once pointed out the common
fact that a specification can be inconsistent.

A specification is inconsistent if it is self-contradictory – a trivial example is to specify
v as a natural value equal to both 0 and 1 at the same time. Such a specification is also
said to be unsatisfiable, that is it does not admit a model in the logical sense. There are
three points that are worth mentioning about inconsistent specifications:

- the detection of inconsistency cannot be automated in the general case (the problem
of satisfiability is undecidable for the predicate calculus);

- an inconsistent specification cannot be implemented;
2Automated refinement is however a field of study and can for example select simple and standard

models, e.g. according to design patterns [Req08].

34 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

- an inconsistent specification can be used to prove any property about any compliant
implementation – and more generally to prove anything, as soon as the existence of
a compliant implementation is assumed, implicitly or not.

Because of the first point, tools implementing formal methods considered in this memoir
do not even try to detect inconsistencies, even in trivial cases such as v = 0 ∧ v = 1. On
the other hand, if there is an implementation objective, because of the second point this
inconsistency will be detected sooner or later. The last point results from the fact that
for any proposition P we have False⇒P (using false assumptions one can prove anything).
The consequences of these points are discussed later.

5.2 Specifying secure systems

The first point to note, when considering the potential gains resulting of the application
of deductive formal methods to secure developments, is that whereas they offer tools
to express specifications, there is no way to force a developer to describe the required
properties. Clearly, using even the most efficient formal method without adopting the
“formal spirit” is meaningless, as there is no benefit compared to standard approaches if
the formal specification is empty, that is trivially valid for any system.

Note also that a formal development is a development, and can therefore benefit from
standard practices such as naming conventions, modularity, documentation, etc. In the
case of formal methods, in fact, the very process of deriving a formal specification from
the book of specifications should be documented, justifying the formalisation choices and
identifying, if any, aspects of the system left out – as it is generally not reasonable or even
feasible to aim at a full formalisation of a complete system.

Assuming a developer that has adopted the formal spirit, there are further points to
care about in order to develop an adequate formal specification for a secure system, that
is a specification not only expressing the required properties, but also ensuring that those
properties are enforced at all stages of the development as well as in any (reasonable) use
case of the implementation.

Some of the concerns discussed thereafter are applicable for safety or any high assurance
system; others are more specific to security as the intervention of a malicious developer is
assumed. The ultimate objective of such a malicious developer is to exploit any weakness
of a specification, in order to trap a system while delivering a mechanically checked proof
of compliance. One could consider that such traps would be detected through code review
or testing. Yet, beyond the fact that formal methods are expected to reduce the need for
such activities, we warn the reader that our illustrations are voluntarily simplistic, and
that real life examples of Trojan Horse can be much more difficult to detect.

5.2.1 Inconsistent specifications

As pointed out in Section 5.1.3, inconsistent specifications are disastrous. Indeed, whereas
inconsistency cannot be automatically detected, it also permits to discharge any proof
obligation expressed – that is an inconsistent specification can in practice make the devel-
oper life more comfortable. An inconsistent specification is therefore dangerous for safety
developments if a distracted developer fails to notice that its proofs are a little too easy to
produce, and more so for security developments as a malicious developer identifying such
a flaw would be able to prove whatever he wants.

Of course, an inconsistent specification is not implementable. It is therefore possible
to check the consistency by providing an implementation – any one will do the trick, so

5.2. SPECIFYING SECURE SYSTEMS 35

even a dummy implementation is sufficient. Yet there are in security situations in which
a formal specification is mandatory while a formal implementation is not. This is the
case for the Common Criteria, that at some assurance levels (e.g. EAL-5 for Common
Criteria v2.3.) just require a formal specification of the Security Policy. An undetected
inconsistent specification is therefore a possibility.

In B for example the consistency of a specification is partially checked through proof
obligations that have to be discharged by the developer. In essence, operations have to be
specified in such a way that the establishment and the later preservation of the invariant
is indeed guaranteed. Yet the obligations related to the existence of values satisfying the
expressed constraints for parameters, variables and constants are deferred. Both following
specifications are inconsistent, yet all the explicit proofs obligations can be discharged
(that is, most B tools will report for such a development a 100% proven status):

Example 5.2.1 (Insatisfiable specification)

MACHINE absurd var
VARIABLES v

INVARIANT v∈N ∧ v=0 ∧ v=1

ASSERTION 0=1

MACHINE absurd cst
CONSTANTS f

PROPERTIES f ∈N→N ∧ ∀ x, y, x<y⇒f(x)>f(y)

ASSERTION 0=1

Delaying such proof obligations is justified, as implementing the specification will force the
developer to exhibit a witness for v that meets the specification (a constructive proof that
the specification is satisfiable). Therefore, B ensures that any inconsistency is detected, at
the latest, at the implementation stage. But as a formally derived implementation is not
always required, one should consider additional manual verifications to check the existence
of valid values for parameters, constants and variables.

Inconsistencies can be rather easy to introduce, accidentally or not, by contradicting
implicit hypotheses associated to the used formal method. In the current version of Fo-
CaLize, the termination of recursive functions is assumed. One should care to check that
all the defined functions indeed terminate to avoid to introduce an inconsistency. In B
the clause SETS allows for the declaration of abstract sets used in a machine; one can
easily forget that such a set, in B, is always finite and non-empty. If the developer contra-
dicts one of these implicit hypotheses the specification becomes inconsistent without any
warning by the tool; in fact the automated prover is likely to very efficiently detect the
contradiction as a lemma usable to discharge any proof obligation.

Contradicting implicit principles of the underlying logic can also be illustrated in Coq
with two very simple examples.

Example 5.2.2 (Violation of properties of inductive types) We attempt to define
Z from the already defined N, distinguishing between positive and negative values; we also
ensure that +0=−0 with an axiom:

Inductive Z : Set,plus :N→ Z |minus :N→ Z.

Hypothesis zero unsigned :plus(0)=minus(0).

36 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

Whereas this specification is unlikely to shock readers not accustomated to inductive con-
structions, it is not valid. Indeed, Z is not described here as an abstract specification but
as an implementation: it is the set of all terms of the form plus(n) or minus(n), and it is
implemented as such for example in OCaml. zero unsigned introduces an inconsistency
because it contradicts the injectivity of constructors – or more precisely the principle of
non confusion – that claims here that for any natural values n and m it is possible to prove
in Coq that plus(n) 6=minus(m):

Inductive Rel:Set:=plus:nat ->Rel | minus:nat ->Rel.

Hypothesis zero_unsigned:plus 0=minus 0.

Theorem inconsistent:False.

Proof.

generalize zero_unsigned; intros H; inversion H.

Qed.

The second example is related to the unexpected consequences of using possibly empty
types. Formally speaking, an empty type is not a source of inconsistency, but using an
empty type without knowing it can lead to similar consequences.

Example 5.2.3 (Empty type) We illustrate our concern by the following clumsy at-
tempt to define bi-colored lists of natural values, that is lists with each element marked red
or blue:

Inductive blst :Set , red :blst→ N→ blst
| blue :blst→ N→ blst.

In the absence of an atomic constructor for the empty list, blst is indeed empty (the
empty set is indeed the smallest set of terms stable by application of the constructors).
Therefore, assuming the existence of such a list is inconsistent, and any theorem of the
form ∀ (b :blst), P can be seen as an instance of False⇒P and is therefore provable:

Inductive blst:Set:=

| red:blst ->nat ->blst

| blue:blst ->nat ->blst.

Theorem blst_empty:forall (b:blst), False.

Proof.

intros b; induction b as [b Hind | b Hind]; apply Hind.

Qed.

Note that the ability to prove any property is hardly a problem from the developer’s
point of view, as he generally tries to prove only those properties he expects to be true. It
would be prudent for any type T introduced in Coq to ensure that it is not empty3 e.g.
by proving a theorem of the form ∃ (t :T), True, or equivalently by exhibiting a term t with
Definition t :T := . . .

One could also investigate the satisfiability of the preconditions or guards associated
to functions or operations. These notions will be considered more in details later, but
an unsatisfiable guard is an indirect way to describe an inconsistent specification. On

3To be precise, however, the problem is not with possibly empty types but with provably empty types;
that is, an abstract type cannot be proved to be empty and is therefore harmless, whereas some inductive
definitions are just non trivial representations of empty types.

5.2. SPECIFYING SECURE SYSTEMS 37

the other hand, unsatisfiable preconditions are not inconsistent, but represent the absence
of specification. Unsatisfiable guards and conditions may be difficult to detect – as it is
involuntarily illustrated in the B-Book. Indeed, it describes an example of development
of a database to manage individuals, in which it is impossible to insert new entries, as
pointed out by [Mus05], due to the fact that any new individual introduced in the database
should have a father and a mother, while the initial state is an empty database.

Generally, beyond implementation and verification through additional proof obliga-
tions, inconsistencies and related problems can be detected early by the use of adequate
tools, such as model-checkers [CGL96, YML99], model animators [PL07], or test gen-
erators [CD08, JL07]. Such tools indeed attempt a form of symbolic execution of the
specification, and are unable to proceed in the absence of any logical model. They are
unlikely to report the detection of the inconsistency, but the fact that they are unable to
exploit the specification is a strong indication of a possible inconsistency, deserving further
investigations.

We would also like to draw attention to other types of problematic specifications. For
example a specification can mix predicates of the form P⇒Q and P⇒¬Q. Such a specifica-
tion is consistent but only as long as P is false; to the least this type of specification should
be considered inappropriate. This is one of the cases for which specification engineering
tools would be considered useful. Such tools would associate for example to a specification
∀ x, P⇒Q an additional proof obligation ∃ x, P ; indeed the specification can be vacuously
true if P is always false, but it is unlikely that such a specification convey the intended
meaning [SV07].

5.2.2 Possible misunderstandings

We now discuss the problem of insufficient specifications, which is more tricky to detect as
it refers to a difference between a specification and its intended meaning. That is, there is
no formal notion of “insufficient specifications”, and this concept is by essence contextual.

It is possible to consider the completeness (or monomorphicity) of a specification, that
is to check that it admits a single model. Yet this is unfortunately another undecidable
problem. Furthermore, we would question the assumption that a specification has always
a single model; on the contrary, as pointed out later, specifications should accept several
reifications. Attempting to provide a generic definition of sufficiency is therefore, in our
view, hopeless.

The insufficiencies can result of the expression of the specification. Trivially, some
properties may be forgotten, and it would be prudent therefore to check that expected
consequences of the specification are indeed inferrable. This is not different from an in-
sufficient specification in standard development: if the customer forgot some requirements
there is a risk that he will receive an inadequate system.

Example 5.2.4 (Abstract definition of N) We can for example attempt to specify nat-
ural values in Coq adopting an abstract datatype approach instead of using an inductive
definition. We first introduce abstract identifiers with their type:

Variable mynat :Set.

Variable 0:mynat.

Variable S :mynat→mynat.

38 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

We then describe a few properties to restrict the implementation to what we expect. We
can for example start with:

Hypothesis injective0 : ∀ (n :mynat), 0 6=S(n)

Hypothesis injectiveS : ∀ (n1n2 :mynat), S(n1)=S(n2)⇒ n1 =n2

Unfortunately, this is not sufficient with regard to our intention to only accept structures
that are isomorphic with N. Indeed, we accept here any structure that includes a structure
isomorphic with N. To further reduce the number of acceptable models, we can for example
enrich the specification with a surjectivity rule:

Hypothesis surjective : ∀ (n :mynat), n=0 ∨ ∃ n′ :mynat, n = S(n′)

This claims that any element of our structure is either 0 or the successor of another value.
But again, this is not sufficient: we miss for example the well-foundedness (or equivalently
the accessibility of any value from 0). That is, this specification does not exclude for
example Z, or N∪{∞} with S(∞) =∞.

There are of course ways to describe a structure such as N using only abstract speci-
fications, but it is a little more tricky than one assumes in general. Another interesting
illustration of the possible consequences of insufficient specifications, with a less trivial
example, is provided in [Sch95], and associated to the discussion about the detection of
non completeness (or non monomorphicity) in [Sch].

Beyond missing properties, the problem of insufficient specification can also result of
the chosen formal method. Any formal method implicitly or explicitly defines observable
and non-observable aspects of a system, and our concern is that a poor understanding of
these limitations can have consequences.

It is not reasonable to expect all users of formal methods to be experts. One may
consider for example a situation in which a customer convinced by the interest of formal
methods may however not have any in-depth knowledge about any of them. In fact, we
would also argue that should formal methods be more widely used – definitely something
we expect for the future – they should be accessible to people having received a dedicated
training but which are not expert (this is one of the main objectives of FoCaLize). The
minimum, however, is to ensure that any user has a basic understanding of some of the
underlying principles to avoid misinterpretation.

For example, consider the concept of refinement as introduced in Section 5.1.2. The
essence of this concept is to allow to check that specifications and implementations are
similar. This similarity should not be too strong, as a refinement relation reduced to
intensional equality of programs (that is, the same code) would be useless. It is for
example standard to consider that computations and transient states are irrelevant. And
of course this “blindness” can be exploited by a malicious developer.

Example 5.2.5 (Non-observable transient states) Our concern is illustrated in B by

5.2. SPECIFYING SECURE SYSTEMS 39

the following specification of an airlock system:

MACHINE Airlock
VARIABLES door1,door2

INVARIANT door1,door2∈{open, locked} ∧ ¬(door1 =open ∧ door2 =open)

INITIALISATION door1 := locked ‖ door2 := locked
OPERATIONS

open1 , IF door2 = locked THEN door1 :=open
close1 , door1 := locked
open2 , IF door1 = locked THEN door2 :=open
close2 , door2 := locked

If the underlying principles of the B are not understood, one can easily consider that
the INVARIANT clause in a proven B machine is always true – isn’t it the definition
of an invariant? Therefore, any compliant implementation of this specification would be
considered safe. Of course, this is not the case, as we may for example refine as follows:

MACHINE Trapped Airlock
REFINES Airlock
CONSTANTS code := 147

VARIABLES door1,door2, state
INVARIANT door1,door2∈{open, locked} ∧ ¬(door1 =open ∧ door2 =open)

INITIALISATION door1 := locked ‖ door2 := locked ‖ state := 0

OPERATIONS

open1 , IF door2 = locked THEN door1 :=open;

IF state=code THEN door2 :=open;wait;door2 := locked
close1 , door1 := locked; state := (state∗2) mod 256

open2 , IF door1 = locked THEN door2 :=open
close2 , door2 := locked; state := (state∗2+1) mod 256

where wait is a passive but slow operation. What we do here is to open both doors during
a few seconds, yet ensuring that the final state of any operation still complies with the
invariant. The code constant and the state variable help to conceal this dangerous behaviour,
as only a specific sequences of 8 calls to close1 and close2 to make state equal to code,
followed by a call to open1, will activate the trap. Note that of course, a test campaign not
activating this trap may still reveal it by identifying the little piece of associated code as
being dead code. On the other hand, the malicious developer can also remove the observable
branch structure, replacing the IF by a formula computing the state of the doors, and
therefore escaping dead code detection.

This is not specific to B, and the situation is similar in other formal methods – again,
refinement, to be of any use, has to be blind to some aspects of a description. This blindness
often includes transient states, algorithms, memory use and time. In Coq for example
equality is modulo β-reduction (in other words, square(3) = 9 is true because computing
square(3) yields 9). That also means that the following code can be proven to be a valid
implementation of the standard operations on N:

Definition + (m n :N) :N , match m with 0⇒ n | S m′ ⇒ S(m′ + n)

Definition ∗ (m n :N) :N , match m with 0⇒ 0 | S m′ ⇒ n + (m′ ∗ n)

Definition ˆ(m n :N) :N , match n with 0⇒ 1 | S n′ ⇒ m ∗ (mˆn′)

However, one should realise that trying to compute 10ˆ10 with this proven code is more
than likely to cause a crash.

40 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

Stronger forms of invariants can be considered but specific modelisation choices or
dedicated techniques have then to be used. With a deep embedding approach for example
(cf. Chapter 7), that is intuitively the development of a form of virtual machine, it is
possible to represent the execution of a language while taking into account the execution
time or the required amount of memory, as well as expliciting transient states. Another
possible approach is to forbid observable transient states by ensuring that the model only
considers atomic transitions, or to add in event-oriented models possible interruptions
that create new observation points (cf. for example [ACPM05] for an illustration of this
concept for smartcards). Such approaches can however cause new difficulties – it would
not be possible for example to maintain the invariant x = 2∗y during transient states in
a sequential program trying to modify x and y consistently – and may therefore require
further adaptations (such as those discussed in [BP07] for example, in which invariant
verification can be locally disabled).

5.2.3 About partial specifications

Another aspect of a formal specification of a secure system to check is its totality : is
the behaviour of the system specified in any possible circumstance? It is frequent in
formal methods, using preconditions and guards, to define partial specifications – either
to represent a form of contract (a condition to be realised before having the right to use
the system) or a form of freedom left to the developer (because the system is not planned
to be used in such conditions or because the result is irrelevant).

If the first interpretation can be considered during formal developments, the second one
becomes the only relevant one once leaving the abstract world of formal methods to tackle
with implemented systems. And the extent of the freedom given by a partial specification
to the developer is easily underestimated, as illustrated in the following examples.

Example 5.2.6 (Partial specifications) We consider two specifications of the head
function, returning the first element of a list of natural values, in Coq, using the strong
specification style (in which the returned value of a function is described as satisfying a
property, cf. Section 3.2):

head1(l : list N)(p : l 6=[]) :{x :N | ∃ l′ : list N, l=x :: l′}

head2(l : list N) :{x :N | l 6=[]→ ∃ l′ : list N, l=x :: l′}

Both specifications ensure that the function, called upon a non empty list, will return the
head element. Yet the first specification requires a parameter p which is a proof that the
list parameter l is not empty – making it impossible to call head1 over an empty list as
it would not be possible to build such a proof. The second specification is on the contrary
partial, allowing to use head2 with an empty list but not constraining the result in such a
case (except for being a natural value).

The point is that these two specifications are not so different: all the logical parts
of a Coq development are eliminated at extraction (the process that produce programs
from Coq scripts). This is not specific to Coq: by nature, logical contents in a formal
development are not computable and have therefore to be discarded in some way before
being able to produce a program. In our case we implement both specifications as follows:

Require Import List.

Variable secret:nat.

5.2. SPECIFYING SECURE SYSTEMS 41

Definition head1(l:list nat)(p:l<>nil):{h:nat|exists l’:list nat , l=h::l’}.

intros [| h l] p.

exists secret; destruct p; apply refl_equal.

exists h; exists l; apply refl_equal.

Defined.

Extraction head1.

Definition head2(l:list nat):{h:nat|l<>nil ->exists l’:list nat , l=h::l’}.

intros [| h l].

exists secret; intros p; destruct p; apply refl_equal.

exists h; intros _; exists l; apply refl_equal.

Defined.

Extraction head2.

Both extractions return the same following OCaml code, where secret is any value the
malicious developer would care to export:

let head∗ = function []→ secret | h :: → h

Example 5.2.7 (Pre-condition and partial specifications) We illustrate the same
concern in B by the specification of a file system manager. We define the sets USR
(users), Fil⊆FIL (files), CNT (contents) and RGT (access rights). Cnt associates for any
file a content, Rgt associates for a user and a file the rights, and cpt gives the number
of existing files. Various operations to create, delete or access the files are assumed to be
specified but are not detailed here, except for read:

MACHINE filesystem
SETS USR;FIL;CNT;RGT={r, w}
CONSTANTS cnul
PROPERTIES cnul∈CNT
VARIABLES Fil,Cnt,Rgt, cpt
INVARIANT Fil⊆FIL∧

Cnt∈Fil→ CNT∧
Rgt⊆(USR×Fil)×RGT∧
cpt=card(Fil)

INITIALISATION Fil :=∅ ‖ Cnt :=∅ ‖ Rgt :=∅ ‖ cpt :=0

OPERATIONS

. . .

out← read(f, u) ,

PRE f ∈Fil ∧ u∈USR THEN

IF ((u 7→f) 7→r)∈Rgt THEN out :=Cnt(f) ELSE out :=cnul
. . .

read is specified as returning the content of a file f, provided that the user u has the right
to read it. Yet it is only partially specified, as we do not describe what happens when the
file does not exist – we have willfully chosen here a confusing naming convention, where
FIL is the set of all possible files and Fil the set of existing files.

Any call of read implemented in B would be associated to a proof obligation to ensure
that the precondition holds, but this goes as far as goes the use of the B. So let us assume
that the following malicious but valid refinement of read is called over a non existing file:

out← read(f, u) ,

IF f ∈Fil THEN

IF ((u 7→f) 7→r)∈Rgt THEN out :=Cnt(f) ELSE out :=cnul
ELSE Fil :=Fil∪{fS} ‖ Cnt :=Cnt∪{fS 7→S} ‖ Rgt :=Rgt∪{(eni 7→fS) 7→r}

42 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

Whereas the specification of read is apparently passive (not modifying the state of the
machine, that is the file system), this refinement creates a file fS storing a (possibly confi-
dential) value S, which is only accessible by an arbitrary user eni invented by the developer.
Furthermore the invariant is broken as fS is created yet not accounted for in cpt, that is
fS is virtually invisible for the file system. Note also that defining the returned value when
the file does not exist is not even required by B; a malicious developer may however prefer
to return cnul for a better obfuscation of its code.

Clearly, a partial specification cannot enforce security, and one should favor a total
(and defensive) specification. In B this would translate into using a IF instead of a PRE.
When the condition associated to an IF substitution is not satisfied, the ELSE branch
is executed – if it is absent it is equivalent to a skip substitution, that is it enforces to
do nothing. On the contrary when the condition associated to a PRE substitution is
not satisfied, there is absolutely no guarantee about the result. Note that the defensive
approach (with redundant checks) is an implementation of the defence in depth concept.

5.2.4 About elusive properties

For our next point, we would like to emphasise that some concepts often encountered in
security can be difficult to express in a formal specification. Confidentiality is a good
example: whereas a formal specification may appear to implicitly provide confidentiality,
one should be extremely careful about its exact meaning, as illustrated by the following
example of a login manager in B.

Example 5.2.8 (Covert channel) The system state is defined by Acc ⊆ USR the ac-
counts, log to identify the currently logged account (nouser encoding the absence of opened
session), and Pwd to associate to any account a password. This last piece of information
is confidential and should not be disclosed. Other operations (not detailed here) allow to
log, exit, create or destroy an account, with only the log operation specified as depending
upon Pwd to implicitly represent the confidentiality of this data. The operation accounts,
detailed here, returns the existing accounts:

MACHINE login
SETS USR;PWD
CONSTANTS root,nouser
PROPERTIES root∈USR ∧ nouser∈USR\{root}
VARIABLES Acc, log,Pwd
INVARIANT

Acc⊆USR ∧ root∈Acc ∧ nouser 6∈Acc ∧ log∈Acc∪{nouser} ∧Pwd∈Acc→PWD
INITIALISATION

Acc :={root} ‖ log :=nouser ‖ Pwd :∈{root}→PWD
OPERATIONS

. . .

out← accounts ,
IF log∈Acc THEN

ANY s WHERE s∈seq(USR) ∧ ran(s)=Acc ∧ size(s)=card(Acc) THEN out :=s

ELSE out :=∅
. . .

Input and output values of operations being not refinable in B (cf. Section 3.1), the type
of the return value of accounts has to be finalised in the specification. In our example, we

5.2. SPECIFYING SECURE SYSTEMS 43

have chosen to implement the set Acc returned by accounts as a list (or sequence in the
B terminology) of values of USR. ran(s)=Acc ensures that the same values appear in Acc
and s, and size(s)=card(Acc) that the length of the list s is equal to the cardinal of Acc. A
possible malicious refinement of accounts is the following one:

out← accounts ,
IF log∈Acc THEN

ANY s WHERE s∈seq(USR) ∧ ran(s)=Acc ∧ size(s)=card(Acc)

THEN IF Pwd(root)<guess THEN out :=sort(s) ELSE out :=rev(sort(s))

ELSE out :=∅

where guess is a new variable controlled by the malicious developer, for example using the
same techniques as for the variable state of the airlock example of Section 5.2.2. Combining
calls to accounts and changes of guess, one can quickly derive Pwd(root) through the
artificial dependency introduced in the returned value.

This example illustrates a covert channel exploit [Lam73], and is derived from similar
concerns discussed in [CSC]. Even if the implementation stores Pwd in a private mem-
ory location protected by a trusted operating system – a rather optimistic assumption
– the confidentiality of this data cannot be guaranteed without a form of control over
dependencies (e.g. considering data-flow analysis).

It is of course possible to impose a complete (or monomorphic) specification – that
is, as discussed in Section 5.2.2, a deterministic specification, enforcing the extensional
behaviour of any implementation. A complete specification would indeed not let any
freedom to the developer and thus would ensure that there is no covert channel to be
exploited. In our example, a complete specification would for example require s to be
sorted in ascending order.

This is however an impractical technical solution, an indirect mean to ensure confi-
dentiality; indeed it does not address the real cause, which is the introduction of unex-
pected dependencies. And as mentionned earlier, we are not really convinced either by
the obligation to produce only deterministic specifications. Furthermore completeness is
not expressible in the B specification language (or in most languages considered in this
memoir), is generally undecidable and, last but not least, is not stable by refinement of
the representation of the data – e.g. refining a set by an ordered structure.

Example 5.2.9 (Timed channels and transient states) It is possible to better con-
trol dependencies in B by specifying operations using constant functions. The following
modified specification claims that the operation accounts behaves like a function depending
only upon the set Acc and returning a list of values of USR:

CONSTANTS . . . , fct
PROPERTIES . . . ∧ fct∈P(USR)→seq(USR)

OPERATIONS

out← accounts ,
IF log∈Acc THEN out := fct(Acc) ELSE out :=∅

This approach is not yet fully satisfactory as only the dependencies for the result are
described (that is the extensional point of view). It is therefore still possible to affect the
behaviour of accounts according to the value of Pwd(root), as in this refinement:

out← accounts ,
out := encode(Pwd(root));
IF Pwd(root)<guess THEN wait(10) ELSE wait(20);

IF log∈Acc THEN out := fct(Acc) ELSE out :=∅

44 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

In this refinement the malicious developer implements both a timed channel and a possibly
observable transient state of the output.

To illustrate situations in which transient states can be observed, think about an
electronic device with a parallel bus: values are encoded on different pins (wires), and
are validated when stabilised by a signal on an additional pin. The protocol is such that
transient values are ignored, because they are normally meaningless; yet this can be used
as a channel to export data.

These examples are just intended to show why, in some cases, expressing confidentiality
can be difficult. For such properties, complementary approaches should be considered,
based e.g. on dependency calculus, non-interference, computation of bounds [ABHR99,
GM92, JLH+09], and associated to standard code review.

Note that confidentiality is often formally addressed in deductive formal methods
through access control (or flow control) enforced by monitor (as defined by the Orange
Book, cf. Chapter 4), a mechanism filtering requests, for example access controllers,
micro-kernels, and so on (cf. [BCM07, Had07, HHGB07]). Such a monitor can itself
implement this type of covert channel attacks if it is poorly specified. Furthermore, the
confidence in a system implementing a monitor relies on the confidence in the information
used by this monitor, such as the source of an access request (that would require a form of
authentication) as well as the level of protection required by the accessed object (a meta-
information whose origin is generally unclear, but for which effective implementations such
as security labels protected in integrity have been proposed).

Authentication and integrity, mentionned just before, point out another source of
rather elusive properties, that is the characterisation of cryptographic functions.

Example 5.2.10 (Cryptographic hash function) A (cryptographic) hash function H

is a function in W→W such that:

- given h it is not possible to find x s.t. H(x)=h (first pre-image resistance);

- given x it is not possible to find y 6=x s.t. H(x)=H(y) (second pre-image resistance);

- it is not possible to find x 6=y s.t. H(x)=H(y) (collision resistance).

The first property, for example, guarantees the security of the Unix login scheme. Be-
ing able to specify a hash function (without giving any details on its implementation) by
formally describing these properties has therefore some interest to certify such a scheme.

Yet these properties appear to be rather difficult to express formally. A naive transla-
tion of the last property would just say that H is injective, which is false (as H projects
an infinite set in a finite set of binary words of fixed length) and would lead to an in-
consistent specification. Formally expressing such properties is possible, but generally less
straightforward than one may expect.

A possible solution is to express a form of theory of knowledge (or of deducibility,
computability, etc.) [DY81, CM06b] using for example inductive predicates in Coq, as
illustrated here for the hash function used to store protected passwords in a public file:

Variable Subject:Set.

Inductive Data:Set:=

| Pwd:Subject ->Data (* Password of a subject *)

| Hsh:Data ->Data. (* Hash function *)

Inductive Know:Subject ->Data ->Prop:=

5.2. SPECIFYING SECURE SYSTEMS 45

| Know_Pwd:forall (s:Subject), Know s (Pwd s)

| Know_Hsh:forall (s:Subject)(d:Data), Know s d->Know s (Hsh d)

| Know_Str:forall (s1 s2:Subject)(d:Data), Know s1 d->Know s2 (Hsh d).

Notation "s ’knows ’ d":=(Know s d) (no associativity , at level 20).

Theorem Hash_Pwd:forall (s1 s2:Subject)(d:Data), s2 knows (Hsh (Pwd s1)).

Proof.

intros s1 s2 d; apply Know_Str with (s1:=s1); apply Know_Pwd.

Qed.

Theorem Pwd_Safe:forall (s1 s2:Subject), s2 knows (Pwd s1)->s1=s2.

Proof.

intros s1 s2 H; inversion_clear H; apply refl_equal.

Qed.

We use an abstract Subject to represent the users, and an inductive type Data for the
information that can be manipulated by the users – reduced here to a password for each
user, and the possibility to produce new data by hashing previous data. The induction
relation Know then describes which information are known by which users. Know Pwd
indicates that any user knows its own password, Know Hsh that any user that knows an
information is able to compute the hash of this information, and Know Str that any user
that knows an information stores the hash of this information in a file that can be read
by any other user. The theorem Hash Pwd confirms that any user knows the hash of the
password of any user, but the theorem Pwd Safe also indicates that each user only knows
its own password.

We use here a form of closure reasoning: to indicate that something is impossible, we
describe a closed universe of possibilities that does not include what is impossible – or just
unreasonnably difficult. That is, this type of modelisation is fundamentally relying on the
fact that inductive definitions are such that the constructors are surjective: they do not
include any other term than those derivable.

Note that in this representation of the Unix scheme, we just describe a form of protocol,
that is the security policy. This is not, in its current form, a specification that can be refined
into a proven implementation.

Furthermore, this type of modelisation has to be developed with the support of experts,
because it is very efficient in describing what is possible and what is not – and may therefore
mask some forms of attacks by being overoptimistic. To take a simple example, consider
the modelisation of an asymmetrical cryptographic scheme: only the private key Kpriv can
decipher the message M ciphered by the public key Kpub , denoted {M, Kpub}. That is, Kpub

is considered non sensitive, and can be published, whereas Kpriv is kept in confidence;
anybody can cipher a message using Kpub , but only the owner of Kpriv can decipher it.

Does that mean that when sending {M, Kpub} we are sure that an attacker not knowing
Kpriv will not be able to decide the value of M? Not really; even admitting the robustness
of the cryptographic scheme, it still depends on other implicit hypotheses such as the
entropy of the message space. That is, if the attacker knows that the message is in a
relatively small space (for example a date), it can exhaustively generate all the possible
candidates M ′, cipher them with Kpub and compare the result with {M, Kpub}. This attack
will only be detectable in a formal model if the theory gives to the attacker the knowledge
of some of the possible messages and the ability to compare ciphertexts. It is not specific
to formal methods; in fact, as for safety analyses which consider possible feared events,
security analyses are based on a model of the attackers.

46 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

5.2.5 About the refinement paradox

Most of the examples detailed in Sections 5.2.2-5.2.4 are illustrations of what is often
referred to as the Refinement Paradox, that is generally summarised by the fact that some
properties are preserved by refinement, but others are not. We explore more in detail
this question in the next chapter, by providing a framework presenting a generic form of
refinement to identify the genuine origin of these difficulties.

5.3 Building on sand?

In Section 5.2.1, we have shown possible consequences of inconsistent specifications. Obvi-
ously similar or worse consequences can result from other sources of inconsistencies, such
as a bug in the tool implementing the formal method, or a mistake in the theory of the
formal method itself.

Indeed, for a malicious developer, a paradox (a flaw in the logic that can be used to
prove at the same time both P and ¬P) discovered in a theory or in a tool can be used to
prove any property about any development, that is to implement any unpleasant behaviour
while getting a certification.

When trying to assess the level of confidence one may have in the result of a formal
development, the question of the validity of the tool and of the theory should therefore be
addressed.

5.3.1 Consistency of the logic

The question of the consistency of a logic, or more generally of the validity of a theory
or a method, is tricky to tackle. It requires at best a long and technical analysis. This
type of problem is addressed for example in [Bar99] for Coq, or in [Cha98, BFM99,
Bur00, BBM98] for the B method. Regarding the latters, it has indeed emphasised various
concerns.

In Chapter 7 we describe such a detailed review of the B logic that we have conducted
through the development of a deep embedding in Coq; we just summarise here a few facts.

While this deep embedding has not identified any paradox (and noting that the con-
sistency of the B logic has not been proven either), it has shown various concerns. Some
of the proofs provided in the B-Book [Abr96] are not valid, but more importantly some
of the so-called theorems are not provable at all. Being apparently trivial, they have never
been checked and have been integrated for example in provers for the B logic. That means,
at a fundamental level, that these results were in fact taken as additional axioms, without
people knowing it – an approach that could create a paradox in the logic.

Even for Coq, respecting the de Bruijn criterion, it should be noted that the combina-
tion of certain standard libraries and/or options can lead to an inconsistent theory. This
is for example the case when the option for making the sort Set impredicative is used in
conjunction with some standard axioms or libraries of classical mathematics.

5.3.2 Validity of the tools

Beyond the concerns about the theory, one may also question the validity of the tool
implementing a formal method. For example a prover can be incomplete (unable to prove
results valid in the theory) or incorrect (able to prove results unprovable in the theory),
the latter being more worrying, at least from the evaluation and certification perspective

5.3. BUILDING ON SAND? 47

in the field of safe or secure systems, as it may lead to an artificial paradox. And indeed
such paradoxes have been discovered in well established tools.

Example 5.3.1 (A paradox for the B) This sort of problem has for example been en-
countered in the AtelierB toolkit. The prover of this environment does not implement
exactly the B logic but a simplified version, for the sake of optimisation. For example, the
rule for comprehension sets defined in [Abr96]:

E∈{x | x∈S ∧ P}⇔E∈S ∧ [x := E]P provided x\S

where x\S means x does not appear free in S, is apparently modified as follows:

E∈{x | P} ⇔ [x := E]P

This simplification is valid provided the verification of well-formedness has been successful:
the B-Book requires comprehension sets to be of the form {x|x∈S∧P}, with x not free in S.
And indeed, well-formedness checking is done on the machine description before entering
the prover. However, as far as we know, well-formedness checking is not required during
proof and is indeed not done in the prover of AtelierB and B4Free, at least with the
default configuration4.

We mention this fact because unfortunately, B well-formedness is not preserved during
proof. Let us consider a B inference rule:

A1 A2 . . . An

C
S

where A1, . . . , An are the antecedents, C is the consequence and S is a possible side condi-
tion (in other words A1, . . . , An and C are sequents of the B logic but S is not, for example
x\P). Such a rule can be applied backward during proof, that is C is the proof obligation
which is assumed to be well-formed, and A1, . . . , An are the subgoals generated by the
application of the rule. The question is therefore to know if ill-formed antecedents can lead
to well-formed consequences. Considering first a simple example, the conjonction, we can
put in parallel the inference rule Cnj and one of the well-formedness checking rule:

Γ`P1 Γ`P2

Γ`P1∧P2

check(P1) check(P2)

check(P1∧P2)

Well-formedness is clearly preserved by the application of the Cnj rule. However, consid-
ering the whole list of B inference rules as well as the complete well-formedness checking,
for example the Mp, Case and Gen rules appear to be potentially problematic:

Γ`P Γ`P⇒Q

Γ`Q

Γ`P1∨P2 Γ`P1⇒Q Γ`P2⇒Q

Γ`Q

Γ`P

Γ`∀ x·P
x\Γ

For the first two rules, the problem is that the backward application of the rule introduces
new terms; a side condition such as check(P) is missing. For the third rule, there is a
subtle difficulty due to the fact that the variable x is not free in Γ but may be in P [Jae05].

4AtelierB offers an option to check well-formedness, ATB∗PR∗Enable TC Command : True,
but we have not experimented it; a possible concern associated to the activation of this option is a lost of
completeness, that is the impossiblity of prove valid (and necessary) results.

48 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

Having noted this difficulty with well-formedness checking, it is possible to introduce
Russell’s paradox during any proof of AtelierB and B4Free (with the default configu-
ration) as follows:

ah({x | x 6∈x}∈{x | x 6∈x} ⇒ {x | x 6∈x} 6∈{x | x 6∈x})
rn

ah({x | x 6∈x} 6∈{x | x 6∈x} ⇒ {x | x 6∈x}∈{x | x 6∈x})
rn

ax({x | x 6∈x})
dc(xx∈xx)

The command ah introduces a new hypothesis that has to be proven; we use here the
command rn, which is a very simple tactic, to discharge the associated proof obligations.
The command ax then replaces all occurrences of {x | x 6∈ x} by an identifier (here xx), to
avoid later unfoldings of this expression. It is then possible to invoke dc to make a proof
by cases on whether this comprehension set belongs to itself or not.

In essence, we use a cut and a proof by cases, that is we exploit the weakness identi-
fied with Mp and Case by introducing an ill-formed term to allow for the generation of
contradictory hypotheses: the set R={x | x 6∈x} is such that R∈R⇔ R 6∈R.

This justifies the development of proven tools, or at least of mastered tools, that is
tools whose deviations with regard to the theory of the formal method are identified,
documented and understood. Clearly, implementing a formal method is a difficult task,
dealing not only with completeness, correctness, but also with performance, automation,
and ergonomy. In our view, the existence of bugs or simplifications in a tool does not
mean that it should not be used, but that the provided results should be considered
with some care, and possibly verified during evaluation, either by manual review or using
other mechanisms – for example a prover respecting the de Bruijn criterion, that is whose
correctness relies on a small mastered kernel (as the type-checker core of Coq, cf. also the
related discussion in [ABM01]).

The problem of the development of mechanically checked (or trusted) tool for formal
methods is addressed for example by [RM05] for a first-order logic. As far as the B method
is concerned, a trusted B prover, implemented as a rewriting system, is described in [CK98],
and [Cha98] discusses the development of a mechanically checked B proof obligations
generator. We should also mention [BDFF04], that does not address the development of a
tool but the verification of the so-called base rules, that is deduction rules used (admitted)
by the prover of AtelierB.

The development of mechanically checked tools for the B logic is also addressed in
Chapter 7, using the same deep embedding that has helped us to study the validity of the
B logic, as described in the previous paragraph.

5.3.3 Mastering the tools

Provided a tool correctly implementing a valid theory, there may still be traps for the
developers or the evaluators, due to a lack of knowledge of the tools that are used.

For example, AtelierB uses a technique to simplify proofs (and optimise automation)
by deferring the verification of side conditions ensuring the validity of definitions. The tool
generates so-called Delta Lemmas [Bur00, BBM98] that are put aside to be proven later;
until these proof obligations are discharged, there is no assurance about the validity of the
proofs already developed.

5.3. BUILDING ON SAND? 49

In the previous versions of AtelierB, the delta lemmas were not accounted for in the
advancement of the project; that is, a “100%” proven status was possible without having
proven the delta lemmas. A typical trap was to forget those proof obligations.

Coq has also some behaviours that can appear surprising for unwarned users. For
example, it is possible in some specific situations to have a proof “succeeding”, but not
type-checkable. Coq indeed checks the validity at the execution of Qed or Defined, and a
proof should never be considered complete until it is closed by one of these commands.

The second example is related to the behaviour of Coq when parsing comments, that
can be used by a malicious developer as a trick to obfuscate code and proofs. Indeed it
is possible to open strings in comments, that is a character “ " ” will start a string that
terminates only at the next appearance of the same symbol; between these two occurrences,
it is not possible to open or close comments. This can be used to abuse an independant
evaluator; consider for example the following code5:

Variable States:Set.

Variable Progress:States ->States ->Prop.

Variable Is_Secure:States ->Prop.

(* This is the security proof required , where x" is the final state *)

Theorem system_secure:forall (x x’’:nat),

Is_Secure x->Progress x x’’->Is_Secure x’’.

Proof.

intros x x’’ Hx Hprg; trivial.

Qed.

(* Thanks to an enriched hint database about Progress x x" *)

(* Ancient version without hints about Progress x x" *)

(* REMOVED =================

(* An axiom about security of x" w.r.t. the security of x *)

Axiom system_secure:forall (x x’’:States),

Is_Secure x->Progress x x’’->Is_Secure x’’.

(* Will have to check one day , may not be true for any x" *)

property about Progress x x" now proved ========= END OF REMOVED PART *)

A reader can incorrectly assume that the theorem system_secure has been proven, while
it is in fact an axiom. Note that the syntactical coloration of some tools for editing Coq
code, such as CoqIde which is part of the standard Coq installation package, does not
take into account the possibility of having strings in comments. That is, a reviewer can
successfully compile the previous code with the command coqc and check the content with
CoqIde, this tool showing the first version of system_secure as code and the second version
as a comment. Fortunately, it is still possible to use the command Print Assumptions T to
require Coq to identify all axioms and assumed theorems on which T depends.

5.3.4 Further leaps of faith

Our investigations have emphasised other forms of subtile glitches that may appear in the
theory of a formal method. As pointed out, deductive formal methods allow for multiple
descriptions of a system as well as the verification of the similarity of these descriptions
through the formalisation of the concept of refinement. This is sometimes obtained by
defining several semantics for a single construct.

5Derived from a code sent on the Coq mailing list as an April’s fool joke.

50 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

This is for example the case with B, in which the substitutions of the Gsl (used to
describe operations) are defined as predicate transformers, that is a logical semantic. On
the other hand the substitutions of the B0 sub-language are used for implementation and
also have an operational semantic – the translation of B0 constructs into for example C,
which is merely a syntactical one. Problems may appear when these semantics are not
totally consistent, as illustrated by the following example.

Example 5.3.2 (Non consistent semantics for the Gsl) The WHILE B0 substitu-
tion has two semantics. The first one presents this substitution as a predicate transformer:

266664
WHILE P

DO S

INVARIANT I

VARIANT V

377775 R ⇔

0BBBBBB@
I

∧ ∀ x · (I ∧ P ⇒ [S]I)

∧ ∀ x · (I ⇒ V ∈ N)

∧ ∀ x · (I ∧ P ⇒ [n := V][S](V < n))

∧ ∀ x · (I ∧ ¬P ⇒ R)

1CCCCCCA

The second semantic is given by the translation into a C program, for example. By
denoting J K the translation producing a C program from a B0 substitution, this operational
semantic is defined by:

u

wwww
v

WHILE P

DO S

INVARIANT I

VARIANT V

}

����
~

= while JP K{JSK}

The interesting point is that this last semantic discards I (the loop invariant) and V (the
loop variant) that are pure logical contents. The variant is important to prove termination,
and the invariant appears as a form of lemma usable within proofs about such a loop. Both
are irrelevant for the execution; more specifically modifying the invariant does not change
the program (the operational semantic).

The WHILE substitution is illustrated in the B-Book by the extraction of the minimum
of a non-empty set of natural values:

x :=0;

WHILE x 6∈S

DO x :=x+1

INVARIANT x∈ [0,min(S)]

VARIANT min(S)−x

END

Using the definition of the WHILE substitution as a predicate transformer, one can indeed
show that this substitution realises (that is, transforms into a tautology) the predicate

5.3. BUILDING ON SAND? 51

x=min(S), as follows:26666666664

x :=0;

WHILE x 6∈S

DO x :=x+1

INVARIANT x∈ [0,min(S)]

VARIANT min(S)−x

37777777775
x=min(S) ⇔

h
x :=0

i
266664

WHILE x 6∈S

DO x :=x+1

INVARIANT x∈ [0,min(S)]

VARIANT min(S)−x

377775 x=min(S) ⇔

h
x :=0

i
0BBBBBB@

x∈ [0,min(S)]

∧ ∀x·(x∈ [0,min(S)] ∧ x 6∈S ⇒ [x :=x+1]x∈ [0,min(S)])

∧ ∀x·(x∈ [0,min(S)]⇒min(S)−x ∈ N)

∧ ∀x·(x∈ [0,min(S)] ∧ x 6∈S ⇒ [n := min(S)−x][x :=x+1](min(S)−x < n))

∧ ∀x·(x∈ [0,min(S)] ∧ ¬x 6∈S ⇒ x=min(S))

1CCCCCCA
After reductions and simplifications, we finally got:0BBBBBB@

0∈ [0,min(S)]

∧ ∀x·x∈ [0,min(S)] ∧ x 6∈S ⇒ x+1∈ [0,min(S)]

∧ ∀x·x∈ [0,min(S)]⇒min(S)−x ∈ N
∧ ∀x·x∈ [0,min(S)] ∧ x 6∈S ⇒min(S)−x−1 < min(S)−x

∧ ∀x·x∈ [0,min(S)] ∧ x∈S ⇒ x=min(S)

1CCCCCCA
which is a tautology. In other words the substitution is indeed proven to extract the mini-
mum in any case of use (provided S 6=∅).

As noted, changing the invariant of this substitution does not change the operational
semantic, that is it still produces the same program extracting the minimum. Therefore
the associated impact on the logical semantic is expected to be limited; indeed, this logical
semantic describes what can be claimed about the program. So the worst case situation,
in our view, should be that the modification of the invariant prevents to prove that the
program extracts the minimum.

However, if for example we replace the invariant by x ∈ N – which is less precise but
still correct – the logical semantic is in fact radically modified:0BBBBBB@

0∈N
∧ ∀x·x∈N ∧ x 6∈S ⇒ x+1∈N
∧ ∀x·x∈N⇒min(S)−x ∈ N
∧ ∀x·x∈N ∧ x 6∈S ⇒min(S)−x−1 < min(S)−x

∧ ∀x·x∈N ∧ x∈S ⇒ x=min(S)

1CCCCCCA
Here, it is possible to refute the third and fifth lines, and therefore the whole predicate. Our
analysis is that such a refutation is a proof that the substitution is not always extracting
the minimum, a rather strange conclusion, as both versions describe the same program.

Further investigations on this example [Mus05] show that the derivation of the WHILE

semantics from a fixpoint operator on substitutions, detailed in the B-Book, can be re-
viewed and improved to avoid such problems. That is, our concerns are indeed symptomatic
of an oversight in the theory, that can be easily corrected.

52 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

We have also identified a similar concern with Coq and FoCaLize. In Coq there
is a single language, mixing logical and computational constructs, the extraction mech-
anism allowing for the elimination of the formers to derive from the latters a program
in a functional language. In FoCaLize, one can consider that the constructs have two
semantics, a logical one and an operational one. These semantics are produced by the
compiler producing a Coq file for the logical side, and an OCaml file for the operational
side. Both suffer from the same glitch with regard to inductive types, detailed hereafter:

Example 5.3.3 (Non consistent semantics for inductive types) As already pointed
out in Section 5.2.1, an inductive definition such as the following one, lacking an atomic
constructor, represents in Coq an empty type:

Inductive E :Set :=nxt :E→E

Emptyness is not, by itself, inconsistent but makes possible to prove any result of the form
∀ (e : E), P . This definition, when extracted from Coq or compiled by FoCaLize, is a
straightforward translation into OCaml, type E = Nxt of E. The interesting point is that
this OCaml type is not empty, as it contains for example the (recursive) value defined
by let rec e= Nxt e. This makes possible to use a program extracted from a fully certified
Coq or FoCaLize library with unexpected (and therefore unwanted) behaviours.

More generally, an inductive type in Coq and its operational counterpart in Ml (or at
least in OCaml) are not exactly of the same nature, as the latter also includes recursive
values; so for example let rec n=S n is accepted as a value of N, and let rec l=0::l as
a value of list N. Such values can cause non termination of proven functions, provide
counter-examples to the injectivity of constructors, and so on.

It is not an easy task to detect this type of glitches. In essence, it requires to check
the consistency of the various semantics of the constructs, and the validity of the applied
transformations; that is, for the example of the B, to embed both the logical semantics of
the B as well as the operational semantics of the C, which seems to be a tremendous task.

It is beyond the scope of this memoir to further discuss these questions, once noted
that any such bias is a potential weakness usable by a malicious developer (or a trap for
an honest but inattentive developer). Again, these remarks are not intended to criticize
the tremendous work represented by the full development of the theories supporting for-
mal methods. They however justify the interest in mechanically checking such theories,
pursuing works described e.g. in [Cha98, BFM99, Bar99]. Such problems are rare, and
they can be identified by a careful review; from the security perspective, the important
point is that independant evaluators are informed of any relevant problem.

Note also that for example in the case of software development, the glitches identified
just before are at the border between the formal vision and the actual implementation. If
we look just a little further, there are still a lot of other elements to trust: the compiler
that will translate the produced code into an executable, the operating system, the micro-
processor, and so on6. That is, we have to admit that whereas we can improve confidence,
there will ever be leaps of faith. It is our view that any effort to improve confidence in
system development should consider a form of cost to efficiency ratio.

5.4 Stepping out of the model

We have discussed at length some of the concerns regarding the formal development of
secure systems, by considering the consequences of paradoxes in the theory, of bugs in

6Are you suspicious about the laws of physics, or at least their modelisation?

5.4. STEPPING OUT OF THE MODEL 53

the tools or more simply of inadequate specifications. Let us now assume an ideal world,
in which we have been able to produce a consistent specification with security properties
correctly expressed, and a compliant implementation whose all proof obligations have been
discharged, using a well-established formal method and a trusted tool – that is, we finally
have a proven security.

That does not mean however that the system is secure, but that any attack has to
contradict at least one of the hypotheses – an excellent heuristic for those willing to attack
formally validated systems. Preconditions, for example, are a form of hypotheses whose
violation can be devastating, as illustrated in Section 5.2.3. But one should take care also
to identify all the implicit hypotheses when developing a system or evaluating its security.
Such implicit hypotheses are not only those that are introduced by the formal method (cf.
Section 5.2.1), but also those that are related to the modelisation choices themselves.

5.4.1 About closure

A frequent implicit hypothesis is related to the use of closure proofs. For example, proving
a B machine requires proving the preservation of its invariant by any of its operations.
Similarly, the Coq modelisation of the Unix password protection scheme in Section 5.2.4
is also based on a closure, this time related to the use of inductive definitions: we describe
all the possible actions. The requirement for a security monitor to be unavoidable is also
a way to allow for closure reasoning, as it is then sufficient to show that the monitor is
valid to ensure security.

This is justified if there is no other way to influence the system state than the provided
operations. It is a typical assumption with smartcards, that offer a well-defined and well-
delimited physical and logical interface [SL00] or with microkernels [KEH+09, HHGB07].

As a formal counterexample, this type of reasoning is not possible on FoCaLize
species, as they can be enriched during inheritance with new methods. That is, it is not
possible to prove invariant preservation, and such a proof would whatever be invalidated
at inheritance, in the absence of a dedicated refinement construct.

But more generally, the extent to which the closure hypotheses are enforced in the
real systems has to be carefully assessed. Threats considered during security analyses may
reflect actions that are not in the model (data stored in files by proven applications can
be modified by other applications, signals in electronic circuits can be jammed by fault
injection [CP95, BDL01], etc). There is no silver bullet to tackle this problem, but possible
approaches include defensive style programming, redundancy, dysfunctional considerations
(e.g. by modelling errors such as unexpected values or inconsistent states), and the use
of cryptography as a reification – or realisation – of “impossibility” requirements. For
example, if we want to make sure that a proven program operates only on files that it has
produced and that have not been modified in the meantime, it may be relevant to consider
the signature of such files, the verification of this signature being encoded as a guard in
the proven program.

A (partial) solution to further explore in the domain of formal methods would be the
conservation of the formal specification, usually discarded after having been proven. It
could indeed be useful for critical systems subject to such agressions to use the specification
for the generation of runtime checks (for example using assertion mechanisms). Again,
this would correspond to adopting the defensive approach, using guards. The generation
of these guards can for example be ensured by using test generation tools, such as in
[CD08, JL07], but reintroducing the produced oracle in the implementation, for example
as a built-in monitor.

54 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

5.4.2 About typing

A second example of implicit hypotheses, generally much less obvious, is related to the
use of types. An adequate use of types in a specification (for example modelling Ip
addresses and ports as values of abstract sets rather than natural values) ensures that
some forms of error will be automatically detected (such as using a port where an address
is expected). But it is also important to understand how strong an hypothesis it is, and
how easily it can be violated. Indeed, types are generally a logical information discarded
during implementation or extraction. This is the case with programming languages offering
static type-checking: types just disappear at compilation. So, while ill-typed operation
calls cannot be considered during formal analyses, which are type-aware, they are in some
cases executable. Types in this case represent just another form of unjustified closure.

Example 5.4.1 (Pkcs#11 attack) A typical example is provided in [Clu03], describing
a flaw in the Pkcs#11 API for cryptographic resources. To illustrate the principle, con-
sider a central authority (e.g. a bank) distributing cryptographic resources to customers.
Such resources can perform cryptographic operations, for example:

- C←cipher(M, K) to cipher the message M with the key numbered K, or

- M←uncipher(C, K) for the inverse operation.

The resource never discloses keys to the customer, but permits exchange of keys with other
resources through export of wrapped (that is cyphered) keys using:

- D← export(K, W) where K is the number of the exported key and W the number of
the wrapping key, and

- import(D, W, K) for the inverse operation (that stores internally the unwrapped key
under number K without disclosing it).

In a model where cyphertexts and wrapped keys are of different types, one can prove
that no sequence of calls will disclose a sensitive key. Unfortunately the implementations
of cyphertexts and wrapped keys are indistinguishable, and stored keys are not tagged with
their role. It is so possible to disclose a key K with the following (ill-typed) sequence:

D←export(K, W) ; M←uncipher(D, W)

The following Coq code captures a simplified version of this problem:

Variable Key_Id:Set.

Inductive Data:Set :=

| msg:Data

| key:Key_Id ->Data

| ciph:Data ->Key_Id ->Data

| wrap:Key_Id ->Key_Id ->Data.

Inductive Knows:Data ->Prop :=

| message:Knows msg

| cipher:forall (d:Data)(k:Key_Id), Knows d->Knows (ciph d k)

| uncipher:forall (d:Data)(k:Key_Id), Knows (ciph d k)->Knows d

| export:forall (k1 k2:Key_Id), Knows (wrap k1 k2).

Theorem cipher_wrap:forall (k1 k2 k3:Key_Id), Knows (ciph (wrap k1 k2) k3).

Proof.

5.4. STEPPING OUT OF THE MODEL 55

intros k1 k2 k3; apply cipher; apply export.

Qed.

Inductive Unreachable:Data ->Set:=

| start:forall (k:Key_Id), Unreachable (key k)

| loop:forall (d:Data), Unreachable d->

forall (k:Key_Id), Unreachable (ciph d k).

Theorem unreachable_safe:forall (d:Data), Knows d->Unreachable d->False.

Proof.

intros d HK; induction HK; intros HU; inversion HU.

apply (IHHK H0).

apply IHHK; apply loop; apply HU.

apply IHHK; apply loop; apply HU.

Qed.

Theorem key_safe:forall (k:Key_Id), ~Knows (key k).

Proof.

intros k Hk; apply (unreachable_safe _ Hk); apply start.

Qed.

We first introduce Key_Id as the type of key identifiers used by the resource; for example it
can be any natural value between 0 and 255. We then define the generic type Data containing
a message, all the keys known by a resource, all the ciphered data, and all the wrapped
keys. The inductive predicate Knows then defines the data that a user knows or can derive
using the resource. We assume the user knows the message, that if he knows a data then
he can cipher it with the resource, if he knows a ciphertext then he can decipher it with
the resource, and finally he can export any wrapped key. Provided these definitions, the
theorem key_safe proves that the user is never able to get a key (the predicate Unreachable

and the theorem unreachable_safe are just irrelevant proof tricks).
As mentionned, this result can however be questioned in the real world, provided a

very important hypothesis does not hold: that fact that ciph (key k1) k2 and wrap k1 k2 are
distinguishable terms, as it is the case in the model. If on the contrary wrap k1 k2 can be
confused with ciph (key k1) k2 through a form of cast, we can modify our code as follows
and prove that indeed all the keys of the resource can be derived by the user:

Variable Key_Id:Set.

Inductive Data:Set :=

| msg:Data

| key:Key_Id ->Data

| ciph:Data ->Key_Id ->Data

| wrap:Key_Id ->Key_Id ->Data.

Variable cast:Data ->Data.

Hypothesis cast_wrap:forall (k1 k2:Key_Id),

cast(wrap k1 k2)=ciph (key k1) k2.

Inductive Knows:Data ->Prop :=

| message:Knows msg

| cipher:forall (d:Data)(k:Key_Id), Knows d->Knows (ciph d k)

| uncipher:forall (d:Data)(k:Key_Id), Knows (ciph d k)->Knows d

| export:forall (k1 k2:Key_Id), Knows (wrap k1 k2)

| cheat:forall (d:Data), Knows d->Knows (cast d).

Theorem key_unsafe:forall (k1 k2:Key_Id), Knows (key k1).

Proof.

56 CHAPTER 5. REMARKS ABOUT FORMAL METHODS AND SECURITY

intros k1 k2; apply uncipher with (k:=k2); rewrite <- cast_wrap;

apply cheat; apply export.

Qed.

This demonstrates that it is important to identify implicit hypotheses associated to
the use of types to detect possible consequences of type violations, or to maintain type
information in the implementation to prevent such attack. This is for example done in
Java, but for different reasons (the type system is not statically decidable), and what-
ever the mechanism may not be as robust as expected; a better approach would be to
only manipulate critical information in the form of blobs associating values and types
(as well as other meta-information [BC06]), whose integrity is ensured by immuability or
cryptographic mechanisms detecting unauthorised modifications.

5.5 Reminder

We discuss in this chapter the difficulties related to the development of secure systems using
deductive formal methods. We consider inadequate specifications, misunderstandings,
elusive properties, theoretical flaws or bugs in the tools, and finally unrealised assumptions.

It could seem that the reputation of formal methods to develop correct systems is
overestimated. This is not our message.

We consider that formal methods are very efficient tools to obtain high level of as-
surance and confidence for the development of systems in general, and of secure systems
in particular. It should be noted that vulnerabilities affecting today’s systems are mostly
resulting from implementation errors that could be erradicated by the proper use of formal
methods – consider for example buffer overflows (that is out-of-bounds accesses to arrays)
and associated arbitrary code executions.

Yet to fully benefit from formal methods, one has to understand their strengths but also
their limits. Pretending that proven secure systems are perfectly secure is nothing more
than a renewed version of the first myth about formal methods pointed out in [Hal90], and
is to the least inadequate; in fact, we consider that such a claim is detrimental to formal
methods. Taking this into account, we expect the discussions in this chapter to be of some
help for:

- Improving the quality of formal specifications and developments of secure systems
by providing warnings and clarifications to non expert users;

- Identifying important check points for a non expert evaluator facing a formal devel-
opment during a certification process;

- Assessing the level and the scope of confidence derived from formal developments;

- Promoting combined approaches, associating the use of deductive formal methods
with other visions (for example dataflow analysis), to increase the level and the scope
of confidence;

- Considering additional mechanisms for existing formal tools to favour better and
easier developments.

More generally, a formal development often benefits from the cooperation between experts,
associating field knowledge as well as formal method experience. The process of the
derivation of the formal specification has to be recorded in the appropriate documents,
emphasising modelisation choices, hypotheses and limits in the scope.

Chapter 6

A Study of the Concept of
Refinement

Various concepts of refinement are present and explicit in many formal methods; whereas
they generally describe approaches to incrementally implement a system by providing
additional details, they still represent numerous very different notions, e.g. refining events
or states [Jos88, AL91, Lam02, ACM05] (see also [GFL05] for a survey).

In this memoir, we focus on the logic-based refinements used in deductive formal meth-
ods that are frequently applied for safety and security systems. This of course includes well
known notions of explicit refinements, such as those of Z or B– in which they are formally
defined and used to structure developments – but also the implicit notions of refinement
that can appear in any other deductive formal method; we therefore consider the process
undergoing during specification-driven development, encompassing for example choosing
or changing data representations, and describing algorithms, while ensuring correctness.

As illustrated in Chapter 5, a poor understanding of the concept of refinement can
lead to inadequate developments – resulting for example in systems that are potentially
unsafe or unsecure. It is indeed quite easy to give to a specification a meaning which is
not exactly its genuine formal semantics, a problem often referred to as the Refinement
Paradox. The B refinement for example is based on very elegant semantics of substitution
as predicate transformers, but appears in some cases rather tricky to master; this is one
of the main motivations of the discussions in this chapter.

With the objectives of simplicity and genericity, we introduce a simple representation
of refinement to highlight interesting facts, and to reason about its applications. Note
that most of the discussions of this chapter are associated to a formal development in
Coq to prevent oversights. The B method, in which refinement is an explicit and central
concept, is used as a guide to define this generic vision, and Coq and FoCaLize are
considered as significantly different alternatives. Beyond emphasising common principles,
one of our objectives is to identify tools and methodologies relevant for safety and security
developments, applicable in FoCaLize or in other methods.

6.1 An informal description of refinement

6.1.1 About specifications

The starting point for V-cycle formal developments is the specification written in a formal
language. As indicated previously, ideally it describes what is needed instead of how it is
obtained, i.e. it is declarative rather than operational. The specification has to adopt a

57

58 CHAPTER 6. GENERIC REFINEMENTS

high-level perspective, preferably using abstract concepts. It can also be non-deterministic
– that is a form of “don’t care” situation, not to be mistaken with randomness.

It is indeed recognised as a good engineering practice to only specify what is needed,
possibly leading to non-deterministic specifications, e.g. just requiring a function to return
a value in a given range. Enforcing artificially deterministic specifications is generally
inappropriate, restricting possible reuses or optimisations, and is much more likely to lead
to inconsistent specifications.

6.1.2 Expected properties of a refinement

Fundamentally, refinement is a similarity relation between descriptions of a system (such
as specifications and implementations) to prove correctness in specification-driven devel-
opments. This similarity ensures that system properties appearing in the specification are
indeed satisfied by the implementation. That is, correctness is guaranteed by preservation
of the description properties.

Yet it is important to understand that refinement has to be blind to some aspects of
descriptions. We do not expect refinement to preserve all properties, as it would reduce
refinement’s similarity to equality, preventing modifications required during development.
On the contrary refinement has to relate very different descriptions of a system from
high-level, abstract, declarative, non-deterministic specifications to detailed, concrete, op-
erational deterministic implementations.

Several forms of properties are indeed (implicitly) ignored, thanks to the use of appro-
priate languages and refinement definitions. The structure of a specification for example
is irrelevant as we are only interested by its semantics; taking an extreme view, if a speci-
fication starts with a given symbol, this is not something that we expect to be preserved
by refinement. Similarly, properties about the specification itself instead of the specified
system are generally not maintained by refinement: determinism and completeness are
typical examples of such meta-properties that may not be preserved.

Properties related to the algorithms have to be ignored as well, because we want to
define or to change them during refinement. But some other properties, whereas related
to the specified system, can be incidental and should ideally be forgottable as well during
refinement, for example related to data representations. Consider a specification expressed
using lists, whereas sets would have been sufficient: the richer structure defines a mean-
ingless order between elements. In FoCaLize, the representation (the concrete datatype)
is irrelevant, the specification only expresses relations between methods.

Beyond this blindness, a few other features are desirable for a refinement:

- Reflexivity ; D should be a (trivial) valid refinement for D.

- Transitivity ; if DC refines DI and DI refines DA, then DC refines DA. This allows for
an arbitrary number of intermediate descriptions between the specification and the
implementation.

- Monotony ; if DC refines DA and D′
C refines D′

A then the composition of DC and D′
C

refines the composition of DA and D′
A. This ensures the compatibility of refinement

with modularity in developments.

Note that regarding monotony, we are voluntarily unclear about the composition we are
speaking about; in the rest of this chapter we mainly discusses about functional composi-
tion, but other forms of composition, such as sequential composition, parallel composition,
and so on, can be considered.

6.1. AN INFORMAL DESCRIPTION OF REFINEMENT 59

With the goal of defining a form of generic refinement, it is immediate to derive a few
design choices from these initial considerations. For example, a refinement has to relate
an arbitrary number of intermediate descriptions of a system, so a common language for
all the descriptions is preferred.

The remark about the irrelevance of algorithms leads to consider specifications and im-
plementations as black boxes whose internals are not visible from the refinement perspec-
tive. The need to preserve only some properties further indicates that this representation
should (permit to) ignore irrelevant aspects of a description.

We therefore define for the rest of this memoir extensional properties as those properties
preserved by refinement, and intensional properties as those whose preservation is not
guaranteed by refinement (because we generally do not care about them). These terms
are of course chosen because their usual meaning is relevant; yet we do not define here
a strict and stable frontier between extensional and intensional properties, as it is not
required for our intent. To give a typical example, it is a design choice, when defining a
refinement, to consider execution time or required memory as extensional, even if they are
generally intensional.

6.1.3 Constituents of a refinement step

Considering a refinement step as the transition between two consecutive phases of the de-
velopment cycle in a deductive formal method, we can identify various typical constituents
– a single refinement step often mixing several of them.

Data-refinement, as it is for example introduced in [BvW00], defines or modifies the
representation of the data: defining a concrete implementation for an abstract represen-
tation (e.g. lists for sets), choosing a model – in the logical sense – for a specification, or
changing representations, as illustrated by the example of natural values as Peano’s terms
or binary words in Section 3.2.

Choice-refinement reduces non-determinism: from a non-deterministic description, it
permits choices in order to progress towards a deterministic program. A different yet close
concept is the completion-refinement, that extends the domain of definition in the case of
partial definitions – for example, when using preconditions in B ; we consider partial spec-
ifications as extreme forms of non-deterministic specifications, as there is no specification
at all outside the specification domain. Remember that the concept of partial specifica-
tions encompasses in this memoir very different situations, using pre-conditions or guards.
We can consider the example of the head function in Coq discussed in Section 5.2.3:

Example 6.1.1 (Specification of the head function in Coq)

head1(l : list N) : {x :N | l 6=[]→ ∃ l′ : list N, l=x :: l′}

head2(l : list N)(p : l 6=[]) : {x :N | ∃ l′ : list N, l=x :: l′}

The head1 specification is partial, as head1 [] is not specified, except for being a natural
value – an extreme case of non-determinism. The head2 specification is on the contrary a
total specification of a partial function: it expects two arguments, a list l but also a proof p

that this list is not empty. It cannot be called on the empty list, as it would be impossible
to provide the second parameter. In both cases, a compliant implementation is a total
function (extractible as an OCaml program) whose logical content has been discarded,
including the proof parameter p; so at some point of the development, the behaviour of
these functions for an empty list has to be described – possibly raising an exception should
head2 be applied to the empty list.

60 CHAPTER 6. GENERIC REFINEMENTS

Decomposition-refinement introduces further details in the description of the system.
It is the form of refinement that allows for the introduction of new transitions, events or
states in methods using such descriptions, but it is also applicable to other formal methods,
provided they define a form of composition: this for example consists, in a functional
paradigm, into refining a function f by two functions f1 and f2 such that f =f2◦f1.

Operation-refinement associates a (total and deterministic) specification and a pro-
gram, provided a common concrete representation, e.g. a declarative representation and
an imperative description – the fundamental process of designing algorithms. It can be
illustrated by the example of the square root specification of Section 3.1, that has to be
transformed into an executable code.

This list is not exhaustive, but it is sufficient for our purposes. There are probably
other constituents that can be considered, e.g. when dealing with distributed or concurrent
systems. In [CM06a] for example, Event-B is used to prove a protocol by considering an
abstract global data (witnessing the convergence of the protocol and acting as a specifica-
tion) which has no existence in the concurrent implementation.

6.2 Simplified forms of refinement

Before trying to define a full and generic refinement, we adopt in this section a stepwise
approach to address interesting questions in simpler contexts. We adopt in the rest of this
chapter a pure functional paradigm (e.g. internal state is explicited as a parameter).

6.2.1 Relational toolbox

Our aim being to consider the various descriptions of a system, from the specification
to the implementation, as black boxes (the extensional point of view), we consider any
description as a relation – allowing for transparent operation-refinement.

More specifically, in a functional paradigm specifications are in S↔ T , the set of re-
lations between S and T , and implementations are in S→ T , the set of functions taking
an input parameter in S and (always) returning a value in T . By abuse of notation,
the function f is not distinguished from the relation defined by the pairs (s, f(s)). That
is, implementations can be considered as specifications and be further refined, e.g. for
optimization reasons. We use standard notations for sets and notations, as well as the
following definitions.

Definition 6.2.1 (Relational constructs)

- dom(R) denotes the domain of the relation R:

x∈dom(R)⇔∃ y, (x, y)∈R

- ran(R) denotes the range of the relation R:

y∈ran(R)⇔∃ x, (x, y)∈R

- ≡ denotes the extensional equality:

S≡T ⇔ ∀ x, x∈S ⇔ x∈T

6.2. SIMPLIFIED FORMS OF REFINEMENT 61

- SCR denotes the domain-restriction of the relation R to S:

(x, y)∈SCR⇔(x, y)∈R∧x∈S

- RBS denotes the range-restriction of the relation R to S:

(x, y)∈RBS⇔(x, y)∈R∧y∈S

- R{S} denotes the projection of the subset S by the relation R:

y∈R{S} ⇔ ∃ x, x∈S ∧ (x, y)∈R

Note that if a common perception of specifications and implementations as relations
is required for the refinements considered hereafter, this does not mean that the language
used for the various descriptions is limited: in our formalisation, for example, we keep
the full expressiveness of the Coq system, using Ml programs to represent functions,
inductive definitions for relations, and so on.

The important point is to be able to abstract these descriptions into relations. Using
only our relational toolbox to define refinements, we ensure an extensional paradigm, in
which for example ≡ is a congruence. In other words, we do not want and we are not
able to distinguish two black boxes that have the same behaviour, modulo the chosen
observable characteristics of these boxes in our modelisation; for example, we may or may
not distinguish these boxes by their processing time.

The relational vision may seem straightforward and standard, but it has some impor-
tant consequences. For example, we cannot – at least in a simple way – specify f :B→B as
being either the identity id or the negation ¬. Indeed, this constraint cannot be captured
precisely by a relation in B↔B. This is however a common observation in various formal
methods; to deal with such situations, we can use various tricks offered by the considered
formal method (such as specifying an operation as being a constant in B, cf. the example
titled “Timed channels and transient states” in Section 5.2.4), or adopt a higher-order
vision in which the non-determinism is encoded not as a choice between > and ⊥ but as a
choice between id and ¬.

6.2.2 Data-refinement

We first capture the concept of data-refinement, allowing for the definition or the change
of data representations. For the sake of simplicity, however, we restrict in this subsection
our analysis of data-refinement to functions, instead of generic relations – this is sufficient
to study some interesting points, and easy to generalize later.

Our definition of data-refinement results from a generalisation of the form of the ho-
momorphism property in Section 3.2, to capture any form of encoding.

Definition 6.2.2 (Data-Refinement) Provided two functions fA :DA→RA and
fC :DC→RC, we say that fC data-refines fA modulo the domain interpretation
ID :DA↔DC and the range interpretation IR :RA↔RC iff:

fA≈fC [ID, IR] , ∀ (xA :DA)(xC :DC), (xA, xC)∈ID⇒(fA(xA), fC(xC))∈IR

Its meaning is that if xA and xC represent the same value (i.e. are related by the domain
interpretation ID) then fA(xA) and fC(xC) have to represent the same value as well (i.e.
have to be related by the range interpretation IR).

62 CHAPTER 6. GENERIC REFINEMENTS

We provide in the rest of this chapter a graphical representation of some of the defini-
tions and results, in which the horizontal axis is related to computation (the executions),
and the vertical axis to refinement (the various descriptions). Data-refinement can then
be illustrated as follows:

Example 6.2.1 (Data-refinement of N into W) The first illustration of data-refinement
represents natural values as lists of booleans; it is given in Coq by the following code:

Inductive bin :N↔W :=

| binnil : bin 0 []

| bindbl : ∀ (n :N)(w :W), bin n w ⇒ bin (n+n) (⊥ :: w)

| bininc : ∀ (n :N)(w :W), bin n (⊥ :: w)⇒ bin (n+1) (> :: w)

Fixpoint inc(w :W) :W :=

match w with

| []⇒ [>]

| ⊥ :: w′ ⇒ > :: w′

| > :: w′ ⇒ ⊥ :: (inc w′) end

Theorem inc refines succ : S ≈ inc[bin,bin]

bin is the interpretation for the standard encoding of natural values as lists of booleans, the
head of the list being the Lsb, and inc is the encoding of the increment on this representa-
tion. The theorem inc refines succ, proven in Coq using the definition of data-refinement,
shows that inc is a refinement of Peano’s successor modulo the interpretation bin for both
the domain and the range.

Example 6.2.2 (Data-refinement of B into N) The second illustration of data-refinement
uses natural values to represent booleans; it is encoded in Coq as well:

Inductive comb :B↔N :=

| comb0 : comb⊥ 0

| comb⊥ : ∀ (n :N), comb> n⇒ comb⊥ (n+1)

| comb> : ∀ (n :N), comb⊥ n⇒ comb> (n+1)

Theorem succ refines negb : ¬ ≈ S[comb, comb]

In this case, any even value encodes ⊥ and any odd value encodes >. We can then show
that successor S is a refinement of the negation ¬. As we will see later such interpretations
have interesting consequences when used in secure developments.

The definition of data-refinement enjoys the features identified in Section 6.1.2:

6.2. SIMPLIFIED FORMS OF REFINEMENT 63

Proposition 6.2.1 (Data-refinement properties) Data-refinement is an equivalence
(it is reflexive, asymmetric, transitive) and is monotone modulo the appropriate interpre-
tations:

f≈f [id, id] (Reflexivity)

fA≈fC [ID, IR]⇒fC≈fA[I−1
D , I−1

R] (Symmetry)

fA≈fI [ID, IR]⇒fI≈fC [I ′D, I ′R]⇒fA≈fC [I ′D◦ID, I ′R◦IR] (Transitivity)

f1
A≈f1

C [ID, I1
M]⇒f2

A≈f2
C [I2

M , IR]⇒I1
M ⊆I2

M⇒f2
A◦f

1
A≈f2

C ◦f
1
C [ID, IR] (Monotony)

Note that having an equivalence is surprising, as one would expect a partial order – relating
specifications and their implementations; this is discussed in Section 6.4.2.

Transitivity and monotony can be illustrated as follows:

We have chosen for the monotony to artifically assume two different interpretations I1
M

and I2
M , in order to have a slightly more generic result. This justifies the condition I1

M ⊆I2
M ,

which is trivially satisfied if the interpretations are consistent (equal), as it is the case for
any reasonable development. A standard example of inconsistent interpretations is little-
endian vs big-endian representations, and indeed one does not expect implementations
adopting different endianness to compose well together.

Note that monotony is considered here only for the standard composition of relations,
which is straightforward in our framework. However, other forms of composition can be
considered and the associated monotony results have to be checked. We can for example
consider, in imperative frameworks, sequential or parallel compositions. Refinement has
to be defined having in mind the programming paradigm that we want to use, and the
expected properties for this refinement have to be adapted to this paradigm.

Our main objective in defining this trivial form of refinement is to study the role of
the interpretations ID and IR.

We should first note that we make here explicit a form of parameters that is either im-
plicit or disguised in most formal methods. These parameters represent the interpretation
between W and N in the example of Section 3.2, but also the Glue Invariant often required
in B refinements, as in the Maximier example of Section 3.1 that relates ℘(N) and N.

By expliciting and putting aside these parameters, we can for example consider a
given implementation as a valid refinement for different specifications, modulo appropriate
interpretations, favouring factorisation and reuse. This is not for example possible with the
B method in which any refinement is attached to one specific specification by the clause

64 CHAPTER 6. GENERIC REFINEMENTS

REFINES1 (FoCaLize on the other hand allows for a common refinement for several
specifications through multiple inheritance).

One of the interesting questions is to identify the properties that we can expect from ID

and IR. Indeed, if ID is empty or if IR is saturated (that is IR≡RA×RC) then fA≈fC [ID, IR]

is trivially valid. This seems to be a rather laxist definition of data-refinement, as anything
would refine anything. Should we require ID to be total, or IR to be injective? In fact, we
do not want to impose such restrictions, that would prevent development practices that
are important to capture.

Indeed, we should allow the interpretations to be non-functional (there may exist
distinct images for a given x), associating a single abstract value to multiple encodings, as
for example with the binary words 1, 01 and 001 that represent the same natural value.

Non-injective interpretations (that is x1 6= x2 but (x1, y), (x2, y) ∈ I) are associated to
concrete representations not distinguishing different abstract values. Again, this is fully
justified, for example when normal forms are considered. Another interesting illustration
is provided by the Maximier in Section 3.1, where sets of natural values are B-refined by
their maximum – for the sake of optimisation.

Non-surjective interpretations capture situations in which the concrete representation
provides irrelevant additional values, as with the encoding of rational numbers n/d by the
pair (n, d); there is no abstract counterpart to the pairs (n, 0) in such a case.

The last considered criteria is the partiality. If the domain interpretation ID is partial
(dom(ID)(DA), it allows for partial refinement, in which part of the specification fA is just
ignored. A typical illustration is the encoding of N as int , a fixed size representation. This
is a point that we will discuss further, as it allows in practice to strengthen preconditions,
something usually not acceptable, for example in B. Note however that such a form of
partial refinement can still be encoded in B, as illustrated by the following example with
a partial interpretation on the state:

Example 6.2.3 (Partial refinement in B)

MACHINE Square
VARIABLES x

INVARIANT x∈N
INITIALISATION x :∈N
OPERATIONS o←sqr ,o :=x ‖ x :=x∗x

MACHINE Identity
REFINES Square
VARIABLES x

INVARIANT x∈{0, 1}
INITIALISATION x :∈{0, 1}
OPERATIONS o←sqr , o :=x

In this case, we are indeed using a form of partial interpretation of the domain for the
internal state, our refinement being only valid if the initial value of x belongs to {0, 1}.
Asked to implement a machine computing the square of natural numbers, we answer with
a machine computing the identity.

Reciprocally, if the range interpretation is partial, then we strengthen the constraints on
the refinement by forbidding some alternatives.

1Yet nothing prevents a specification to have several refinements.

6.2. SIMPLIFIED FORMS OF REFINEMENT 65

Despite our search, we have not been able to discover any relevant constraint on ID,
IR or even on (ID, IR). All considered constraints are indeed preventing the use of data-
refinement in legitimate cases. What is therefore proposed here is a notion giving both
freedom and responsibility to the developer to choose appropriate interpretations. Re-
member that we are not here trying to define a new formal method with an associated
refinement, but a framework to study refinement.

Of course, in some cases, the very existence of a refinement is strongly dependent upon
the interpretations. It is indeed easy to study the problem of the existence of a refinement
with this definition – and provided a few decision procedures (such as a choice function or
the computation of the projection by the inverse of a relation) to automatically derive a
refinement, given a specification

6.2.3 Choice-refinement – a first approach

Having considered data-refinement, we now address another of the constituents of refine-
ment defined in Section 6.1.3. We try here to capture the reduction of non-determinism and
the completion (the transformation of a partial specification into a total implementation),
this time using the B as a source of inspiration.

Definition 6.2.3 (Choice-Refinement 1) Provided two relations rA, rC : D↔R (repre-
senting the specification and the refinement), we say that rC choice-refines rA iff:

rA�rC , dom(rA)⊆dom(rC) ∧ dom(rA)CrC⊆rA

The left part of the definition requires rC to extend the domain of rA, and the right part
that for all elements of the domain of rA, the image by rC is a subset of the image by rA.
This is a very simple and natural approach: we just ensure that the refinement addresses
the whole specification and does not contradict it.

As noted, the definition is inspired by the refinement of B, but is also fully valid for
FoCaLize and Coq e.g. considering specifications of the form P (x)⇒ f(x) ∈ S(x), with
P (x) representing x∈dom(rA): a specification P ′(x)⇒f(x)∈S′(x) is a valid choice-refinement
provided that P (x)⇒P ′(x) and S′(x)⊆S(x).

Regarding the expected properties, this definition of choice-refinement is a quasi-
monotone partial order:

Proposition 6.2.2 (Choice-refinement properties) Choice-refinement is reflexive,
antisymmetric, transitive. Choice-refinement is also monotone, provided the so-called com-
patibility condition is satisfied:

r�r (Reflexivity)

rA�rC⇒rC�rA⇒rA≡rC (Anti-symmetry)

rA�rI⇒rI�rC⇒rA�rC (Transitivity)

r1
ABdom(r2

A)�r1
C⇒r2

A�r2
C⇒r2

A ◦ r1
A�r2

C ◦ r1
C (Monotony)

66 CHAPTER 6. GENERIC REFINEMENTS

The monotony property, illustrated thereafter, deserves additional explanations:

We are considering here a top-down approach in which a complex specification rA is de-
composed into r1

A and r2
A such that rA≡r2

A ◦ r1
A.

A useful monotony result should allow independent refinements, that is deriving r1
C

should not depend upon the derivation r2
C and vice-versa. Indeed, we can for example

consider a situation in which two independent development teams have to implement a
part of the system: we do not want a team to wait for the result of the other team before
starting its work. This does not appear to be the case with our monotony result, because
there is a condition about the refinement of r1

C – at least at first sight.
In fact, studying carefully the problem, we have the expected independency of re-

finements if the decomposition does not create useless dead ends. Indeed, the constraint
r1
ABdom(r2

A)�r1
C just reflects the fact that a poorly chosen r1

A can be such that r1
A{x}≡{y1, y2}

with only y1∈dom(r2
A). Choosing r1

C{x}≡{y2} results into an empty composition at x, that
is into an invalid refinement for rA. But this would be absurd, as r2

A ◦r
1
A≡r2

A ◦(r
1
ABdom(r2

A)).
That is, when making such a decomposition-refinement of rA there is nothing to gain to
use r1

A instead of r1
ABdom(r2

A), except artificial and useless constraints:

However, the condition has still to be satisfied in the case of independent developments –
e.g. considering components [CH01]. In such a case however, the simplest way ahead is to
enforce the specifications to be complete, ensuring r1

ABdom(r2
A)≡r1

A.
We can also observe that the decomposition can lead to the loss of choice-refinements

due to decomposition – i.e. there may be choice-refinements of r2 ◦r1 that are not the
composition of any choice refinements of r1 and r2. Consider the following example:

Example 6.2.4 (Loss of choice-refinement)

r1 :=B×Unit r2 :=Unit×B r3 :=B×B

6.2. SIMPLIFIED FORMS OF REFINEMENT 67

Only r1 choice-refines r1, and there are two functions choice-refining r2, unit 7→ > and
unit 7→⊥. Therefore, composing the refinements there are only two possible functions, either
fun : B 7→ > or fun : B 7→ ⊥. However, the composition of the specifications, r3≡ r2 ◦ r1, is
also choice-refined by id and ¬.

Of course, this example is artificial, but our remark is intended to recommend some care
when defining a decomposition, to avoid useless difficulties.

The reader used to the B method can also recognise in the compatibility condition
of the monotony result the justification for some of the generated proof obligations. For
example, when an operation with a precondition is invoked by another operation, a proof
obligation to show that it holds in the context of the call is generated. One can see such a
call as a composition, and the proof obligation as a way to ensure the compatibility with
the refinement.

6.2.4 Preconditions and guards

Looking at the definition in Section 6.2.3, one could note that rA{x}≡∅ does not constrain
rC{x}, whereas rA{x} ≡ R only requires rC{x} to be non-empty. This similarity may ap-
pear rather strange; in fact, it indicates that this definition of choice-refinement captures
preconditions but not guards.

Provided a specification rA the refinement at x 6∈ dom(rA) stays unspecified, and the
empty specification is refined by anything. This reflects the B refinement lattice in which,
for any P , we have:

⊥|S v P |S v S v P=⇒S v ⊥=⇒S

An empty specification in choice-refinement represents ⊥|S, that is abortions in B. On
the other hand we have no easy way with our definition to represent ⊥=⇒S, that is miracles.
Miracles are predicate transformers establishing any predicate, as in the following example:

Example 6.2.5 (B miracle) The substitution x :∈ ∅, that is x becomes a value in ∅, is
defined as @x′ ·x′∈∅=⇒x :=x′. It is such that for any proposition P , we have:

[x :∈∅]P ⇔ ∀x·x∈∅ ⇒ P ⇔ >

In particular, [x :∈∅]⊥, that is intuitively executing x :∈∅ makes ⊥ true.

Miracles are only refined by miracles and never implementable (feasible) – in essence,
miracles are inconsistent specifications.

Guards can be described along with preconditions in FoCaLize and Coq by specifi-
cations of the form P (x)⇒G(x) ∧ f(x) ∈ S(x), where P (x) is the precondition and G(x) the
guard. This emphasises the fact that preconditions and guards are dual: they appear to
the left or to the right of the implication, and a specification P ′(x)⇒ G′(x) ∧ f(x) ∈ S(x)

is a valid choice-refinement provided P (x)⇒ P ′(x) and G′(x)⇒G(x) – in other terms, any
implementation of f satisfying the latter also satisfies the former.

The intuition is that executing an implementation without satisfying its precondition
may result in unexpected behaviours, whereas it is impossible to execute an implementa-
tion without satisfying a guard – assuming such an execution being logically inconsistent.
At the computational level, preconditions represent the offensive style and guards the
defensive style; a computational guard is only conceivable provided it is valid – at least
globally, when several guards define alternatives that together partition the reachable
states. This is indeed the case for example with the IF in B, which in the absence of an
ELSE branch reduces to a skip substitution (doing nothing) when the associated condition
is not satisfied, or with the match in OCaml, which has to cover all possible patterns.

68 CHAPTER 6. GENERIC REFINEMENTS

6.2.5 Choice-refinement – a second approach

Having noted that we do represent preconditions but not guards, we can investigate alter-
native definitions of choice-refinement. A very simple approach is to use inclusion, that is
we say that rC choice-refines rA iff:

rC⊆rA

This definition is obviously reflexive, anti-symmetric and transitive, but also monotone:

r1
C⊆r1

A⇒r2
C⊆r2

A⇒r2
C ◦ r1

C⊆r2
A ◦ r1

A

With this definition the guard is encoded as the domain of the specification, but we can-
not encode a precondition. Indeed, one can note that rA{x}≡R is a very weak specification,
but it still forbids the refinement to crash at x for example, so it does not really capture
the whole expressiveness of preconditions. This definition can however be considered as
sufficient if indeed we accept to consider only well-formed and terminating programs.

There are multiple ways to define choice-refinement representing both preconditions
and guards but we have not been able to discover a compact and complete description
of specifications in such cases. That is, the domain of the specification either encodes
the precondition or the guard, but we need an additional predicate to capture the other
concept. From now, therefore, we consider descriptions of a system as pairs (p, r) where
p is the precondition and r the relation defining both the guard (as its domain) and the
valid images at any point2.

The simplest definition of choice-refinement with guards and preconditions that we
have considered is pACrC ⊆ pCCrA – that is the fact that in the limits of the preconditions,
the refinement does not contradict the specification. It has a lot of the expected properties
but unfortunalely it is not transitive. Yet there is a very instructive sufficient condition to
ensure transitivity:

pACrI ⊆ pICrA ⇒ pICrC ⊆ pCCrI ⇒ pA⊆pI ⇒ pACrC ⊆ pCCrA

That is, transitivity is guaranteed provided that the first refinement indeed weakens the
precondition, pA ⊆ pI . This reveals that our first attempt is too laxist with respect to
the preconditions. Therefore we finally define our second version of choice-refinement as
follows:

Definition 6.2.4 (Choice-refinement 2) Provided two preconditions pA, pC⊆D and two
relations rA, rC ∈D↔R, we says that (pC , rC) choice-refines (pA, rA) iff:

(pA, rA) |< (pC , rC) , pA⊆pC ∧ pACrC ⊆ rA

This definition is equivalent to a more symmetric version:

Proposition 6.2.3

(pA, rA) |< (pC , rC) ⇔ pA⊆pC ∧ pACrC ⊆ pCCrA

It is also a restriction of our first attempt that was rejected for not being transitive:

Proposition 6.2.4

(pA, rA) |< (pC , rC)⇒ pACrC ⊆ pCCrA

2A dual vision with pairs (g, r), g being the guard and dom(r) the precondition can also be considered.

6.3. A GENERALIZED REFINEMENT 69

Furthermore it is a quasi monotone partial order – at least “sufficiently”:

Proposition 6.2.5 (Choice-refinement properties) Choice-refinement 2 is reflexive,
anti-symmetric, transitive and monotone if the compatibility condition is satisfied:

pA⊆pC⇒(pA, r) |< (pC , r) (Reflexivity)

(pA, rA) |< (pC , rC)⇒(pC , rC) |< (pA, rA)⇒(pA≡pC ∧ pACrA≡pACrC) (Anti-symmetry)

(pA, rA) |< (pI , rI)⇒(pI , rI) |< (pC , rC)⇒(pA, rA) |< (pC , rC) (Transitivity)

(pA, rA B p′A) |< (pC , rC)⇒(p′A, r′A) |< (p′C , r′C)⇒(pA, r′A ◦ rA) |< (pC , r′C ◦ rC) (Monotony)

The condition associated to the monotony is this time explicitly enforcing the first refine-
ment to be compatible with the precondition of the second – as it is the case with the
other definitions of choice-refinement, and with the same analysis: such decompositions
are meaningless, and associated refinements should take care to avoid useless dead ends.

6.3 A generalized refinement

6.3.1 Definition

Having explored some basic concepts, we now define a multi-constituent refinement, hope-
fully sufficient for our needs: describing the compliance of an implementation w.r.t. a
partial, non-deterministic and abstract specification. The idea here is to invent a refine-
ment by merging our previous definitions into a single one; to represent guards, we favour
the combination of our final definition of choice-refinement with data-refinement.

We can first note that data-refinement is such that it can be presented in a more
“combinatoric” manner (that is masking universally quantified variables), providing an
alternative definition which is similar to the ones retained for choice-refinement:

Proposition 6.3.1 (Alternative presentation of data-refinement)

fA≈fC [ID, IR] ⇔ fC ◦ID⊆IR◦fA

It is then straightforward to derive a candidate for our generalized refinement:

Definition 6.3.1 (Gen-refinement) Given a specification described by a precondition
pA ⊆DA and a relation rA ∈DA↔RA, and an implementation described by a precondition
pC ⊆DC and a relation rC ∈DC ↔RC, we say that (pC , rC) gen-refines (pA, rA) modulo the
domain interpretation ID :DA↔DC and the range interpretation IR :RA↔RC iff:

(pA, rA) (pC , rC)[ID, IR] , ID{pA}⊆pC ∧ pAC(rC ◦ID)⊆IR◦rA

It is relatively complex, because it captures a lot of different situations and concepts,
for example those of the B method; yet it is still easy to intuitively understand its meaning.
Globally, it is of course reminiscent of the approach retained for abstract interpretation –
refinement and interpretation can be seen as dual methodologies.

The left part of the formula requires the refinement to be total w.r.t. the interpretation
of the domain of validity of the specification, that is the interpretation of the precondi-
tion. The right part requires the refinement to comply with the specification modulo the
interpretations, as for data-refinement.

70 CHAPTER 6. GENERIC REFINEMENTS

As previously a partial domain interpretation ID allows for partial refinements, that
is intuitively for strengthened preconditions, something which is normally not allowed by
refinement. Total domain interpretations would then reflect B refinement, whereas partial
domain interpretations allow for partial refinements, as in retrenchement [BP00].

6.3.2 Properties of gen-refinement

Proposition 6.3.2 (Gen-refinement properties) Gen-refinement is reflexive and tran-
sitive modulo the appropriate interpretations:

pA⊆pC⇒(pA, r) (pC , r)[id, id]

(pA, rA) (pI , rI)[ID, IR] ⇒ (pI , rI) (pC , rC)[I ′D, I ′R] ⇒ (pA, rA) (pC , rC)[I ′D ◦ ID, I ′R ◦ IR]

Gen-refinement is also quasi-monotone, but we discuss a generalised result in Section 6.4.1
instead of yet another weaker monotony result here.

Comfortingly, our previous refinements can be seen as specific cases of gen-refinement:

Proposition 6.3.3 (Relation between refinements)

fA≈fC [ID, IR] ⇒ pA⊆dom(ID) ⇒ ran(ID)⊆pC ⇒ (pA, fA) (pC , fC)[ID, IR]

(pA, rA)|<(pC , rC) ⇒ (pA, rA) (pC , rC)[id, id]

We therefore consider gen-refinement to be an adequate formalisation w.r.t. our pur-
poses: it is able to capture B-refinement, as well as similar processs during specification-
driven developments e.g. in Coq or FoCaLize. It does a little more, e.g. by allowing for
partial implementations or changes of representations on observable data, but in a con-
trolled way – related to the used interpretations. The relational vision and the structure
of the definition of gen-refinement is also reminiscent of the definition of the first-order
version of the B refinement developed in the B-Book, which relies on the presentation of
substitutions as set transformers (that is relations):

Fact 6.3.1 (First-order definition of B refinement)

SvR⇔ pre(S)⊆pre(R) ∧ rel(R)⊆rel(A)

6.3.3 A few illustrations

We first adapt the Maximier example of Section 3.1 by encoding it in Coq, using our
definition of gen-refinement.

Example 6.3.1 (Maximier in Coq) The full abstract machine MA is represented by
an inductive relation:

Inductive MA :N×list N×B↔N×list N :=

| store : ∀ (n :N)(l : list N), MA((n, l,>), (n :: l, 0))

| get : ∀ (n :N)(l : list N), MA((n, l,⊥), (n, fold left max l 0))

Considering a tuple ((n, l, b), (m′, l′))∈MA, (n, l, b) represents the before-state and (m′, l′) the
after-state: l and l′ are the stored natural values – implemented as lists, to be able to define
a function max on them, b is a selector indicating if the before-after transition is caused
by a call to store or to get, n is the store input value and m′ the get output value.

6.3. A GENERALIZED REFINEMENT 71

Similarly, a function represents the refinement MC:

Definition MC((n, m, b) :N×N×B) :N×N :=

if b then (if n≤m then (0, m) else (0, n)) else (m, m)

With ID and IR the domain and range interpretations in which lists are associated to
their maximum value – that is, as expected, a direct translation of the Glue Invariant of
MC (cf. Section 3.1) – we show that:

(N×list N×B, MA) (N×N×B, MC)[ID, IR]

These interpretations are partial, as the maximum is not defined for an empty list – in
other words, there is no interpretation of states in which the list is empty. We capture
here the precondition in the interpretation.

Note that with such representations of B machines as single inductive definitions (in-
stead of one specification per operation) we can express a machine invariant as a property
of all the accessible states. Furthermore, a partial interpretation of the selector (b in our
example) allows for a partial refinement, which corresponds in this case to not implement
some of the operations. Provided it is well documented, it seems to have interesting appli-
cations, such as allowing for common specifications with multiple refinements differing in
their scope of implementation. Remember that such a partial refinement is in fact a form
of precondition, that has to be taken into account when trying to compose refinement: in
this case, of course, the translation of the condition is that operations not implemented
should not be invoked by other machines.

The addition has also been formalised in Coq to illustrate gen-refinement:

Example 6.3.2 (Partial refinement of addition) We consider the addition on natu-
ral numbers à la Peano, +:N×N↔N as our specification, and the addition on 4-bit values,
add :W4×W4↔W4, as our refinement.

The associated interpretation in this case is a partial one, that is we can indeed use
our definition of gen-refinement between an abstract specification considering arbitrary high
natural values, and a concrete implementation on a fixed-size representation, by ignoring
parts of the specification.

It can be elegant, in such cases, to associate the partial interpretation of the domain with
a special interpretation of the range, introducing new values (e.g. using an option type)
to represent out-of-bounds results, modelling exceptions.

We can also represent miracles in gen-refinement, as expected: any description of the
form (>, ∅) (a trivial precondition and an empty relation, thus an insatisfiable guard) refines
anything, and is not implementable (by a total function).

Of course, these examples are technical, but we are not trying to promote a coding
style for Coq as a shallow embedding of the B or of other refinement-based method; they
just serve to comfort us about the representativity of our definition of gen-refinement.

6.3.4 Preconditions, interpretations, and simplifications

The obligation to manage separately preconditions and relations to describe specifications
appears as a source of complexity in our definition of gen-refinement. Is there no way to
define a simpler form of specification – in association with a simpler form of gen-refinement?

Our definitions of refinements are influenced by the B, itself related to the formalisa-
tion of program semantics using Hoare’s notations [HR84, Hoa92] in which {Pre}Q{Post}

72 CHAPTER 6. GENERIC REFINEMENTS

expresses the fact that if Pre holds (a precondition on the state of the system), then after
executing the program Q, Post holds (a postcondition on the state of the system). The
B method can be seen as a further step in which Pre, Q and Post are merged into a
single construct, a substitution of the Gsl, that looks like an imperative instruction but
is generally not executable (consider for example the specification of the square root in
Section 3.1). We also have in [Abr96] a result about normal form of substitutions:

Fact 6.3.2 (Normal form in Gsl) Any substitution of the Gsl is equivalent to a sub-
stitution of the following form:

P |@ x′ ·Q=⇒x := x′

The predicate P is the precondition, and @ x′·Q=⇒x := x′ ensures that x becomes such that
it satisfies the predicate Q – in other words, a substitution of the Gsl is indeed nothing
more than an elegant reformulation of Hoare’s approach, whose normal form makes explicit
the precondition P and the postcondition Q.

Our approach in gen-refinement is consistent with these visions, and it is thus reason-
able to have to manage in our model preconditions and relations. However, we can still in
our development adopt two different philosophies:

- Considering preconditions as being part of the specification, which is therefore de-
noted by a pair (p, r) as in the second version of choice-refinement and in gen-
refinement;

- Considering preconditions as parameters of the refinement relation.

The second approach may be relevant. As noted, the precondition can indeed be seen as
a restriction of the scope of the specification which is relevant when defining a refinement,
and outside this precondition there is absolutely no constraint.

Furthermore, it is also consistent with our definition of gen-refinement. Indeed, choos-
ing a partial domain interpretation ID is an alternative solution to ignore part of the
specification, that is the effective precondition in gen-refinement is not pA but dom(ID)∩pA.

The similarity of the roles of ID and pA with regard to the domain of specification can
be emphasised by factorising the expression pACID as follows:

Proposition 6.3.4 (Toward a simpler gen-refinement)

(pA, rA) (pC , rC)[ID, IR] ⇔ ran(pACID)⊆pC ∧ rC ◦(pACID)⊆IR◦rA

We see here that, in a way, the genuine interpretation is not ID but pACID, as the precon-
dition pA restricts the domain of the specification. Accepting to merge the specification
precondition pA into the domain interpretation ID is therefore a way toward a simpler
expression for gen-refinement.

Finally, we are still wondering whether a definition such as rC ◦ ID ⊆ IR ◦ rA would
represent an acceptable form of refinement. Graphically, it indicates that running the
domain interpretation then the refinement yields a result which is valid according to the
specification followed by the range interpretation. However, it does not mention anymore
the preconditions, in particular pC . The exact properties of such a definition have yet to
be analysed in depth; we do not consider it further in this memoir.

6.4. SOME OBSERVATIONS USING GEN-REFINEMENT 73

6.4 Some observations using gen-refinement

6.4.1 The distracted composer

Facing a complex requirement to gen-refine a specification (pA, rA) (with pA ⊆ DA and
rA∈DA↔RA) using the interpretations ID :DA↔DC and IR :RA↔RC , a team leader tackles
the problem through decomposition.

He tasks two teams of developers to independently gen-refine (pA, r1
A) and (p2

A, r2
A), with

r1
A :DA↔MA, p2

A⊆MA and r2
A :MA↔RA such that rA =r2

A◦r
1
A.

Unfortunately, being a rather distracted person, he provides ID and IR as part of
the specification but does not enforce a common intermediate interpretation, nor even a
common intermediate concrete type MC .

After a few days, he therefore receives:

- A refinement (p1
C , r1

C), with p1
C⊆DC and r1

C :DC↔M1
C ,

- A proof of refinement (pA, r1
A) (p1

C , r1
C)[ID, I1

M] with I1
M : MA↔M1

C ,

- A refinement (p2
C , r2

C), with p2
C⊆M2

C and r2
C :M2

C↔RC

- A proof of refinement (p2
A, r2

A) (p1
C , r1

C)[I2
M , IR] with I2

M : MA↔M2
C .

Of course he very soon discovers that M1
C 6= M2

C , that is these refinements cannot be
composed, because the composition is not even well-typed.

Fortunately he can benefit from the following extended monotony property, whose
interpretation is provided thereafter:

Proposition 6.4.1 (Gen-refinement monotony)

(pA, r1
ABdom(p2

ACI2
M)) (p1

C , r1
C)[ID, I1

M] ⇒

(p2
A, r2

A) (p2
C , r2

C)[I2
M , IR] ⇒

G ◦ I1
M ⊆ I2

M ⇒

(pA, r2
A ◦ r1

A) (pC , r2
C ◦G ◦ r1

C)[ID, IR]

The first line is the usual condition about the compatibility of the first refinement with
the precondition of the second (cf. Section 6.2.3); we assume that such useless dead ends
are avoided by the team leader by an appropriate decomposition. The second line is a
standard refinement.

74 CHAPTER 6. GENERIC REFINEMENTS

Provided these refinements, the third line indicates that if G◦ I1
M ⊆ I2

M then G is a
valid adapter to interconnect r1

C and r2
C while ensuring refinement of r2

A ◦ r1
A. Note that

this condition has been crafted during the development of this result, that is it is an ad
hoc sufficient specification for G designed only for the completion of the Coq proof. The
fundamental meaning of the condition G◦I1

M ⊆I2
M is however very intuitive.

It indeed ensures that G is a partial but sufficient refinement of id modulo the inter-
pretations I1

M and I2
M . That is, considering quietly the difficult situation he is facing, our

distracted composer could indeed rewrite rA =r2
A ◦ id ◦ r1

A.
Having received the refinements r1

C and r2
C , with r1

A r1
C [ID, I1

M] and r2
A r2

C [I2
M , IR],

what he is just missing is a piece of its system, an adaptor G such that id G[I1
M , I2

M].
This reading of the conditions “popping out” of the Coq proof for the monotony

comfort us w.r.t. the consistency and relevance of the definition of gen-refinement.
More generally, it also emphasises the fact that there are numerous possible refinements

for identity, that can appear to be rather exotic for some interpretations. A few typical
situations arise:

- The domain interpretation and the range interpretation are equal; the refinement
preserves equivalence classes defined by the interpretation.

- The domain interpretation or the range interpretation is the identity; the refinement
is a valid translation w.r.t. the interpretations.

There are other interesting examples when considering possible refinements of identity.
Let us illustrate that with a specification which is the identity over a set V of values, the
domain interpretation being a total relation represented by ID =Err ◦Cod with Cod : V →W

an injective function and Err : W ↔W any total relation, and our range interpretation
being the identity. In this context, a valid total refinement Corr : W → V (with a trivial
precondition) is such that:

Corr ◦ Err ◦ Cod⊆ id

This is the equation of an error correcting code, Err describing the noised channel, but
it is viewed here as a refinement problem, and can for example be encoded as such in
the B method. That is, we start from a specification which is the identity, and we refine
with interpretations that represent the introduction of noise; a valid refinement is then a
program able to cancel the effect of the introduced errors.

6.4.2 About the refinement arrow

It can be worthwhile to emphasise the fact that whereas refinement defines a lattice of
descriptions of a system, it does not enforce a progress from specifications towards imple-
mentations; in other words, the refinement lattice does not capture the V-cycle order.

Refinement is expected to reduce non determinism, but as pointed out in Sections 6.1.2
and 6.2.2, non-determinism is a concept related to the definition of observability – depend-
ing upon the chosen definition of extensionality and equality – and its “reduction” may
not always be guaranteed.

More fundamentally, there is no refinement-related definition of abstract and concrete.
Refinement considering only black boxes, it is not an appropriate tool to distinguish for
example between declarative and imperative descriptions. This can be illustrated by the
fact that provided very minor modifications, it is possible to prove for the Maximier in
Section 3.1 that MAvMC but also MCvMA – it is a perfect simulation.

6.4. SOME OBSERVATIONS USING GEN-REFINEMENT 75

The incentive for progressing towards an implementation is therefore elsewhere; in B it
is based on language restrictions, in Coq (when using the strong specification style) on the
distinction between types and terms, and in FoCaLize it is the obligation to ultimately
exhibit a collection, i.e. a specific model (in the logical sense) for a specification admitting
several ones.

6.4.3 The refinement paradox

A B-refinement step reduces non-determinism, or more precisely it does not allow a loss
of determinism on observable values (outputs). On the contrary with our definition a
gen-refinement step can introduce non-determinism using a non-functional interpretation
that associates several reifications for an abstract value. It is therefore a natural question
to assess the impacts of such interpretations in a B development.

They may indeed have interesting consequences as illustrated by the following example:

Example 6.4.1 (Non-functional interpretation in B) We consider the very simple
specification of a machine with a single operation returning a boolean value:

MACHINE bool choice
OPERATIONS b←getbool , b :=>8b :=⊥

This specification has of course two trivial refinements: one in which the operation getbool
always returns >, and one in which it always returns ⊥.

What is often forgotten is that there are many others valid refinements, such as for
example the following one:

MACHINE covert channel
REFINES bool choice
VARIABLES secret
INVARIANT secret∈N
OPERATIONS b←getbool , b :=(secret%2=0); secret :=secret/2

In this case, similarly to what we have done in Section 5.2.4, we abuse the freedom given
by the specification to export information through a form of covert channel.

This is a typical example of the so-called Refinement Paradox: whereas refinement is
expected to ensure the preservation of the properties of the specification, it seems here
to disregard assumptions about the dependencies for computing b. Yet we cannot really
consider in our example that refinement does not preserve the confidentiality of secret or
transform the dependency graph: there is no explicit specification of these.

Remember that as pointed out in Section 6.1.2, it is not desirable for a refinement to
preserve all properties; refinement does not guarantee anything about intensional proper-
ties, and dependency is here intensional, describing how a result is computed rather than
what it is. It is generally not possible to describe intensional properties in a specifica-
tion – being able to express intensional properties, but not to ensure their preservation
by refinement, would whatever appear to be a design flaw – and therefore nothing can
be expected during refinement. Similarly, there is no claim about the meta-properties
such as determinism, completeness, and so on; so the fact that they may not be preserved
should not be a surprise. Provided these clarifications, the term of paradox is clearly an
overstatement, as it just reflects of a poor understanding of specifications and refinements
(cf. for example [MM04]).

76 CHAPTER 6. GENERIC REFINEMENTS

But our point is elsewhere. Adopting the gen-refinement vision, we can see that the
state of the specification bool choice is in Unit, but is gen-refined with the interpretation
Unit×N. We do not only introduce new values during the refinement, but a new dimension,
that is a hidden variable. We have mentioned that we consider necessary to have non
deterministic specifications, and non functional interpretations.

However, when there are security objectives, for example related to the confidentiality
of a data, then the coexistence of non deterministic specifications with non functional
interpretations should definitely ring a bell for an independent evaluator, and advocate for
a thorough code review or the use of other appropriate tools, such as dependency calculus
or dataflow analysis [ABHR99, GM92].

Another interesting learning of gen-refinement is that the Refinement Paradox, often
being viewed as specific to methods such as Z or B, can be represented in other formal
methods, e.g. in Coq or FoCaLize, using the principle of non functional interpretations.
Consider the following specification in FoCaLize:

Example 6.4.2 (Refinement Paradox in FoCaLize)

species Ω ,

signature (=) : Self→Self→B
property =refl : ∀ s :Self , s=s

property =symm : ∀ s1, s2 :Self , s1 =s2⇒s2 =s1

property =tran : ∀ s1, s2, s2 :Self , s1 =s2⇒s2 =s3⇒s1 =s3

end

species mybool ,
inherit Ω;

signature true, false :Self ;

property surjective :∀ b :Self , b=true ∨ b= false;

property injective :true 6= false;

signature bool function :Self→B;

end

The trivial implementation is to use B for the representation and to define bool function
as one of the four possible functions in B→B, that is id, ¬, > or ⊥.

Yet nothing prevents a devious implementation using int for the representation, odd
values representing > and even values ⊥ – the trick is that it is acceptable for (=) not to be
an observational congruence – and defining bool fun with a rather unexpected behaviour
(e.g. boolfun(n) = > iff n is a square). And there is no valuable reason to forbid such
refinements, which can be very useful is some cases.

6.5 A few last remarks

Refinement is a very important notion in deductive formal methods, formalising the con-
cept of compliance (or correctness) between very different descriptions, such as a speci-
fication and an implementation. It is important for refinement to be able to deal with
non-determinism, abstraction, and so on to capture standard engineering practices. But
the consequences of this flexibility are easily underestimated – Chapter 5 explores the
potential consequences of such misunderstandings.

The vision of refinement proposed in this chapter aims at being simple, intuitive and
generic, our objective being to shed some lights on concerns related to security properties.

6.5. A FEW LAST REMARKS 77

It is applicable to formal methods in which there is no such concept of refinement – at least
no explicit one – and for example it indeed helps us to illustrate the refinement paradox
in methods such as Coq and FoCaLize. Other observations, such as the distracted
composer problem and the refinements of identity, are merely side effects.

The difficulties encountered with refinement when dealing with security properties are
well known, and considered in many papers. The following example, discussed at [CD09],
is very illustrative:

Example 6.5.1 (Substitutions are not programs) s :B is a variable which is internal
and therefore not visible, whose value is expected to be kept secret. v :B is a variable whose
final value is exported and therefore observable. A complex process is specified, in which v

has the same value than s at some point in time, before being overloaded:

v :=s ; v :=> ; v :=⊥ ; v :∈B

This specification is expected to ensure that the final value of v is independent of s. Un-
fortunately, this is not the case, as the following code is a valid refinement:

v :=s

To deal properly with these situations, [MMM09] for example discusses various adaptations
of refinement associated with modified semantics for specifications – such as requiring that
x :∈B is different (distinguishable) from x :=>8x :=⊥.

It is not at all our intent; as mentioned, we are not looking in this chapter for a new
definition of refinement or new semantics for substitutions, but for a simpler vision. The
previous example is just another illustration of the difficulty to master the semantics of
substitutions as predicate transformers: whereas they look like a program, they are not,
and in some cases their apparent simplicity is misleading. We prefer to explicit and study
the role of significant parameters, such as the interpretations in data-refinement.

It is our feeling that we need to build upon existing theories, rather than trying to
define new ones – possibly more complex and without tool support. To some extent, it
seems that the combination of several methods and tools can be preferable; as mentioned
in Section 5.2.4, confidentiality is likely to be much more easy to ensure by using deductive
formal methods and flow control or dependency calculus than with integrated but ad hoc
theories3.

Finally, the development of more complex theories should not conceal the real objec-
tives. A proof does not replace a security analysis, but helps to give more confidence in
its results. To illustrate our point, imagine a situation in which we are able to provide a
mathematical guarantee about the confidentiality of a key used to cipher messages, having
applied the most advanced techniques; it would be a pity in such a situation not to notice
that the attacker, rather than trying to read the key, can overwrite it to choose its value.

3It seems, by the way, that a theory for a dependency calculus compatible with refinement – and in
particular data-refinement – is still to be developed.

78 CHAPTER 6. GENERIC REFINEMENTS

Chapter 7

The Validation of a Formal
Method

The use of formal methods increases the confidence in the correctness of developments,
and has the potential to fully eradicate some forms of errors in systems. Yet one may argue
about the actual level of confidence obtained, when the method or its implementation are
not themselves formally checked. In the field of safety for example, an inconsistent theory
or an error in the formal tools can potentially allow for the accidental derivation of invalid
results, that is the certification of potentially unsafe systems.

Of course, this is a rather extreme question, and one can legitimately wonder where
to stop. What is the interest of a full validation of a formal method and of its associated
tools, to develop a system whose correct functioning is dependent upon untrusted and
untrustable elements? Furthermore, even if we indeed check the validity of a formal
method using another method, what is the gain if the latter is not itself verified?

These remarks can be considered to be relevant in the field of safety. Provided an
honest developer and an appropriate review process, the probability of having a realistic
failure case undetected during a formal development, resulting of an unwilling exploitation
of an accidental flaw in the method or the tool, and not discovered during independent
evaluation, is rather low.

But the situation is slightly different when dealing with security – where any flaw can
be deliberately exploited by a malicious developer to obfuscate undesirable behaviours
of a system while still getting a certification. If such a flaw exists, and is known only
by an attacker, the reputation of formal methods is a bias toward obtaining unjustified
confidence. Therefore, whereas the concern of the validation of a formal method may
appear to be a rather academic one, and the cost of addressing it too important when
dealing with safety, we still consider that the validation of a formal method and of its tool
is a legitimate objective in the field of security.

B appears to be a popular industrial choice for example for railways transportation
systems [BDM98, ED07], but also for security systems, such as smartcards [Jaf07, SL00],
firewalls [Bie96], microkernels [HHGB07] and so on. It is therefore a good candidate for
addressing our concern: when the prover says that a development is right, who says that
the prover is right? To answer this question, one has to check the theory as well as the
prover w.r.t. this theory (or, alternatively, to provide a proof checker). We describe in this
chapter BiCoq, a deep embedding of the B logic in Coq, with the objective of checking the
B theory, but also to implement mechanically checked B tools, in our case a proved prover
that can be extracted and used independently of Coq. Note however that this embedding
does not address B machines or B proof obligations, and that the representation of the

79

80 CHAPTER 7. BICOQ AND B

Gsl and of refinement is not fully developped.
The effort associated with this embedding is relatively important. The first complete

version of BiCoq amounts to about 10000 lines of Coq, 550 definitions, 750 theorems and
proofs. Two other versions have been developed, to explore alternative representations
for terms, optimisations of functions, and various improvments of the proof techniques
– with a significant reduction in terms of number of lines, definitions and proofs. Con-
sidering these figures, we only describe in this chapter this embedding from a high level
perspective, focusing mainly on the results obtained through this development. This dis-
cussion is completed in the next chapter, in which technical aspects of the embedding(s)
are described.

7.1 Deep and shallow embeddings

Embedding, in a proof assistant, consists in mechanizing a guest language or logic by
encoding its syntax and semantics into a host language or logic [M.J88, BGG+92, AP02].
It is now a well-established practice in the academic community, to answer different types
of concerns. For example, it is used to study normalisation of terms and influence of
evaluation strategies for a programming language, or the consistency for a logic. It is
also a way to promote interesting concepts and features from a language to another, or to
develop mechanically checked tools to deal with a language.

Notation 7.1.1 (Guest constructs) When dealing with an embedding considering a
guest language and a host language, constructs of the guest language are represented by
dotted notations.

Various approaches can be considered for an embedding, between two extreme cases:
shallow embeddings describe a translation from the guest language into the host language,
whereas deep embeddings consider constructs of the guest language as data to be manip-
ulated in the host language.

In a shallow embedding, the encoding is (at least partially) based on a direct translation
of the guest language into similar constructs of the host language; in terms of programming
languages, a shallow embedding can intuitively be seen as the development of a translation
function J K between two languages, that is a compiler. It is for example typical to translate
a redex (a computable expression) of the guest language by a redex of the host language,
that can be evaluated.

Example 7.1.1 (Shallow embedding of arithmetic expressions) We consider a
guest language providing machine integers (unsigned, and represented by a byte) and ad-
dition, embedded into a host language offering Peano’s natural values and addition:

J1̇+̇2̇K→ J1̇K+ J2̇K→ S(0) + S(S(0))→ S(S(S(0)))

The redex 1̇+̇2̇ is translated into the redex S(0)+S(S(0)) which is automatically evaluated.

On the contrary, a deep embedding is better intuitively described as the development
of a virtual machine: the syntax and the semantics of the guest language are formalised as
datatypes, functions or relations of the host language. Considering the previous example,
a redex of the guest language is a term of the syntactical datatype encoded in the host
language, and the evaluation of the guest language is encoded in the host language for
example as a relation or a function.

7.1. DEEP AND SHALLOW EMBEDDINGS 81

Example 7.1.2 (Deep embedding of arithmetic expressions) We consider the
guest language of the previous example, embedded in the host language as a description of
the syntax of expressions – the addition being a syntactical constructor. The semantics of
expressions are provided by an evaluation function in the host language that, for a term of
the guest language, returns the normal form in the guest language:

L , 0̇ | 1̇ | 2̇ | . . . | ˙255

| +̇(L, L)

| . . .

eval(l :L) :L , 0̇+̇X → X

| . . .

| 1̇+̇2̇→ 3̇

| . . .

The guest redex 1̇+̇2̇ is a term of the syntactical datatype defined in the host language, and
is related to the term 3̇ by the evaluation function.

Applying these concepts to logics is straightforward. A shallow embedding translates
statements of the guest logic into statements of the host logic (e.g. JP ∧̇QK → JP K∧JQK),
which can be proven using the inference rules of the host logic.

A deep embedding represents the syntactical datatype of statements of the guest logic
in the host logic, and encode the inference rules as relations between such statements.
Remember the intuitive view presented in Section 3.2, describing N as a set of terms and
even as a predicate marking some of them; the definition of even describes paths in N
along which the predicate is true:

Inductive N :Set , 0:N | S :N→N

Inductive even :N→Prop , ev0 :even 0 | ev2 :∀(n :N), even n→even S(S n)

ev0
+3 0

S //

ev2

4<1
S // 2

S //

ev2

4<3
S // 4

S //

ev2

4<5
S // . . .

Similarly, the deep embedding of a logic defines the set of all statements – the terms – and
a provability predicate identifying the subset of statements that are provable. Of course,
the rules to construct terms are much richer, and the inference rules of the guest logic
describe rather complex trajectories to build provable statements from previous ones:

*2

¬P

P

∨ ..

∨left

�!
∧pp

¬
00

P ∧Q P ∨Q

Q

00nn

¬ .. ¬Q

82 CHAPTER 7. BICOQ AND B

7.1.1 A quick comparison

Shallow and deep approaches have, of course, pros and cons [WN04]. The standard view
is that shallow embeddings require less time to develop, and are appropriate to study
programs of the guest language, while deep embeddings are long and complex to develop
but permit meta-theoretical analyses of the guest language – such as the influence of the
reduction strategy. Indeed, considering the examples of the previous paragraph, with the
shallow embedding the translation is straightforward, but only the deep embedding allows
for defining and comparing alternative evaluation relations or functions.

Using the vocabulary of Chapter 6, we would also argue that shallow embeddings
can address extensional considerations, why deep embeddings are required for intensional
considerations. That is, in a shallow embedding a guest redex is translated into a host
redex which is evaluated, whereas in a deep embedding we keep the structure of the guest
expression and we are able to analyse it (for example by pattern-matching). Let us consider
once more the examples of the previous paragraph. Starting from the guest redex 1̇+̇2̇, the
shallow embedding produces 3, not memorising the fact that it is the result of an addition1;
on the contrary with the deep embedding we preserve the structure of the expression, and
can therefore apply for example factorisation or other structural optimisations.

Yet the characteristic that we are concerned with, considering our validation objective,
is the accuracy of the mechanisation: a deep embedding allows for an exact representation
of the syntax and semantics of the guest logic – or at least to identify and master the
deviations – whereas a shallow embedding appears to us as implicitly enforcing a form of
interpretation whose validity can be difficult to justify.

Indeed, it is natural in a shallow embedding to use “similar” constructs of the host
logic to represent constructs of the guest logic:

Example 7.1.3 (Shallow embedding of disjunction) We consider the following trans-
lation for the disjunction:

JṖ ∨̇Q̇K→ JṖ K ∨ JQ̇K

This rule may appear reasonable, but it is not always valid: P∨¬P for example is provable
in the B classical logic but generally not in the Coq constructive logic, therefore a too
straightforward translation of the guest logic into the host logic can change its nature.

Much more devious examples can be discussed (for example the representation in a
type theory of sets and functions defined in a set theory), showing how easy it would
be to loose completeness (provable statements of the guest logic are not provable in the
host logic) or correctness (unprovable statements of the guest logic are provable in the
host logic), without even knowing it. This is especially relevant if we are questionning the
guest logic, and thus cannot trust our intuition about its semantics and the validity of the
translation; this chapter will definitely illustrate our point.

Of course, this discussion is only relevant because of our objective: the validation of the
B logic as it is (that is as described by the B-Book and implemented in the various tools),
and as applied in numerous safety or security projects. This does not appear manageable
in a shallow embedding, as we do not know how to identify and manage the possible
deviations resulting from a too straightforward translation.

1In a system such as Coq for example, once defined a function, it is not really possible to analyse
the structure of this function. That is, we cannot for example test whether the function is an if between
two alternatives, or if it indeed depends upon all its declared parameters. The only possible actions are
extensional, that is we can evaluate the function for different values of its parameters – the black box
vision.

7.1. DEEP AND SHALLOW EMBEDDINGS 83

On the contrary, with slightly different objectives, a shallow embedding may appear as
a much more efficient approach. That is, a shallow embedding can be used for example to
promote interesting concepts of a language into another one, or to allow for the cooperation
of unrelated tools (such as using in cooperation different provers). It is also perfectly
relevant to develop alternative tools for the B method, or even richer B theories, that can
be applied to new developments.

7.1.2 Why embedding B?

Both deep and shallow embeddings of B in higher-order logics have been described in
several papers, with numerous techniques, objectives and results. We just provide a short
overview of a few of these works hereafter.

P. Chartier [Cha98] presents a formalisation of the Gsl and the concept of B machines
in Isabelle/Hol as a foundational work toward the development of mechanically checked
tools for the B method (such as a proof obligations generator). It mixes deep and shallow
approaches, and is presented by its author as a semantic embedding. For example, B
predicates and expressions are not defined syntactically, but are functions from states to
booleans and values, respectively; similarly, the substitutions are represented as before-
after operators on states, then related to the presentation given in [Abr96].

J-P. Bodeveix, M. Filali and C. Muñoz [BFM99] also formalise the Gsl, this time in the
higher-order logics of Coq and Pvs; this work is partially based on a shallow embedding
of B in Pvs described in [Muñ99], describing the tool Pbs which acts as a compiler for B
machines producing a Pvs file. Again, the approach mixes deep and shallow techniques.
Substitutions of the Gsl are initially described through the set transformers model of
[Abr96] (that is a substitution S is described by pre(S) and rel(S)); the Gsl is not directly
a syntactical construction, yet some meta-theoretical considerations are discussed (such as
semantics for parallel composition). But one of the objectives of these embeddings is also
to promote the B development methodology to Coq and Pvs.

With a similar objective, S. Boulmé discusses in [Bou07] a formalisation of a Hoare
logic with an associated refinement in Coq. It defines a higher-order framework enriched
with non functional features, in which a specification-driven methodology can be applied
thanks to the use of a Gsl-like language.

J-P. Bodeveix and M. Filali further consider B in [BF02], describing an embedding
of B in Pvs, but focusing this time on the type-checking mechanisms of the B method
(which are called well-formedness verification mechanisms in this memoir); a type-checker
is derived from this development.

A shallow embedding of the B logic in PhoX and and Coq is also presented in
[RCMP04, CM09], the main objective being the development of a prover. This prover
is also used to validate the results of the B-Book, a few oversights being identified.

As mentionned, we consider that shallow embeddings are likely to introduce a form
of interpretation, but it is fully acceptable when the objectives are to promote some of
the B concepts – for example the specification and development language as well as the
refinement-based methodology – in other formal methods. It is also justifiable to develop
mechanically checked tools with a shallow embedding, noting however that such tools are
likely to be usable only for new developments as the correspondance between the B method
and its embedded version may not be managed2.

2We do not want to start here a philosophical discussion about the merits and drawbacks of the various
logics. From an engineering point of view, the existence of a formal tool without bugs (possibly leading to
paradoxes) is much more important than the precise logic enforced by such a tool.

84 CHAPTER 7. BICOQ AND B

Our main objective is however different. The B method is frequently used for security
developments and its validity has to be evaluated; it is important to know, for an entity
such as the Anssi – delivering Common Criteria certificates in France – what is the
level of confidence that one can grant to a system proven using this method, and how to
improve this level of confidence. Indeed, an unknown glitch in a formal method can either
be a source of accidental weaknesses, or even a mean for a malicious developer to trap a
system while providing a formal proof of compliance and getting a certificate. We do not
want to promote a variation of B, but to validate B as it is described in the B-Book.

With this objective, a reasonable and controlable level of accuracy is required. The
translation in a shallow embedding is difficult to define but also to defend against a skep-
tical independent evaluator. On the contrary a deep embedding makes the justification
easier, and clearly separates the host and the guest logics: in our case, for example, ex-
cluded middle, provable in the B logic, is not promoted to the Coq logic.

To illustrate the subtle questions arising when dealing with a translation, we have
mentionned in the previous paragraph the example of the disjunction between a classical
logic and a constructive logic; one can also consider the tricky exercise represented by the
encoding of B functions into Coq. In a very shallow approach, one can decide to represent
B functions for example as Coq functions; this is however in general inappropriate, as B
functions are described as relations (that is sets) and are possibly partial and undecidable.
An intermediate approach, adopted for example in [CM09], is to represent B functions as
Coq relations satisfying the condition ensuring that each value of the domain has at most
one image. In a deep approach, such as in BiCoq, B functions are B relations, that is B
subsets of B cartesian product of B sets.

Considering the objective of accuracy and validation, we should mention [BDFF04]. It
is indeed based on a deep embedding of the B logic in Coq, to validate the so-called Base
Rules used by the prover of AtelierB. This work has allowed for the identification of
several problems related to unwanted captures of names, but admits standard B results,
whereas they definitively deserve some consideration, as we will see in Section 7.2.7.

Note that the validation of B is, in our view, a sufficient justification for the develop-
ment of such a deep embedding. Yet it is reasonable to also try to further benefit from it,
considering the important investment that it represents. This is why we also use this deep
embedding to develop a mechanically checked prover for the B logic, and to prove new
results about the B logic; both aspects are presented later in this chapter. For the sake
of completion with regard to proven or trusted B tools, we also mention, in addition to
[Cha98, BF02], the description in [CK98] of a prover for the B logic as a rewriting system
encoding the inference rules.

7.2 Embedding the B logic

7.2.1 Syntax

Given a set of identifiers I, the B logic syntax described in the B-Book [Abr96] defines
predicates P , expressions E, sets S and variables V as follows:

7.2. EMBEDDING THE B LOGIC 85

Definition 7.2.1 (B logic syntax)

P , P∧P

| P⇒P

| ¬P

| ∀ V · P
| E =E

| E∈S

| [V :=E]P

S , BIG

| ℘(S)

| S×S

| {V |P}

V , I

| V, V

E , V

| S

| E 7→E

| C (S)

| [V :=E]E

Beyond the standard symbols for the logical connectors and the set operators, the following
notations are used:

Notation 7.2.1 (B logical notations)

- [V := E]T represents the application of the assignment V := E – a substitution of the
Gsl– to the term T (that is a predicate or an expression);

- V1, V2 is a list of variables;

- E1 7→E2 is a pair of expressions – note that in the B-Book, pairs are often abusively
denoted with a “,” instead, that is the notation used for lists of variables;

- C is the choice operator, extracting an unspecified value of a set;

- ℘ is the powerset operator, that is the set of all subsets of a set;

- BIG is a (infinite) set constant;

- P⇔Q denotes P⇒Q ∧Q⇒P ;

- P∨Q denotes ¬P⇒Q,

- ∃ V ·P denotes ¬∀ V ·¬P ;

- S⊆T denotes S∈ ℘(T).

This syntax is further constrained by well-formedness rules3 in the B-Book. For
example, comprehension sets, whose syntax is {V |P} with V a variable and P a predicate,
are required to be of the form {V |V ∈S∧P} with V not free in S, to avoid Russell ’s paradox.

Our embedding introduces several modifications of the syntax of the B logic to correct
minor deficiencies detected during the formalisation, or to optimize the representation.
Whereas the accuracy is an important objective, these changes have been considered ac-
ceptable; and at least we are able to clearly trace them.

The most important one is the use of de Bruijn indexes to tackle the standard prob-
lems of clashes and captures of named variables. These difficulties are addressed in the B
logic through numerous side conditions associated to definitions and theorems. Our initial
attempts to follow the same principles were unfruitful; it was not efficient, or even man-
ageable, in our deep embedding. Using de Bruijn indexes, bound variables are replaced
by natural values that are pointers to their binder, and these problems do not appear.
Furthermore, the use of a de Bruijn representation helps to spot a few oversights in the B

3These rules are called type-checking rules in the B-Book, but we prefer to avoid this expression in the
context of the embedding, to avoid confusion with the type checking of Coq.

86 CHAPTER 7. BICOQ AND B

theory. Indeed, trying to reason on two different levels of representation leads to subtle
observations about captures for example. The details and techniques associated to the
management of de Bruijn indexes are described in the next chapter; we just provide here
a short example to give the intuition about how they work.

Example 7.2.1 (de Bruijn indexes) The same proposition has two representations:

Standard representation ∀x·(x∈{y | y∈N∧y≤5} ⇒ x≤5)

de Bruijn representation ∀(0∈{0∈N∧0≤5} ⇒ 0≤5)

In the de Bruijn representation, the underlined natural values are indexes, ∀ is the raw de
Bruijn universal quantifier and {|} the raw de Bruijn comprehension quantifier. The index
0 represents a variable bound by the closest parent quantifer, 1 by the next closest parent
quantifier, and so on.

The use of a de Bruijn representation is nothing more than a technical approach to avoid
problems related to name management. Being not relevant with the problem of the vali-
dation of the B logic, we have dedicated a specific effort to provide tools defining a form
of standard representation, masking the awkward details. Except for a few exceptions we
do not need to consider further the de Bruijn representation in this chapter.

One of the major visible consequences of using a de Bruijn representation is that bind-
ings over lists of variables, often used in the B-Book, can not directly be represented in
our embedding. Whereas it is possible to parameterise de Bruijn binders by a natural
value to describe the capture of several indexes, we have not retained this approach which
requires to use addition and substraction on indexes (the current version only need suc-
cessor and predecessor). On the other hand, our embedding has also emphasised the fact
that multiple bindings appearing in the B-Book are often invalid according to the rules
of the B-Book. Consider the following example:

Example 7.2.2 (Multiple bindings in standard B)

{V1, V2 |V1, V2∈S1×S2∧P}

Indeed, well-formedness requires comprehension sets to be of the form {V | V ∈S ∧ P} with
V not free in S. When looking at this example, the first occurrence of V1, V2 has to denote
a list of variables (because of the syntax), but the second occurrence is in fact an abuse of
notation for a pair V1 7→ V2. However, this analysis also means that we are not satisfying
the constraints set forth by the well-formedness checking. We have not discovered a way
to write such syntactically correct terms while respecting the well-formedness rules.

Fortunately, such multiple bindings can be viewed as syntactic sugar. We can indeed
consider bindings on a single variable, and interpret for example {E |E∈S ∧ P}, with E an
expression, as a friendly notation for {V | V ∈ S ∧ Q ∧ P}, where Q existentially quantifies
the variables appearing free in E over the predicate V =E – this is similar to the notation
{2 x+1 | x∈N} to describe the set of odd natural numbers.

Another adaptation that we have done in BiCoq is to merge B expressions, sets and
variables in a single type to enrich the B syntax which is too strict.

First of all, we do not need to consider multiple variables, because their main use is
related to multiple bindings – collapsing the syntactical category of variables into a single
construct. Furthermore, if the distinction between sets and expressions in the syntax may
appear useful, to forbid notations such as E ∈ E, the choice operator is syntactically an

7.2. EMBEDDING THE B LOGIC 87

expression. That is, whereas C (℘(S)) is clearly a subset of S, it is an expression and therefore
the predicate E∈C (℘(S)) is syntactically ill-formed. By merging the three syntactical sorts
V , E and S in a single one, we allow for variables representing sets, notations such as
E∈C (℘(S)), and so on. Of course this also creates new syntactical terms such as E∈E, but
these have no more semantics than the terms such as S∈S allowed in standard B.

Therefore, the syntax of the B logic is embedded (with dotted notations) in Coq as
follows4:

Definition 7.2.2 (BiCoq syntax) I being the set of indexes for the de Bruijn notation
– that is N – the syntactical sorts P (representing B predicates) and E (representing B
expressions, sets and variables) are defined by:

P , P∧̇P
| P⇒̇P
| ¬̇P
| ∀P
| E=̇E
| E∈̇E

E , χ̇I
| E ˙7→E
| Ċ (E)

| Ω̇

| ℘̇ (E)

| E×̇E
| {E | P }

Ω̇ represents the B constant BIG and χ̇ unary de Bruijn variables

Notation 7.2.2 T,P∪E denotes the type of B terms.

Notation 7.2.3 χ̇i denotes the application of constructor χ̇ to i :I.

The B binders ∀V ·P and {V |P} are represented by the constructors ∀ and {| }, that are
raw de Bruijn binders: as indicated previously, they are not parameterised by a variable
name and only bind a single index (variable).

The constructor { | } is further modified to take into account the associated well-
formedness rule {V | V ∈ S ∧ P} with V not free in S. This constructor therefore has two
parameters, the left expression representing S and the right predicate representing P ;
the non-freeness condition is ensured by considering this constructor as a binder only for
its right parameter. Intuitively, this corresponds to the standard notation λx : T ·E in
simply-typed λ-calculus, where the λ captures x in E but not in T . This modification
very efficiently bridges the gap between syntactically correct terms and well-formed ones.
Intuitively, rather than forbidding V to appear free in S in {V | V ∈S ∧ P}, we just decide
that any V appearing free in S is not captured by { | }.

It is clear that de Bruijn indexes have technical advantages but are not user-friendly.
In particular, the raw de Bruijn binders ∀ and { | } implicitly captures the first de Bruijn
index, and capturing a specific variable requires first some transformations. As detailed
in Sections 8.1.2 and 8.1.5, to provide a friendly presentation for users and readers, we
enrich our syntax with a form of syntactic sugar by defining Coq functions mimicking B
natural notation with names.

Notation 7.2.4 (Functional universal quantification) ∀̇i·P denotes the invocation of
the functional universal quantification, a function with parameters i :I and P :P, computing
the de Bruijn term representing ∀V ·P , V being encoded as the index i

4This is a slightly simplified presentation focusing on aspects relevant for the validation objective.

88 CHAPTER 7. BICOQ AND B

Notation 7.2.5 (Functional comprehension quantification) {̇i :S |̇P }̇ denotes the in-
vocation of the functional comprehension quantification, a function with parameters i : I,
S :E and P :P, computing the de Bruijn term {V | V ∈S ∧P}, V being encoded as the index i.

To some extent these functions can be seen as part of a parsing scheme:

Natural Representation ∀ V1 ·V1∈{V2 | V2∈E∧V1 =V2}
Parsing

vv

SS

Pretty-printingFunctional Representation ∀̇ i1 ·i1∈̇{̇i2 :E |̇ i1=̇i2}̇

Coq Computation ,,
de Bruijn Representation ∀(0∈̇ {E | 1=̇0 })

Note finally that we do not represent the B syntactical construct [V :=E]T , that denotes
the application of a substitution to a term. The assignment is the unique substitution
considered in the first chapters of the B-Book dealing with the B logic, whereas it is later
completed to the whole Gsl – which in practice defines another syntactical category.

However, we consider that the early introduction of the application of a substitution
in the B-Book is justified only by the need to express some of the inference rules, for
example the elimination of the universal quantifier. In our view, there is in [Abr96] a
confusion between the meta-language substitution used to describe inference rules, which
is denoted [V \E] in this memoir, and the Gsl assignment used as a form of programming
language in specifications or implementations in the B method.

We therefore define another Coq function to compute the de Bruijn term obtained by
the meta-language substitution:

Notation 7.2.6 (Meta-language substitution) [i\E]T denotes the invocation of the
meta-language substitution function with parameters i : I, E : E and T : T, computing the
de Bruijn term obtained by replacing any occurrence of the free variable i by E in T .

Provided this function, we have a way to encode the inference rules, without having to
deal too soon with the Gsl, and without having to introduce an additional syntactical
constructor in T.

7.2.2 Inference rules

Having formalised the syntax of the B logic as a datatype, the next step is to encode the B
inference rules as the constructors of an inductive provability predicate defining a familily
of dependent types. As indicated in Section 7.1, we are describing paths along which the
terms of our logic are “true”.

We denote Γ ˙̀ P the Coq type of B proofs of the predicate P under the assumptions
Γ (a.k.a. proof environment, a finite set of predicates); if it is inhabited then P is prov-
able assuming Γ. It is important to understand the difference between the two following
propositions:

- ¬(Γ ˙̀ P) means that there is no B proof of P assuming Γ.

- Γ ˙̀ ¬̇P means that there is a B proof of ¬̇P assuming Γ.

More generally, the deep embedding approach ensures a clear separation between the two
logics, and the reader should take care to check whether we are considering Coq operators

7.2. EMBEDDING THE B LOGIC 89

or embedded B operators (denoted with dotted notations) – this is especially relevant
for Section 7.2.8 comparing these operators. Note also that Coq operators, such as the
negation, do not apply to B predicates but to B sequents.

Thanks to the functions mimicking B natural notation with names, and a few additional
functions (for example iṙT is the Coq function representing the B condition V \T , checking
that V does not appear free in T) these constructors look very much like the standard B
rules. The translation is straightforward, merely a syntactical one, limiting the risk of
error – and more convincing for an independent evaluator.

The first serie of rules is self explanatory5:

Definition 7.2.3 (Provability predicate, part 1) In the following table, the standard
B inference rules are on the left side, and their representation in BiCoq on the right side.

Reading for example the second rule, the standard B version claims that if the predicate
P appears in Γ (a side condition, as it is not a sequent of the B logic) then Γ ` P ; its
translation is a constructor, whose name is left implicit here, that provided a Coq proof
of P ∈Γ (where ∈ is a predicate defined in Coq) builds a term whose type is Γ ˙̀ P .

P `P
is encoded by nothing (derivable rule)

P appears in Γ

Γ`P
P ∈Γ→ Γ ˙̀ P

Γ′ includes Γ Γ`P

Γ′`P
Γ⊆Γ′ → Γ ˙̀ P → Γ′ ˙̀ P

Γ`P Γ, P `Q

Γ`Q
nothing (derivable rule)

Γ`P⇒Q

Γ, P `Q
Γ ˙̀ P⇒̇Q→ Γ, P ˙̀ Q

Γ, P `Q

Γ`P⇒Q
Γ, P ˙̀ Q→ Γ ˙̀ P⇒̇Q

Γ`P Γ`Q

Γ`P∧Q
Γ ˙̀ P → Γ ˙̀ Q→ Γ ˙̀ P ∧̇Q

Γ`P∧Q

Γ`P
Γ ˙̀ P ∧̇Q→ Γ ˙̀ P

Γ`P∧Q

Γ`Q
Γ ˙̀ P ∧̇Q→ Γ ˙̀ Q

Γ, Q`P Γ, Q`¬P

Γ`¬Q
Γ, Q ˙̀ P → Γ, Q ˙̀ ¬̇P → Γ ˙̀ ¬̇Q

Γ,¬Q`P Γ,¬Q`¬P

Γ`Q
Γ, ¬̇Q ˙̀ P → Γ, ¬̇Q ˙̀ ¬̇P → Γ ˙̀ Q

Γ`E = E
Γ ˙̀ E=̇E

The two rules for the universal quantifier are encoded as follows:
5By abuse of notation, we describe side conditions as antecedents.

90 CHAPTER 7. BICOQ AND B

Definition 7.2.4 (Provability predicate, part 2)

Γ`P V \Γ
Γ`∀ V ·P

is encoded by iṙΓ→ Γ ˙̀ P → Γ ˙̀ ∀̇ i·P

Γ`∀ V ·P
Γ` [V :=E]P

Γ ˙̀ ∀̇i·P → Γ ˙̀ [i\E]P

Of course, we use here the functional representation, which is close enough to the standard
B notation to ensure a straighforward (and unquestionable) translation. Note however
that these constructors of the provability predicate do not encode rules but schemas. The
consequences Γ ˙̀ ∀̇ i·P and Γ ˙̀ [i\E]P of these two rules are not syntactical terms that can be
matched, but denote the applications of a function, for which unification is not immediate.
This is discussed in the next paragraph.

The next serie of rules applies the same principles, except for the fact that we also
decompose complex rules into several simpler ones to ease their use:

Definition 7.2.5 (Provability predicate, part 3)

V \S

Γ`E∈{V | V ∈S ∧ P}
⇔ E∈S ∧ [V :=E]P

is encoded by
Γ ˙̀ E∈S → Γ ˙̀ [i\E]P → Γ ˙̀ E∈{̇i :S |̇ P }̇
Γ ˙̀ E∈{̇i :S |̇ P }̇ → Γ ˙̀ E∈S

Γ ˙̀ E∈{̇i :S |̇ P }̇ → Γ ˙̀ [i\E]P

Γ`E =F Γ` [V :=E]P

Γ` [V :=F]P
Γ ˙̀ E=̇F → Γ ˙̀ [i\E]P → Γ ˙̀ [i\F]P

V \S

Γ`∃ V ·V ∈S⇒C (S)∈S
iṙE → Γ ˙̀ ∃̇ i·i∈̇E → Γ ˙̀ Ċ (E)∈̇E

V \S, T

Γ`S∈℘(T)

⇔∀ V ·V ∈S⇒V ∈T

iṙE1×̇E2 → Γ ˙̀ ∀̇ i·i∈̇E1⇒̇i∈̇E2 → Γ ˙̀ E1∈̇℘̇(E2)

iṙE1×̇E2 → Γ ˙̀ E1∈̇℘̇(E2)→ Γ ˙̀ ∀̇ i·i∈̇E1⇒̇i∈̇E2

V \S, T

Γ`∀ V ·V ∈S⇒V ∈T

∧∀ V ·V ∈T⇒V ∈S

⇔S =T

Γ ˙̀ E1∈̇℘̇(E2)→ Γ ˙̀ E2∈̇℘̇(E1)→ Γ ˙̀ E1=̇E2

The next B inference rule claims that the constant set BIG is infinite; this predicate is
in fact defined in [Abr96] through a fixpoint extracting value from its parameter using C .
As it is not reasonable to unfold this complex definition to be able to express this rule, we
once more deviate from the B logic by introducing a new syntactical constructor ω :N→ E,
representing an enumerable quantity of values belonging to BIG:

Definition 7.2.6 (Provability predicate, part 3)

` infinite(BIG)
is encoded by Γ ˙̀ ωi∈̇ Ω

i 6=j → Γ ˙̀ ¬̇ ωi=̇ωj

Finally, the last B inference rule, related to the semantics of the cartesian product,
deserves specific analysis and is discussed in Section 7.2.7.

7.2. EMBEDDING THE B LOGIC 91

7.2.3 Raw inference rules

As indicated, we use in the embedding of the inference rules of the B logic the so-called
functional representation, that is considering for example the universal quantifier we favour
the expression ∀̇ i·P , denoting the invocation of a function, instead of ∀P which is a term
of our syntax. It is also true for the rules dealing with comprehension sets, and for the
rules in which the meta-language substitution appears.

However, such rules being applied backward during proof, one has to note that these
rules are in fact encoded as schemas. Indeed, if we have to prove a universally quantified
predicate, we can decide to apply the first rule for universal quantification6. However, this
predicate is not always of the form ∀̇ i·P ; it can be in the raw form ∀P , not matching our
functional pattern.

Note that in most of the cases, working within Coq that does not automatically reduces
β-redexes, we often start with terms in the functional representation, and we preserve this
representation by applying rules expressed in the same paradigm. In a prover using the
same techniques, this would correspond to using the de Bruijn representation only for
internal computations, whereas unification is done directly on the natural representation
– that is before parsing or after pretty-printing.

Yet if we have to deal with a raw universal binder, there are several possible approaches
in BiCoq. Indeed, we define in our development a functional application, denoted @, which
is best described here as the reverse of the functional universal quantification:

Notation 7.2.7 (Functional application) P@E denotes the invocation of the functional
application, a function with parameters P : P and E : E. This function is partial, applying
only to universally quantified predicates (this is encoded in Coq by an additional proof
parameter which is left implicit here); P@E computes the de Bruijn term representing the
instantiation of the quantified predicate P at E.

Proposition 7.2.1 (Functional application property) The functional application is
such that:

(∀̇ i·P)@E = [i\E]P

Proposition 7.2.2 (Functional abstraction inversion) For a raw universally quan-
tified term, a representation using the functional universal quantification can be obtained
as follows:

i\∀P ⇒ ∀P = ∀̇ i·((∀P)@χ̇i)

The point is that the functional application works directly on the internal de Bruijn
representation of universally quantified terms, without having to transform it into the
functional representation. That is, whereas we have embedded the B inference rules using
a straightforward translation relying on the functional notation to ensure traceability and
accuracy, we also prove the equivalent raw versions in the internal de Bruijn representation.
For example the raw version of the universal quantifier rules is as follows, noting that the
first of these rules does not conclude with the invocation of a function:

6The situation is similar for the second rule for universal quantification, that can only be applied
provided the term is of the form [i\E]P . For this rule however, our embedding does not create additional
complexity, as the problem is the same in the B logic: what we generally have is a term of the form P ,
and given an index i we have to build a term P ′ such that P = [i\E]P ′ (pattern form).

92 CHAPTER 7. BICOQ AND B

Proposition 7.2.3 (Raw universal quantifier rules)

i\Γ, ∀P ⇒ Γ ˙̀ (∀P)@χ̇i ⇒ Γ ˙̀ ∀P

Γ ˙̀ ∀P ⇒ Γ ˙̀ (∀P)@E

This describes the different forms of terms and rules that can be manipulated in Bi-
Coq – and the different associated strategies. In practice, the proofs of standard results of
the B logic are easy to reproduce using only the functional representation and the encoded
inference rules – in other words, it is possible to exploit BiCoq without even knowing that
it is based on a de Bruijn representation. The other variants can be used for technical
results, such as those described in Section 7.5.2 for example, but also provides a form of
metatheory about our de Bruijn representation.

Indeed, the definition of the functional quantifications and the functional application is
required to deal with all types of proofs in BiCoq, but they also emphasise that the meta-
language substitution which is used here is not primitive. As indicated by the application
property herebefore, rather than defining the meta-language substitution function, we can
emulate it by applying the functional universal quantification followed by the functional
application. This is further discussed in Section 8.1.6.

7.2.4 A remark about notations

We would like to mention the benefits derived from the use of appropriate notations. It is
indeed possible, in Coq, to define complex notations using Utf-8 symbols. It allows for
much shorter, but also much clearer definitions and statements.

This is especially important for BiCoq. In such an embedding, there is a great number
of concepts to deal with, and any help to distinguish between host constructs and guest
constructs is welcome.

Furthermore, with the aim of validating the B logic, the improved readability by B
experts not comfortable with Coq notations or independent evaluators resulting from
using the standard B presentation is important.

This is illustrated by the following comparison of the scan of a theorem as it appears
in the B-Book, and the snapshot of its definition in BiCoq sources:

7.2.5 Checking standard B results

Having embedded the syntax of B terms and the inference rules of the B logic, we are able
to formally check the validity of B theorems and proofs. This effort has been conducted
for all propositional calculus results, most of the predicate calculus results, but only some
of the results dealing with more advanced set constructs.

Nearly all the theorems and proofs are validated through our review; a few significant
exceptions are however identified, and discussed in the next paragraph.

To assist the proof construction, we have developed dedicated proof tactics for the B
logic using the Ltac language [Del00] of Coq. Beyond the administrative tactics (e.g.

7.2. EMBEDDING THE B LOGIC 93

providing a fresh variable), we also provide in BiCoq more advanced tactics, for example
the propositional calculus procedure described in [Abr96].

As indicated in Section 7.2.3, for some basic theorems, we also provide the so-called
raw version using the internal de Bruijn representation and dedicated functions such as
the application. These results are of course technical, but as pointed out they have some
practical and metatheoretical interests. Note for example that they change the very nature
of the side conditions; syntactical (administrative) side conditions disappear, and seman-
tically relevant ones are transformed. To illustrate our point, let us reconsider the various
versions of the universal quantification rules:

Example 7.2.3 (Comparing standard and raw inference rules)

iṙΓ→ Γ ˙̀ P → Γ ˙̀ ∀̇ i·P iṙΓ→ iṙ∀P → Γ ˙̀ (∀P)@i→ Γ ˙̀ (∀P)

Γ ˙̀ ∀̇i·P → Γ ˙̀ [i\E]P Γ ˙̀ ∀P → Γ ˙̀ (∀P)@E

The standard version of the first rule for example can be applied on a term of the form
∀̇ i ·P provided i does not appear free in Γ – that is, in practice, the rule can always be
applied, but an alpha-renaming can be required first. On the contrary the raw version can
be applied to any universally quantified term; the index i is not imposed by the term to
which the rule is applied, but chosen (fresh).

7.2.6 About B sets constructs

We have indicated that only a few of the results of the B-Book have been checked so far
for set constructs. It is indeed easy to deal with simple results, such as the properties of
inclusion. However, other B constructs are much more difficult to capture.

For example, the union of two sets is defined in [Abr96] as follows:

Definition 7.2.7 (B standard union)

S1 ∪ S2 , {V |V ∈S ∧ V ∈S1 ∨ V ∈S2}

There is a lot to say about this definition. The first immediate observation is that the
set S appears only on the right side of the equality; it is a form of implicit parameter. In
the B-Book, this set is the superset of S1 and S2, that is intuitively the biggest set that
contains both S1 and S2 – this is not the type theory (disjoint) union, but the B union,
which is only valid for two subsets of the same set. The expression S1 ∪ S2 does not pass
well-formedness checking if there is no such set.

Of course, this is not very convenient in BiCoq. There are two possible approaches:

- computing the superset S from S1 and S2, by analysis of the syntactical structure of
S1 and S2, with rules such as for example super({V |V ∈S ∧ P}) = super(S);

- embedding the union as an operation with three parameters, that is S1 ∪S S2.

Interestingly, the first approach is probably closer to the spirit of the B-Book definition,
but it is however inapplicable when dealing for example with abstract sets that can appear
in the SETS clause of a B machine – being abstract, such sets cannot be represented in the
syntax of the B logic and are in fact a form of meta-variable which is expected to be refined
at a later stage into a concrete set. A possible alternative would be to enrich the B syntax
with such abstract sets, using a dedicated space of names – as it is suggested by some of
the well-formedness rules of the B-Book introducing the notation given(S) to deal with

94 CHAPTER 7. BICOQ AND B

an abstract set S. Yet we favour the second approach, expecting some enhanced parsing
scheme to produce the appropriate set when analysing a standard B representation; note
that we have not developped such a parsing.

A second observation, discovered thanks to the use of a de Bruijn representation, is
that the standard B definition of union does not forbid the variable V to appear free in S1

or S2. That is, there is a risk of capture with unpredictable consequences on the semantics
of the unions of two sets. This is something which is forbidden in our definition of union:

Definition 7.2.8 (BiCoq union) The embedding of the B union is defined as follows,
with F denoting a function computing a fresh variable with respect to its parameters7:

S1∪̇SS2 , let i :=F(S1, S2) in {̇i :S |̇ i∈S1 ∨ i∈S2}̇

Note that this definition is valid also when S1 and S2 have no common superset; it can be
modified as follows to reduce the consequences of this problem by ensuring that the union
is empty if the two sets are not compatible:

S1∪̇SS2 , let i :=F(S1, S2) in {̇i :S |̇S1⊆S ∧ S2⊆S ∧ (i∈S1 ∨ i∈S2)}̇

For situations in which the manipulated sets are concrete (fully defined using the B syntax),
we can define the superset function computing the superset and consider a version closer
to the B union, defined by:

S1∪̇S2 , S1∪̇super(S1)S2

Similar observations can be made about other B constructs, such as the intersection,
the difference, the singleton, or the λ-abstraction – that is in B a function which is repre-
sented by a set of pairs. We therefore consider that these definitions cannot be embedded
accurately; instead of pursuing an important effort on these concepts, it would be more
efficient to review and clarify some of the standard B definitions.

7.2.7 Validity of the B logic

As mentionned in Section 7.2.1, the formalisation of the B syntax, rules and constructions
in Coq underlines some glitches, mainly related to the confusion between list of variables
and ordered pairs of expressions, both being abusively denoted with the symbol “,” in
the B-Book. Section 7.2.6 also reveals inadequate definitions, using implicit parameters or
allowing for accidental captures of variables. But the formalisation of the B inference rules
is much more instructive; whereas it does not reveal any inconsistency, various problems
have been pinpointed.

For example, some of the inference rules, the so-called Axiom Rule (P ` P) and the
Modus Ponens, are provable using the other rules. Therefore the embedding formalises
such rules as theorems rather than as constructors of the provability predicate.

Another deviation between the B inference rules and our formalisation is related to
the correction of the definition of the cartesian product. The standard B inference rule is:

Definition 7.2.9 (B inference rule for cartesian product)

`(E 7→F)∈(S×T)⇔ (E∈S)∧(F∈T)

7Working directly with raw de Bruijn terms, a simpler definition of union, not using F , is possible.

7.2. EMBEDDING THE B LOGIC 95

However, our analysis shows that with this rule, the following results, presented in the
B-Book as theorems, are in fact not provable:

` E17→F1 =E27→F2 ⇒ E1 =E2

` E17→F1 =E27→F2 ⇒ F1 =F2

` S1⊆S2 ∧ T1⊆T2 ⇒ S1×T1⊆S2×T2

The first two theorems are provided in [Abr96] with a proof that is in fact incorrect, due
to a confusion between lists of variables and pairs of expressions; the third theorem is
considered trivial and left as an exercise to the readers. To our knowledge, these problems
were not known by the B community – whereas B implementations appear to correct the
flaws, consciously or not, as the theorems can indeed be checked with the provers.

The problem with the standard B inference rule for cartesian product is that it only
expresses a constraint for pairs belonging to a product. Yet it does not say that a product
only contains pairs, or that two pairs with different components are different. In our view,
it is unlikely that a shallow embedding approach would identify this problem, as it appears
quite natural to translate the B cartesian product as the Coq product.

For the correction, we replace the inference rule by two constructors of the provability
predicate in BiCoq, one dealing with the injectivity (two equal pairs have equal con-
stituents), and the other with the surjectivity (cartesian products only contain pairs):

Definition 7.2.10 (Provability predicate, part 4)

Γ ˙̀ E1 ˙7→E2=̇E3 ˙7→E4→Γ ˙̀ E1=̇E3∧̇ ˙̀ E2=̇E4

i1, i2ṙE∈̇(E1×̇E2)→ i1 6= i2→Γ ˙̀ ∃̇ i1 ·i1∈̇E1∧̇∃̇ i2 ·i2∈̇E2∧̇E=̇i1 ˙7→i2⇔̇E∈̇(E1×̇E2)

These modified rules can indeed be used to prove the expected results of the B logic.

7.2.8 Shallow embeddings revisited

Deep embeddings such as this one ensure a clear separation of the guest logic and the host
logic, allowing for a study of their relations as illustrated here with the B operators on the
left side and the Coq operators on the right side:

Proposition 7.2.4 (Relations between Coq and B logical operators)

Γ ˙̀ P1∧̇P2 ⇔ (Γ ˙̀ P1) ∧ (Γ ˙̀ P2)

Γ ˙̀ ∀̇ i·P ⇔ ∀ (E :E), Γ ˙̀ [i\E]P

Γ ˙̀ P1⇒̇P2 ⇒ Γ ˙̀ P1 ⇒ Γ ˙̀ P2

Γ ˙̀ P1∨̇P2 ⇐ (Γ ˙̀ P1) ∨ (Γ ˙̀ P2)

Γ ˙̀ ∃̇ i·P ⇐ ∃ (E :E), Γ ˙̀ [i\E]P

Γ ˙̀ E1=̇E2 ⇐ E1 =E2

96 CHAPTER 7. BICOQ AND B

Of course, the interesting results are those that are not equivalences. The example of
disjunction is very significant w.r.t. the difference between the classical logic of B and the
constructive logic of Coq.

For example, we have mentionned that the Excluded Middle is provable in B. That is,
it is always possible to provide a proof of ˙̀ P ∨̇¬̇P ; should the disjunction being directly
translated in Coq we would obtain (˙̀ P) ∨ (˙̀ ¬̇P) for any P , that is a proof that the B
logic is complete (i.e. such that it is always possible to prove or to refute any proposition),
which of course is not the case.

Such results can be seen as providing a formal justification (or refutation) for the
correctness and the completeness of the translation in a shallow embedding; one may
wonder whether it would be possible to automatically derive a shallow embedding from a
deep embedding, provided such results.

7.2.9 About the consistency of the B logic

The correspondances between B and Coq logical constructs detailed in the previous para-
graph do not provide any clue about the negation. This is indeed still a work to complete.

One of the direction is quickly dealt with:

¬(Γ ˙̀ P) ; Γ ˙̀ ¬̇P

Indeed, this would again be a proof of the completeness of the B logic: the fact that we
know that there is no proof of Γ ˙̀ P does not ensure that there is a proof of Γ ˙̀ ¬̇P .

The other direction is much more interesting:

Γ ˙̀ ¬̇P
?⇒ ¬(Γ ˙̀ P)

This is one of the possible expressions of the consistency of the B logic: if we know that
there is a proof of Γ ˙̀ ¬̇P , can we deduce that there is no proof of Γ ˙̀ P? It would be the
case if the B logic is consistent (provided the proof environment Γ is consistent as well).

Alternative formulations of the consistency of the B logic have been considered:

Definition 7.2.11 (Possible definitions for the consistency of the B logic)

B cons0 , ∀ (P :P), ¬(˙̀ P ∧ ˙̀ ¬̇P)

B cons1 , {P :P | ¬(˙̀ P)}

B cons2 , ¬(∀ (P :P), ˙̀ P)

B cons3 , ¬{P :P | (˙̀ P) ∧ (˙̀ ¬̇P)}

B cons4 , ¬(˙̀ ¬̇Ω̇=̇Ω̇)

B cons0 means that there is no predicate which is provable and refutable, B cons1 that
there exists a predicate which is not provable, B cons2 that it is false that all predicates
are provable, B cons3 that it is false that there exists a predicate which is provable and
refutable, and B cons4 that ⊥ cannot be proved in B. Fortunately, we prove:

7.3. EMBEDDING THE GSL 97

Proposition 7.2.5

B cons0⇒B cons1

B cons1⇒B cons2

B cons2⇒B cons3

B cons3⇒B cons0

B cons0⇒B cons4

B cons4⇒B cons1

That is, all these definitions are equivalent in the Coq constructive logic.
The proof of the consistency of the B logic itself is still to be done, but our feeling

is that most of the required tools are already available in BiCoq. Indeed, we provide a
strong induction principle on B proofs, which is expected to be usable for example to show
that any proof of ˙̀ ¬̇Ω̇=̇Ω̇ would have to rely on a smaller proof of the same sequent. Note
that the definition of the provability predicate is a form of model of the B logic, and the
objective of the consistency proof would be to show that at least one of the dependent
type Γ ˙̀ P is empty.

7.3 Embedding the Gsl

7.3.1 Syntax

The syntax of the Gsl is defined in the B-Book as follows:

Definition 7.3.1 (Gsl syntax)

G , skip

| V := E

| P |G
| P =⇒G

| G8G
| @V ·G
| G; G

Notation 7.3.1 (B notations)

- skip is the substitution doing nothing;

- V := E is the elementary substitution (not to be confused with the meta-language
substitution, cf. Section 7.2.1);

- P |G is the precondition;

- P =⇒G is the guard;

- G8G is the bounded choice;

- @V ·G is the unbounded choice;

98 CHAPTER 7. BICOQ AND B

- G ; G is the sequence;

The semantics are described in the next paragraph.
In addition, the parallel substitution is presented as a generalisation of the elementary

substitution. It is described directly by its semantics of predicate transformer, that is:

Definition 7.3.2 (B parallel substitution)

[V, LV := E, LE]P ⇔ [LV ′ := LE][V := E][LV := LV ′]P

Where V is a variable, LV a list of variables, E an expression, LE a list of expressions,
and LV ′ an ad-hoc list of fresh variables. That is, for example the substitution V1, V2 :=

V2, V1 swaps V1 and V2 provided V1 6= V2. Note that the syntactical category for parallel
substitutions is left implicit in the B-Book.

Our embedding, as for the logic, represents this new syntactical category with a few
adaptations. For example a parallel substitution is valid only provided the variables ap-
pearing on the left side all differ, and if the list of expressions on the right side has the
same length than the list of variables. For the sake of simplicity, we represent such parallel
substitutions using maps in M := I→ E8, a representation which naturally ensures such
well-formedness conditions and simplify the encoding of the associated semantics, as we
will see in the next paragraph.

On the other hand, maps can represent infinite parallel substitutions, something not
possible with the Gsl, so some care is required. Basically, maps are not finite, but we can
note that for any map M and any term T , there is a finite map M ′ such that T transformed
by M is equal to T transformed by M ′ – we just restrict the scope of M to the variables
appearing free in T . We can also provide a well-founded way to build any interesting map
with the two following operations:

Definition 7.3.3 (Maps primitive operations)

� :M := fun i′ :I→ χ̇i′

(i\E)⊕m :M := fun i′ :I→ if i= i′ then E else m i′

The map � associates any variable to itself, that is it can be used to describe skip; ⊕ allows
to overload a map with a pair (i, E), and can be used to build any parallel substitution
starting from �. In essence, � and ⊕ allows for the description of a well-founded subset in
M encompassing any parallel substitution of the B Gsl (cf. Section 7.5.2 for an associated
induction principle).

These concepts being introduced, we embed the Gsl syntax as follows:

Definition 7.3.4 (BiCoq Gsl syntax)

S , 〈I→E〉
| P |̇ S
| P ˙=⇒S
| S8̇S
| @ S
| S ;̇ S

8In fact maps are introduced earlier in our development to prove the results presented in Section 7.5.2
and detailed in Section 8.3.4; it is sensible to reuse them for the embedding of the Gsl.

7.3. EMBEDDING THE GSL 99

As previously, we use the dotted notations to mark guest constructs, the exception being
the raw de Bruijn binder @, which is not parameterised by a variable and only binds a
single variable, as in Section 7.2.1. And as previously, we also define a function providing
a form of natural notation:

Definition 7.3.5 (Functional unbounded choice) @̇ i·S denotes the invocation of the
unbounded choice function with parameters i : I and S : S, computing the de Bruijn term
representing the standard B substitution @ V ·S, V being encoded as i.

7.3.2 Substitutions as predicate transformers

To define the semantics of the Gsl constructs, we still use the same strategy of representing
application as an external operation. That is, we do not enrich the syntax of terms with
constructs like [S]T , preferring to define a function building the resulting term instead.

This function, defined only for predicates, is as follows:

Definition 7.3.6 (Functional substitution application)

Transform(P : P) : S→P , 〈m′〉 7→ [[m′]]P

| P ′ |̇ s′ 7→ P ′∧̇Transform P s′

| P ′ ˙=⇒s′ 7→ P ′⇒̇Transform P s′

| s1 8̇s2 7→ Transform P s1∧̇Transform P s2

| @ s′ 7→ ∀(Transform (↑P) s′)

| s1 ;̇ s2 7→ Transform (Transform P s2) s1

Here [[m]]T denotes the application of the parallel substitution defined by the map m

to the term T , and ↑ T the lifting of the term T – a standard operation on de Bruijn
terms discussed in the next chapter. In fact the B semantics of the unbounded choice in
associated with a side conditions about non freeness; in our embedding, thanks to the use
of the de Bruijn representation, this is replaced by appropriate operations on the terms
such as lifting, preventing automatically unwanted captures of free variables.

7.3.3 About refinement

We discuss now our attempts to capture the concept of refinement in our embedding.
As indicated, the substitutions defined by Gsl are encoded as constructors of a specific
syntactical type denoted S, and the semantics of a substitution as a Coq function in P→ P,
that is a predicate tranformer.

The straightforward embedding of the higher-order definition of the substitution re-
finement provided in the B-Book (cf. Section 3.1) is then the following:

Definition 7.3.7 (B higher-order refinement for substitutions)

SAvSC , ∀ (P :P), [SA]P⇒ [SC]P

Yet our objective is also to validate the transformation of this higher-order definition into
a first-order one, as it is described in the B-Book. This relies for example on the concepts
of aborting substitutions and terminating substitutions. Quoting [Abr96], the predicate abt

characterises the aborting substitutions, i.e. those which cannot establish anything, and
its negation trm characterises the terminating substitutions. This description is associated
to the following definitions:

100 CHAPTER 7. BICOQ AND B

Definition 7.3.8 (B aborting and terminating substitutions)

¬[S]P for any predicate P

abt(S)

¬abt(S)

trm(S)

At this stage, the formalisation in our embedding is definitively less straightforward. The
universal quantification on any predicate is trivial, but makes abt a predicate of the meta-
logic (or according to the B-Book a second order predicate). And its exact meaning is
unclear, even given the “formal” definition.

Let us consider more explicit notations (Coq being not so fond of implicit ones): [S]P

is a predicate, that is a term; yet to speak about true (provable) statements it is necessary
to consider instead the sequent ˙̀ [S]P . So the following definitions are possible candidates
to capture in our embedding the concept of aborting substitution:

Definition 7.3.9 (Possible definitions for abortion in BiCoq)

abt0(S :S) , ∀ (P :P), ˙̀ ¬̇[S]P

abt1(S :S) , ∀ (P :P), ¬ ˙̀ [S]P

abt2(S :S) , ¬∃ (P :P), ˙̀ [S]P

The formula abt0(S) claims that for any predicate P , it is possible to refute [S]P in the B
logic. The formula abt1(S) claims that for any predicate P it is impossible to prove [S]P

in the B logic. And abt2(S) claims that there is no predicate P such that [S]P is provable
in the B logic. The two first definitions could represent the formal definition of abt, the
alternatives being in using the negation of the B logic or the negation of the meta-logic
(i.e. the negation of the Coq logic), whereas the last definition better captures the textual
description. And the situation for defining termination is even worse.

We prove the following results:

Proposition 7.3.1

abt0(S)⇒abt1(S)

abt1(S)⇒abt2(S)

However we have not been able to prove any equivalence using the constructive Coq logic;
so it is still an open question to know which one to choose.

The B-Book definitions have therefore to be clarified. Additional sources regarding the
refinement theory, such as [BAW98, Bou07], should be considered to prove the equivalence
between higher-order definitions and first-order definitions, such as trm(S)⇔ [S]True. This
is still a work to do, and we will not consider further these questions in this memoir.

7.4 A proven prover

Up to now, the deep embedding has been justified by the objective of verifying the B
method, or more precisely at the current stage the B logic. Indeed, we are still missing
the representation of various set constructs and their associated theorems, as well as the
concept of refinement. It should also be noted that we have not yet attempted to represent
B machines, or the generation of proof obligations, and so on.

7.4. A PROVEN PROVER 101

This is however sufficient, at this stage, in demonstrating the interest of such a work,
and its feasibility. It is rather successful, pinpointing various unknown difficulties with the
theory itself, such as insufficient inference rules, invalid proofs, ambiguous or invalid defi-
nitions – some of these difficulties preventing straightforward progress of the embedding.

We consider this to be a sufficient justification for such a long and complex develop-
ment. Yet, it is easy to have further benefits with reasonable additional works, optimising
the gain to effort ratio. For example, deep embeddings can be used to develop mechani-
cally checked tools, as illustrated here by the development of a first-order prover for the
B logic which is validated in Coq (see also [RM05] for a similar approach).

This prover can be extracted from the embedding for example as an OCaml code that
can be compiled to be used independently of Coq. That is, we favour here the development
of a prover (or proof checker) which can be integrated in various environments, without
having to tackle with Coq or BiCoq.

7.4.1 Implementing decidable properties

Inference rules and theorems of the B-Book are often associated to various side conditions,
for example related to non freeness or the fact that a predicate appears in (belongs to) a
proof environment. These conditions can for example be described in Coq by inductive
relations mimicking precisely the definition of the B-Book.

With the objective of developping a proven prover, we need to provide functions com-
puting such conditions. A possible approach, in Coq, is to prove that a given predicate is
decidable, and to extract from this proof a program deciding the predicate. Yet this is not
the approach that we adopt in BiCoq, as the produced code – always correct – can be
rather surprising (cf. the example of division in Section 3.2). To favour a better control of
the code of these functions in terms of conciseness, efficiency, and readability, we therefore
adopt a different approach.

Indeed, it is also possible, using the Extraction command, to extract programs not from
proofs but directly by exporting functions (described in the internal Coq Ml language)
for example as an OCaml code. The idea is therefore to explicitly provide Ml functions
deciding predicates, and to extract these functions.

It is more efficient, adopting this approach, to formalize the generic relationship existing
between a predicate and a function deciding this predicate. For P a predicate over a type
T and f a function in T→B, P ∼f means that f decides P , that is:

Definition 7.4.1 (Implementation relation)

P ∼f , ∀(t :T), (f t=> ⇒ P t) ∧ (f t=⊥ ⇒ ¬P t)

P ∼f of course guarantees that P is decidable; furthermore the following properties hold:

Proposition 7.4.1

P ∼f ⇒ ∀(t :T), P t⇒ f(t)=>

P ∼f ⇒ ∀(t :T),¬P t⇒ f(t)=⊥

We also define folding as the conjunctive extension to lists as follows:

Definition 7.4.2 (Conjunctive folding)

Foldp(P) := fun (l : list T) 7→ ∀ (t :T), t∈ l→P (t)

Foldf (f) := fun (l : list T) 7→match l with [] 7→ > | h :: t 7→ f(h) ∧ Foldf f t

102 CHAPTER 7. BICOQ AND B

We can then show that if f decides P then the folding of f decides the folding of P :

Definition 7.4.3 (Monotony of implementation by folding)

(P ∼f) ⇒ (Foldp(P)∼Foldf (f))

That is, provided a function deciding freeness of a variable in a predicate, for example,
we can use this result to know that the folding of this function decides freeness in a proof
environment.

7.4.2 A proven prover

BiCoq includes dedicated functions written in the internal Coq Ml, thereafter named B
tactics, to emulate the application of B inference rules or theorems to sequents.

By providing such a dedicated piece of code for each of the inference rules of the B
logic, and by proving them correct, we got a correct and complete prover – that is, a result
can be proven with the prover iff it can be proven in the B logic. Of course additional B
tactics can be provided to represent the application of more complex theorems.

B tactics operate over a sequent, i.e. in a pair (Γ, P) : list P×P – not to be confused
with Γ ˙̀ P which is a type of B proofs. They return a list of such pairs. The sequent
passed as a parameter represents the goal, the returned sequents represent the subgoals;
if this list is empty that means that the B tactic has succeeded to prove the goal. In
case the tactic cannot be applied to a goal (because it has not the expected pattern), the
tactic does nothing and returns the list containing only the goal passed as a parameter
(the alternative is to return an option type, none indicating the inadequacy of the tactic
for the considered goal, or the absence of progress).

The following examples illustrate the concepts:

Example 7.4.1 (Axiom and conjunction tactics)

T∈(Γ: list P)(P :P) := if P ∈ Γ then [] else [(Γ, P)]

T i
∧(Γ: list P)(P :P) := match P with P1∧̇P2 → [(Γ, P1), (Γ, P2)] | → [(Γ, P)]

Following the same principles, numerous (much more complex) B tactics are provided in
our embedding, implementing theorems or even strategies, such as the decision procedure
for propositional calculus described in the B-Book.

For each B tactic T , the correctness is ensured by a proof that the goal is indeed
derivable from the subgoals, i.e. that if T (Γ, P)=[(Γ1, P1), . . . , (Γn, Pn)], then:

Definition 7.4.4 (Tactic correctness)

Γ1
˙̀ P1 ⇒ . . .⇒ Γn ˙̀ Pn ⇒ Γ ˙̀ P

This prover is not really usable in its current form, lacking unification algorithms,
automation and human-machine interface. Yet it can be coupled with other tools, for
example a B parser using the platform Brillant [CPR+05], or used as a proof checker
to validate B proofs produced by other provers, provided a common proof description
language. This last use is again of special interest in the context of security evaluations, as
a flawed prover (e.g. in which a paradox can be derived) is as dangerous as an inconsistent
theory. Separating the proof generation with advanced automation but relaxed constraints,
and the proof checking with a strict respect of the theory, appears to be a relevant strategy.

7.4. A PROVEN PROVER 103

7.4.3 Toward a certifying prover

There are for now two ways to build B proofs using BiCoq:

- Directly within Coq, using B provability predicate constructors and B theorems,
that represent in fact B proof terms (terms whose type is of the form Γ ˙̀ P);

- Using the prover, that is a set of Ml functions extracted from BiCoq and operating
purely at the syntactical level.

The second approach has the merit to be usable without knowing or even using Coq, as the
core engine of the prover is just a set of OCaml functions that happen to be mechanically
checked in Coq. Being correct, any result proven with it is a valid theorem of the B logic.
But how do we record a proof produced with this prover?

The simplest approach, maintaining the independency with Coq and BiCoq, is to
build a tree of identifiers and parameters to memorize function calls during proof construc-
tion. Such a tree is a proof script, that can be replayed – that is recomputed, something
which is not always immediate if advanced tactics are used (for example the decision pro-
cedure for propositional calculus). In fact, this can even result in portability problems, if
the machine on which we replay the proof is not as powerful as the one on which the proof
was developped; time out or memory overflow can then appear during verification. This
is a problem if an independent evaluator has to check the provided proofs.

The alternative is to record not a proof script but a proof term, in the sense defined by
the first approach herebefore (as for the Zenon prover [BDD07]). This does not change the
core engine of the prover, that has still to provide tactics operating at the syntactical level
to help the developer during proof construction; but instead of memorising the actions of
the developer, it builds a proof term. Such a proof term can then be easily checked using
BiCoq (by a simple invocation of the Coq compiler), therefore satisfying the de Bruijn
criterion.

This approach has several merits:

- The prover, in fact, does not need anymore to be correct, as any invalid proof
will produce an invalid proof term rejected during checking. That is it allows for
the development of prover focusing on automation and efficiency, correctness being
tackled by a different tool.

- It allows for an efficient cooperation between provers as it is more easy to compose
proof terms in the common language without having to question the validity.

- An independent evaluator can check any proof by a simple invocation of the Coq
compiler; he does not need to replay (recompute) the proof script, nor to use the
prover, nor even to know which prover was used. This can be important in industrial
contexts, when the access to the tool may not be guaranteed to all the actors of the
certification process, for example due to cost or intellectual property rights.

It would be straightforward to produce a branch of BiCoq only providing the elements
required for the definition of the provability predicate. Such a branch would act for BiCoq
as the core type-checker of Coq: a relatively small piece of code, trusted and sufficient to
check any proof. To have a more compact language however, the inclusion in this branch
of some theorems – intuitively acting as macros – can also be considered.

104 CHAPTER 7. BICOQ AND B

7.5 New results for the B logic

Another possible use of a deep embedding such as BiCoq, beyond the validation of the
theory and the development of mechanically checked tools, is to prove new (complex)
results. In fact, we can even prove results that would not be expressible in the guest logic,
by using features of the host logic.

This section illustrates this approach with the presentation of several theorems, that in
our view are interesting from a theoretical point of view, but also from a practical point of
view, as they offer the opportunity to define powerful B tactics for a prover easing human-
led proof construction or optimising automation. Furthermore, they seem to provide a
justification of current practices in existing B provers.

These results describe new forms of congruence rules, and allow for the replacement of
equal expressions or equivalent predicates. The B logic primitively includes an inference
rule for the Leibniz ’ law:

Definition 7.5.1 (B inference rule for equality)

Γ`E1 =E2 Γ` [V :=E1]P

Γ` [V :=E2]P

That is, if E1 =E2, we can replace occurrences of E1 in a term by E2. This is for example
the justification for replacing computations by their result (e.g. 1+2 by 3), or for unfolding
definitions – at least in first approach. Yet this inference rule has two limitations: it is
only dealing with expressions, and it cannot be used to replace expressions having a free
variable bound by the context in which they appear.

Let us consider a first illustration of these limitations:

Example 7.5.1 (Predicate replacement)

P1 ⇔ P2 ` P1 ∧Q⇔ P2 ∧Q

In the absence of predicate replacement in B, there is no way to express a generic proof
rule applicable here. Of course, this result can be proven with an ad hoc proof, but the
intuition claims that it is trivially true and does not deserve such a dedicated effort.

But our problem is more generic; consider these additional examples:

Example 7.5.2 (Bound terms replacement)

` ∀ x·x ∗ 0=0

` ∀ x·P ⇔ ∀ x·¬¬P

In this case, even provided Leibniz ’ rules for replacing expressions and predicates, these
rules cannot be applied here. Indeed, we cannot for example replace x∗0 by 0, as it contains
a variable x which is bound; similarly, the variable x may appear free in P , preventing a
straightforward conclusion for the second result.

Our last example introduces an additional level of complexity:

Example 7.5.3 (Conditional bound terms replacement)

y∈N, y 6=0 ` ∀ x·x∈N⇒ x/y≤x

This example uses an expression x/y which is in fact a definition. As previously, we cannot
justify the unfolding of this definition in its context, because the variable x is bound. But
the interesting aspect here is that this definition is conditional, that is the unfolding is
only justified provided y 6=0 (which is the case here).

7.5. NEW RESULTS FOR THE B LOGIC 105

7.5.1 Substituting predicates

Our embedding first extends the Leibniz ’ rule to equivalent predicates, but relies on an
extension of the B syntax. Indeed, the intuition of the congruence rules is to replace an
expression E1 appearing in a term T by an equal expression E2, but this is not done directly:
one has first to rewrite T as a pattern, that is to find T ′ such that T = [x\E]T ′. Variables
therefore appear to act as placeholders for expressions that are manipulated through the
meta-language substitution, and we have no similar construct for predicates.

To allow for the replacement of predicates in B terms, we introduces propositional
variables in the syntactical type of B predicates as follows:

Definition 7.5.2 (Syntax extension for the B logic)

P := P∧̇P
| P⇒̇P
| ¬̇P
| ∀P
| E=̇E
| E∈̇E
| πA (Propositional variables)

where A is a set of names. Propositional variables are never bound (there are no binders
for them) and have no associated inference rule: we limit the impact of their introduction
by avoiding as far as possible the creation of new theorems. Note however that we are
generating new instances of previous results of the propositional calculus, for example
` πa⇔̇πa – theorems such as ` P⇔̇P being in fact schemas in the B first order logic (for
any P , it is provable, but there is no proof for all P).

Propositional variables are only manipulated through a dedicated form of meta-language
substitution, 〈a\P 〉T denoting the term obtained by replacing any occurrence of the propo-
sitional variable πa in the term T by the predicate P . It is important to insist on the fact
that, again, no specific semantics are given to the propositional variables or even to the
new substitution: it is just a manipulation of terms which is possibly meaningless.

We however prove the following results, the first one being very similar to the inference
rule for equal expressions:

Proposition 7.5.1 (Congruences for unbound predicates)

Γ ˙̀ P1⇔̇P2 ⇒ Γ ˙̀ 〈a\P1〉Q ⇒ Γ ˙̀ 〈a\P2〉Q

Γ ˙̀ P1⇔̇P2 ⇒ Γ ˙̀ 〈a\P1〉Q ⇔̇ 〈a\P2〉Q

Γ ˙̀ P1⇔̇P2 ⇒ Γ ˙̀ 〈a\P1〉E =̇ 〈a\P2〉E

These results are very intuitive and interesting, especially when dealing with formal proofs
in such an embedding: they can considerably shorten proofs by avoiding numerous tedious
steps for deconstructing terms.

However, they suffer the same important limitation than the inference rule for equality:
none of these results can be used to replace bound subterms. Substitutions [i\E] and 〈a\P 〉
can cross binders, yet they mechanically prevent capture of free variables appearing in E

or in P . This is a typical constraint for substitution in any logic, including the B logic, and
not in any way a specific limitation of our embedding. The consequences are important;
for example, it is not possible to use the previous congruence result to prove:

106 CHAPTER 7. BICOQ AND B

Example 7.5.4

∀ (i :I)(P :P), ˙̀ (∀̇ i · ¬̇¬̇P)⇔̇(∀̇ i · P)

7.5.2 Grafting

We therefore still want more generic congruence results, to cope with bound subterms. To
be able to write such advanced theorems, it is clear that we need a new tool, a form of
meta-language substitution able to interact with bound subterms – an operation unlikely
to be descriptible in a standard B environment.

We want to be able to replace bound subterms, even under conditions, as in:

Example 7.5.5

y∈N, y 6=0 ` ∀ x·x∈N⇒ x/y≤x

Indeed, the definition (x/y) = max{z : N | x ≥ y ∗z} is only valid provided y 6= 0. This has
justified several iterations of our proofs and techniques in the embedding, detailed in the
next chapter; we just present here our conclusions.

We define new functions for grafting expressions and predicates. These functions are
a form of substitution allowing for the capture of free variables. They have no equivalent
in standard B, yet they do not constitute an extension of the B logic: as for predicate
substitution they are just operators to represent complex operations on B terms, that are
not associated to inference rules or new syntactical constructs (except for the introduction
of propositional variables as far as the grafting of predicates is used).

We denote [iCE]T the term obtained by grafting the expression E at any occurence of
the free variable χ̇i in the term T , and 〈aCP 〉T the similar function for grafting the predicate
P at any occurrence of a propositional variable πa. The intuitive behaviour of grafting is
illustrated by this example:

Example 7.5.6 (Illustration of grafting)

[jCi](∀̇ i·i∈̇N⇒̇0≤̇j) = ∀̇ i·i∈̇N⇒̇0≤̇i provided i 6= j

Note that grafting does not replace bound variables, but free variables; however variables
in the replacing term can be captured. The precise definition of the grafting functions is
described using the internal de Bruijn representation, and is presented in Section 8.3.2.

The associated congruence results are the following ones9:

Proposition 7.5.2 (Congruence for bound terms)

Γ ˙̀ E1=̇E2 ⇒ Γ ⊥E E1=̇E2 ⇒ Γ ˙̀ [iCE1]E=̇[iCE2]E

Γ ˙̀ E1=̇E2 ⇒ Γ ⊥P E1=̇E2 ⇒ Γ ˙̀ [iCE1]P⇔̇[iCE2]P

Γ ˙̀ P1⇔̇P2 ⇒ Γ ⊥E P1⇔̇P2 ⇒ Γ ˙̀ 〈nCP1〉E=̇〈nCP2〉E

Γ ˙̀ P1⇔̇P2 ⇒ Γ ⊥P P1⇔̇P2 ⇒ Γ ˙̀ 〈nCP1〉P⇔̇〈nCP2〉P

9Only a weaker form of the predicate grafting results have been proven at this stage, as they have not
yet been reintroduced in the new version of the embedding; yet we consider safe to admit them for now.

7.5. NEW RESULTS FOR THE B LOGIC 107

Γ⊥F T is called the orthogonality condition, and is formally defined in Sections 8.3.2 and
8.3.3. Intuitively, it requires any variable appearing free in both Γ and T not to be captured
in F (or at least not to be captured at the positions to which T is grafted). Its role is
easily understood with the following counterexample where y is finally captured instead of
staying free:

Example 7.5.7 (Role of the orthogonality condition)

x∈̇N, y∈̇N, ¬̇y=̇0 ˙̀ x/y≤̇x⇔̇>

but x∈̇N, y∈̇N, ¬̇y=̇0 ˙̀ 〈aCx/y≤̇x〉(∀̇ y ·πa) ˙6⇔〈aC>〉(∀̇ y ·πa)

that is x∈̇N, y∈̇N, ¬̇y=̇0 ˙̀ (∀̇ y ·x/y≤̇x) ˙6⇔(∀̇ y ·>)

We are just providing here the intuition about new and complex results derived in
our embedding. The precise definition of the grafting functions and the orthogonality
condition, as well as the exact congruence results, are provided in the next chapter, as
some technical considerations about de Bruijn representations are required.

These congruence theorems have to be compared with the delta-lemma approach dis-
cussed in Section 5.3.3. This approach, described in [Bur00, BBM98], aims at tackling
non defined terms, such as min(∅) or 1/0, in set theory and more specifically in the B logic.
On the basis of three valued semantics, a minimal amount of verifications ensuring the
validity of a proof is identified, the aim being to ease automation of proof. Our congruence
results bring a very different vision. Indeed, we do not consider three valued semantics,
nor are we concerned with possibly non defined expressions; but we propose a strategy to
deal with equalities or equivalences under hypothesis (including conditional definitions), a
strategy which is furthermore able to operate even with bound subterms.

7.5.3 Validity of the new results

The question of the applicability of such new results in the standard B logic appears to
be a legitimate one for a B expert, or an independent evaluator. Indeed, these results are
derived using higher-order logic and inductive proofs in Coq, which can appear as “alien”
tricks. In other words, are those results truly valid, or are they just artefacts resulting of
the embedding, and consequently only valid in BiCoq? Would the implementation of these
rules in a prover for the B logic represents an implicit enrichment, possibly endangering
the correctness of the prover?

The intuitive justification is provided by the Curry-Howard isomorphism (cf. Sec-
tion 3.2). Let us consider the Coq proof using the BiCoq definitions of the first congru-
ence result in the previous paragraph:

Γ ˙̀ E1=̇E2 ⇒ Γ ⊥E E1=̇E2 ⇒ Γ ˙̀ [iCE1]E=̇[iCE2]E

The interpretation of this theorem in Type Theory is that the proof is a program that
given a B proof of Γ ˙̀ E1=̇E2 is able to compute a B proof of Γ ˙̀ [iCE1]E=̇[iCE2]E provided
that Γ ⊥F E1=̇E2. That is, we implicitly have a function whose signature is:

Graft Congr1(Γ: list P)(E1 E2 :E)(H : Γ ˙̀ E1=̇E2)(i :I)(E :P) :Γ ˙̀ [iCE1]E=̇[iCE2]E

Extracting this function – a purely intellectual exercise in this case, as this function’s
signature uses dependent types – and only using it when Γ ⊥E E1=̇E2 (acting as a precon-
dition, but easy to transform into a guard), we could indeed produce the appropriate B

108 CHAPTER 7. BICOQ AND B

proof terms. Or in other words, if a B proof of Γ ˙̀ E1=̇E2 exists, and if Γ ⊥F E1=̇E2, then
we know that a B proof of Γ ˙̀ [iCE1]E=̇[iCE2]E exists as well, and we are even able to
exhibit one.

The structure of the Coq proof is also very interesting: as we will see in the next
chapter, this result is obtained by induction over E, and does not analyse the structure of
the predicate E1=̇E2 or of the proof Γ ˙̀ E1=̇E2. That means that the corresponding program
is a recursion over the structure of the term E, propagating a parameter Γ ˙̀ E1=̇E2 which
is never decomposed (that is it is an opaque parameter used in a form of cut).

Note that this type of justifications is only possible thanks to the clear separation
between the guest logic and the host logic in a deep embedding. Furthermore, as indicated,
grafting is an operation on terms that cannot be described in the B logic or in a B
environment, without even speaking about proving its properties.

Chapter 8

A Technical Review of the
Embedding

This chapter explores some of the technical aspects of the deep embedding of B in Coq
used in the previous chapter for the validation of the B logic. There are indeed numerous
difficulties with such a development, such as designing appropriate representations, adapt-
ing proof methodologies or ensuring some form of optimisations. The techniques discussed
in this chapter may be relevant for other types of language mechanisations, and may have
wider applications beyond the admittedly quite narrow domain of deep embeddings, for
example when dealing with compilers, analysers, etc.

As mentioned, we have implemented several versions of BiCoq, which in total amount
to several tenths of thousand of lines of Coq. The justification for a full redevelopment
after the initial version was to study technical alternatives, quickly compared here, but
also to allow for the derivation of the full congruence results described in Section 7.5.2.
The first version of BiCoq uses de Bruijn indexes, and includes propositional variables,
the proven prover, and a limited version of the congruence results; two other versions have
been redeveloped, in parallel, one using de Bruijn indexes and the other de Bruijn levels,
with an improved calculus (leading to the full version of the congruence results); on the
other hand these versions do not include a prover or results about propositional variables.
There is however no difficulty into porting these aspects to the new version.

The rest of this chapter is organised as follows. Section 8.1 discusses various rep-
resentations of terms. It starts with a few reminders about de Bruijn representations,
comparing indexes and levels, before describing the notation used in BiCoq, in which we
introduce context awareness. Section 8.2 presents a generic induction principle used in
BiCoq proofs. Section 8.3 introduces a new operation for BiCoq terms – named grafting
– and proposes to enrich the BiCoq representation with namespaces to tackle complex
results. Finally Section 8.4 summarises some of the concepts introduced in the previ-
ous sections regarding term representation by describing a simply typed λ-calculus not
requiring any typing context.

8.1 De Bruin representations

One of the problems to deal with when mechanising a language (cf. [ABF+05, CPW06])
is the representation of variables, and more specifically of bound variables. The standard
approach, denoted λV in this chapter, uses names for bound and free variables. However,
whereas it is easy to read, it suffers from various flaws.

109

110 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Indeed, two terms differing only by the names of their bound variables (the so-called
α-renaming), such as λx·λy·x− y and λz·λx·z− x, should be considered as equal but are not
when using a notation with names . One may also wonder how to compute the reduction
of the substitution for the following cases:

Example 8.1.1 (Problems of capture in substitution)

[x\E]λx·T [x\y]λy ·T

The so-called de Bruijn representations (cf. [dB72, Gor93, NV07]) address these prob-
lems by encoding bound variables as natural values acting as pointers to their binder;
they define an α-quotiented representation, i.e. terms equivalent modulo α-renaming are
indeed equal. They also provide clear and straightforward semantics to deal with capture
phenomena applicable for example when considering substitutions.

We first introduce classical notions about de Bruijn representations in Sections 8.1.1-
8.1.3 using a standard λ-calculus for the sake of clarity, before presenting the adaptation
of these concepts to our embedding, and some improvements that are required to tackle
advanced results.

8.1.1 Using indexes in λ-calculus: The λdBI notation

The most popular de Bruijn representation uses indexes, that are relative pointers to their
binder (counting from the variables, that is the leaves in the tree representing the term).
The value 0 represents the variable bound by the closest parent binder, as illustrated
hereafter (raw de Bruijn binders and indexes are underlined for the sake of clarity):

Example 8.1.2 (de Bruijn indexes)

λV notation (λx·λy ·(X0+x−y)) X0

λdBI notation λ λ(2+1−0) 0

We have chosen here to use the pure nameless notation: the free variable X0 is represented
by the value 2, assuming it is the first free variable in the context (left implicit here). Such
a pointer is said to be dangling as its value exceeds the number of parent binders.

This notion of context is important, and is generally managed explicitly in a λ-calculus,
in various forms. In simply typed λ-calculus, for example, it is the typing context, indi-
cating the type of the free variables (cf. Section 8.4.1 for an illustration). The context
can also be seen as a side product of the parsing of a λV term and its transformation into
λdBI term, recording the name of free variables and allowing for pretty-printing (that is
the reverse transformation from λdBI to λV); let us reconsider our previous example:

Example 8.1.3 (de Bruijn indexes with naming context)

λV notation (λx·λy ·(X0+x−y)) X0

λdBI notation λ λ(2+1−0) 0 Context: [0 7→X0]

Whereas we often mention the notion of context in the rest of this chapter, we do not
explicitly manage such a context (it is however abstracted through λ-height).

Another possible alternative de Bruijn representation is to use the locally nameless
notation; in this case, there are also named variables which are syntactically distinct of
indexes, such named variables being always free. It is then possible to choose two main
strategies with regard to the nature of the variables represented by indexes:

8.1. DE BRUIN REPRESENTATIONS 111

- Indexes only represent bound variables, and dangling indexes are not allowed; the
type of terms is then (possibly implicitly) a dependent type – or a nested datatype,
as in [BP99] – the maximum value of an index being constrained by the λ-height,
that is the context of the index.

- Indexes can represent bound or free variables; in such a situation there are therefore
two different ways to represent free variables, that can be distinguished by a form of
specialisation – for example considering named variables as unification variables and
dangling indexes as free variables manipulated only through binding and application,
as in [DHK00].

We will not consider further the locally nameless notation approach. It was not really
explored in any version of BiCoq, or more precisely it was not retained at the beginning
of the development – to avoid further complexity of the syntactical type that has already 15
distinct constructors – and it was not required later. Note however that our final solution,
with namespaces (cf. Section 8.3), can be seen as a generalisation of a locally-nameless
representations, that are also considered in Section 8.4.8.

8.1.2 Managing indexes in λdBI

The index representing a given variable, either bound or free, changes with its λ-height,
i.e. the number of parent binders, as illustrated hereafter:

Example 8.1.4 (Influence of the λ-height)

λV notation (λx·(x+λy ·(x−y)X0)) X0

λdBI notation λ(0+λ(1−0)2) 0

The first occurrence of x in the λV notation is bound by the closest parent binder and
is therefore denoted 0 in the λdBI notation. The second occurrence of x appears under a
second binder (capturing y); it is therefore denoted 1.

This makes reading or manipulating λdBI terms by hand rather awkward.
It is therefore customary to provide standard operators to support index management,

either technical such as lifting (denoted ↑) or user-relevant such as substitution. The
former is used by the latter to adapt terms when crossing a binder, as illustrated here:

Definition 8.1.1 (Standard de Bruijn lifting)

↑h:λdBI→λdBI ,

| λT ′ 7→ λ(↑h+1 T ′)

| i′ 7→ if h≤ i′ then i′+1 else i′

| . . .

Definition 8.1.2 (Standard de Bruijn substitution)

[i\E] :λdBI→λdBI ,

| λT ′ 7→ λ[x+1\↑E]T ′)

| i′ 7→ if i= i′ then E else i′

| . . .

112 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Indeed, crossing a binder modifies the λ-height, so the index i has to be incremented to
represent the same variable, and similarly dangling indexes of E have to be incremented to
maintain their semantics as well as to avoid their capture – this is the role of lifting, that
makes the required adaptations to the representation of a term to preserve its semantics
when crossing a binder.

To identify dangling indexes, lifting is parameterised by the contextual information h

recording the current λ-height, left implicit in our notations when h=0 (other values of h

resulting only from recursive calls for bound subterms). This is the only form of context
that we need to manage to ensure the validity of all our operations.

This toolbox for λ-calculus can be completed with operators defining a user-friendly
representation (introduced without details in Section 7.2.1), as in [Gor93]. Indeed, the λV

abstraction in λdBI is not a simple transformation, as illustrated here:

Example 8.1.5 (Abstraction for de Bruijn terms)

λV notation X0+X1+X2 → λx·(X0+x+X2) (binding X1)

λdBI notation 0+1+2 → λ(1+0+3) (binding 1)

To assist the user, we provide term functions able to mimick standard operations (and
therefore standard representations) by computing the required de Bruijn terms. Together,
these functions define what we call the functional representation; this is not a new language
or a new notation but a different way to denote terms using functional expressions of the
meta-language.

For example, λ̇ i · T does not denote the λV abstraction, but the invocation of the
function λ̇ with parameters i : I and T :λdBI and returning a term in λdBI. This functional
abstraction is defined as follows:

Definition 8.1.3 (de Bruijn functional abstraction)

λ̇ i·T , λ(Abstr0 i T)

where Abstr is the following function:

Abstrh(i :I) :λdBI→λdBI ,

| λT ′ 7→ λ(Abstrh+1 (i+1) T ′)

| i′ 7→

8><>:
i′ if i′ < h

h if i′ ≥ h and i′ = i

i′+1 if i′ ≥ h and i′ 6= i

| . . .

Note that using the functional representation, i is an index and T a λdBI term, so this
is not a named representation; however this approach is interesting to describe terms or
to support parsing, as illustrated thereafter (cf. also the figure in Section 7.2.1):

Example 8.1.6 (Use of functional abstraction)

λV notation λ x2 ·(x2+λ x3 ·(x3+x2+X0) X1)

Functional representation λ̇ 2·(2+λ̇ 3·(3+2+0) 1)

λdBI notation λ(0+λ(1+0+2) 2)

8.1. DE BRUIN REPRESENTATIONS 113

From the standard representation on the first line, the functional representation on the
second line is obtained by a straightforward parsing replacing the binder λ of λV by the
invocation of the functional abstraction λ̇, and any variable by an index (without any com-
putation related to the λ-height). This expression can then be evaluated (Coq β-reduced)
to obtain the raw de Bruijn term of the third line.

Except for the fact that we are using natural values instead of names, the functional
representation is indeed much more user-friendly. Being close to the natural representation,
this also justifies why we have favoured the use of the functional representation for example
to embed the B inference rules in Section 7.2.2.

8.1.3 Comparing indexes and levels in λ-calculus

The alternative to indexes is to use levels, discussed for example in [HAF01]; this is the
so-called λdBL notation. Levels (denoted by hatted natural values) are absolute pointers
counting binders from the root of the term; the value 0̂ then represents the variable bound
by the farest parent binder, as illustrated here:

Example 8.1.7 (de Bruijn levels)

λV notation λx·λy ·(X0+x−y)

λdBL notation λ̂ λ̂(2̂+0̂−1̂)

Index and level notations only differ in the representation of bound variables. Levels
ensure a unique representation in a term of a bound variable, whereas with indexes this
representation depends on the variable position (its context); on the other hand, bound
levels need frequent renumbering during abstraction or substitution whereas bound indexes
are never modified (except of course when eliminating the corresponding binder).

Both indexes and levels have been investigated in our embedding: nearly two full
versions have been developed, yet without reaching a general conclusion. Indeed for most
of our needs, levels are more efficient; they are easier to deal with, theorems tend to be
more generic and proofs simpler. Consider as a typical example the lifting functions for
indexes (left code) and levels (right code):

Example 8.1.8 (Comparing lifting for indexes and levels)

↑h:λdBI→λdBI ,

| λT ′ 7→ λ(↑h+1 T ′)

| i′ 7→ if h≤ i′ then i′+1 else i′

| . . .

↑̂
L

:λdBL→λdBL ,

| λ̂T ′ 7→ λ̂(↑̂
L
T ′)

| i′ 7→ i′+1

| . . .

As mentioned in the previous paragraph, in λdBI the lifting operation ↑h requires a contex-
tual parameter h to identify dangling indexes, bound indexes being never modified. On the
contrary the λdBL equivalent operation ↑̂L increments all levels, regardless of their context,
and the λ-height parameter is therefore not required. This has numerous consequences;
for example when using levels theorems about lifting are not specialised according to the
value of this parameter.

Yet our final choice, as well as our recommendation for other developments, is to
use de Bruijn indexes. Indeed the congruence results about grafting (presented in Sec-
tions 7.5.2, 8.3.2 and 8.3.3) are proven using complex methods, and in particular parallel
substitutions (cf. Sections 7.3.1 and 8.3.4). The important point in these proofs is that

114 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

parallel substitutions provide an alternative encoding of standard operations on terms
(such as lifting, abstraction, etc.). Whereas it is indeed possible to emulate most opera-
tions using parallel substitutions in the λdBI representation, as those operation are similar
to parallel substitutions in never modifying bound indexes, this is not the case in the λdBL

representation1.
We therefore consider that whereas de Bruijn levels are simpler to use and to tackle,

there is a clear advantage for de Bruijn indexes when dealing with advanced techniques
required for example when manipulating subterms whose free variables are bound by the
context.

Having noted this analysis, one can wonder whether an appropriate language mecha-
nisation toolbox should not offer the support of several forms of notations, provided with
translation operators and homomorphisms proofs. As mentioned, formally dealing with
names in the λV notation is difficult, but this is the only user-friendly representation; the
λdBL notation is efficient and easy to tackle in proofs, but more subtle results are out
of reach; finally the λdBI notation is powerful, but also often awkward. In a framework
combining several of these representations, it would be possible to express and prove a
standard result by choosing the most appropriate representation, and then to translate
this result into the other representations by using homomorphism properties.

8.1.4 Operations on B terms in BiCoq

The notations and functions described up to now in this paragraph are standard and well
known – except may be for the functional representation approach which provides a form
of λV notation. What follows is the version used in our embedding, based on de Bruijn
indexes, adapted to the B syntax introduced in Section 7.2.1.

In essence, the translation should be straightforward, just requiring an adaptation to
the term constructors of BiCoq: ∀ is a binder for which term operations should behave
as for λ in λdBI, { | } is also a binder but only for its right parameter, etc. However, we also
proceed to additional modifications, to improve the management of the context.

We present the full details of the implementation only for one specific operation, lifting,
before adopting a more compact presentation. The details are indeed rather long and
technical, for two main reasons. The first one is that the B syntax is associated to many
constructors – making the detailed presentation of functions rather long, without even
speaking about representing the associated proofs by induction. The second reason is that
in BiCoq, we deal with two sorts of syntactical constructs, E for the expressions and P for
the predicates, and with their union T (cf. Section 7.2.1). To ensure type-checking, each
term operation is in practice defined through three functions, one per syntactical sort; that
is, for example, for lifting:

- we have a lifting function for expressions, returning an expression (↑E : E→E);

- we have a lifting function for predicates, returning a predicate (↑P : P→P);

- we have a lifting function for terms, returning a term (↑: T→T).

It is important to have this distinction, to know for example that if P ∧̇E∈̇S is syntactically
valid (that is P is a predicate, E and S are expressions), then ↑P P ∧̇ ↑E E∈̇ ↑E S is syn-
tactically valid as well – this would not be possible using only a single lifting function for
terms. Where possible, of course, we however use Coq coercion mechanisms, indicating

1On the other hand, one could wonder if a whole different theory is not possible for levels, for example
considering a form of parallel grafting instead of parallel substitution to emulate standard operations.

8.1. DE BRUIN REPRESENTATIONS 115

that it is always acceptable to automatically cast E and P into T where necessary. But for
the discussion in this memoir, such a level of details is basically irrelevant.

The lifting function is modified as follows to deal with the syntactical constructors of
our embedding – noting that as { | } does not bind its left parameter, the left λ-height is
not incremented:

Definition 8.1.4 (Lifting BiCoq predicates – detailed version)

↑Ph :P→P , πa 7→ πa

| ¬̇P ′ 7→ ¬̇(↑Ph P ′)

| ∀P ′ 7→ ∀(↑Ph+1 P ′)

| P1∧̇P2 7→ (↑Ph P1)∧̇(↑Ph P2)

| P1⇒̇P2 7→ (↑Ph P1)⇒̇(↑Ph P2)

| E1=̇E2 7→ (↑Eh E1)=̇(↑Eh E2)

| E1∈̇E2 7→ (↑Eh E1)∈̇(↑Eh E2)

Definition 8.1.5 (Lifting BiCoq expressions – detailed version)

↑Eh :E→E , Ω̇ 7→ Ω̇

| ωi′ 7→ ωi′

| χ̇i′ 7→ χ̇(if h≤ i′ then i′+1 else i′)

| Ċ
`
E′´ 7→ Ċ

“
↑Eh E′

”
| ℘̇

`
E′´ 7→ ℘̇

“
↑Eh E′

”
| E1×̇E2 7→ (↑Eh E1)×̇(↑Eh E2)

| E1 ˙7→E2 7→ (↑Eh E1) ˙7→(↑Eh E1)

| {E′ | P ′ } 7→ {↑Eh E′ | ↑Ph+1 P ′ }

Definition 8.1.6 (Lifting BiCoq terms – detailed version)

↑h:T→T , Trm of Prd P ′ 7→ ↑Ph P ′

| Trm of Exp E′ 7→ ↑Eh E′

Clearly, this last definition of lifting for terms is not well-typed, as it returns an expression
or a predicate whereas a term is expected; yet Coq automatically uses the defined coercions
to cast the values.

As expected, the only interesting cases are those for the binders and the variables (that
is ∀, {| } and χ̇); the other cases are just straightforward recursion, and will not be detailed
further. Combined with the use of coercions, we therefore summarise lifting as follows:

Definition 8.1.7 (Lifting BiCoq terms – compact version)

↑h:T→T , ∀P ′ 7→ ∀(↑h+1 P ′)

| {E′ | P ′ } 7→ {↑h E′ | ↑h+1 P ′ }

| χ̇i′ 7→ χ̇(if h≤ i′ then i′+1 else i′)

| . . . (straightforward recursion)

The same principles are applied for all the other functions on terms.

116 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

8.1.5 Context awareness

Beyond the adaptation to the B syntax, we have also improved the operations with a better
management of the λ-height parameter. For example the BiCoq functional abstractions
are defined as follows:

Definition 8.1.8 (BiCoq functional abstractions)

∀̇ i·P , ∀(Abstr0 i P)

∃̇ i·P , ¬̇(∀̇i·¬̇P)

{̇i :E |̇ P }̇ , {E | Abstr0 i P }

where Abstr is the following function:

Abstrh(i :I) :T→T , ∀P ′ 7→ ∀(Abstrh+1 (↑h i) P ′)

| {E′ | P ′ } 7→ {Abstrh i E′ | Abstrh+1 (↑h i) P ′ }

| χ̇i′ 7→ χ̇(if h≤ i′ ∧ i= i′ then h else ↑h i′)

| . . . (straightforward recursion)

Compared with the definition of Abstr for λdBI given in Section 8.1.2, we have of course
adapted the Abstr to the B syntax. But there are a few additional changes to note, related
to the use of the λ-height parameter h.

It is not easy to justify these changes in a few words; they summarise several attempts
to optimise the representation but also the associated proofs in the various versions of
BiCoq. Originally, they result from a simple observation: any call of the form Abstrh i T

is expected to be the result of a recursion starting from Abstr0 i′ T ′, i.e. from the root
of the term, before crossing any binder. Therefore normal uses ensure that the condition
h≤ i is a recursion invariant. Whereas this condition appears normally as a precondition
in most theorems (that is we have propositions of the form h≤ i ⇒ P) the general idea of
our changes is to capture this invariant directly in the code of all the operations on term
as a guard, for example using if h≤ i then

First, when crossing a binder we do not increment indexes anymore, but we lift them
from the current λ-height, in other words we introduce a condition on the incrementation.
Therefore, in the function Abstr , we replace the computation i+1 by ↑h i, that is by
if h≤ i then i+1 else i2.

Similarly, when dealing with a variable, we check whether or not this variable is the
one we are looking for, but also that h≤ i′ – intuitively to prevent capture of already bound
indexes. In both cases we are enforcing the fact that when using de Bruijn indexes bound
variables should never be modified (except when eliminating the corresponding binder).

When the invariant h ≤ i is broken because of an ill-formed call, the functional ab-
straction for λdBI (cf. Section 8.1.2) returns a term which is meaningless – or at least
semantically unrelated to its parameters; indeed, it can for example replace occurrences of
the bound index i by index h which is (re)captured by the new head binder, in an unmon-
itored way. On the contrary, our modified functional abstractions are such that when the
invariant h≤ i is broken they return the term lifted and quantified, but without capture –
returning this term may not be useful, but at least it is not meaningless.

The benefits of our modified version are not computational but logical. Both versions
of Abstr , the standard one for λdBI and the context aware one for BiCoq, are equivalent

2This is an abuse of notation; in practice we we define a lifting function for indexes, but we do not
distinguish this function from the lifting function for variables in this memoir.

8.1. DE BRUIN REPRESENTATIONS 117

for any well-formed invocation (that is ensuring that h≤ i), which is automatically the case
when starting from the root of the term (and therefore for the functional abstractions).
But we have learned that a stricter discipline in managing contexts is a very good practice,
easing the expression of theorems as well as their proofs. Using the λ-height parameter h

to express conditions in term operations ensures an explicit management of the context,
a form of weak typing useful for complex proofs.

More generally, in any function manipulating terms, we exploit as far as possible the
λ-height parameter h with its precise value – including in our code a form of context
calculus. This discipline even leads to generalise the λ-height parameter to functions that
don’t need it, to explicitly record the current λ-height.

Let us illustrate this with the trivial function deciding whether a variable appears free
in a term; the first version is the standard one, and the second version the context aware
one used in BiCoq:

Definition 8.1.9 (Standard freeness)

FreeS
(i :I) :T→B , ∀P ′ 7→ FreeS

(i+1) P ′

| {E′ | P ′ } 7→ FreeS
i E′ ∨FreeS

(i+1) P ′

| χ̇i′ 7→ i′= i

| . . . (straightforward recursion)

Definition 8.1.10 (BiCoq freeness)

Freeh(i :I) :T→B , ∀P ′ 7→ Freeh+1 (↑h i) P ′

| {E′ | P ′ } 7→ Freeh i E′ ∨Freeh+1 (↑h i) P ′

| χ̇i′ 7→ h≤ i′ ∧ i′= i

| . . . (straightforward recursion)

The standard version FreeS just looks for a dangling index i, representing the ith free
variable, in a term T , and is expected to be called from the root of the term. When
crossing a binder, as the λ-height increases, the index is incremented to represent the same
free variable. But our modified version Freeh uses the λ-height h as an additional (useless)
parameter. These two versions differ only for ill-formed uses; indeed, if the invocation
Freeh i T is such that h < i, then it returns false – quite reasonably, we would say, as this
means that the index i is in fact bound.

The generalisation of the λ-height parameter h is also illustrated for the substitution
function; again we provide the standard version in first place, and the context aware version
in second place:

Definition 8.1.11 (Standard substitution)

[i\E]S :T→T , ∀P ′ 7→ ∀([i+1\↑E]SP ′)

| {E′ | P ′ } 7→ { [i\E]SE′ | [i+1\↑E]SP ′ }

| χ̇i′ 7→ if i= i′ then E else χ̇i′

| . . . (straightforward recursion)

Definition 8.1.12 (BiCoq substitution)

[i\E]h :T→T , ∀P ′ 7→ ∀([↑h i\↑h E]h+1P ′)

| {E′ | P ′ } 7→ { [i\E]hE′ | [↑h i\↑h E]h+1P ′ }

| χ̇i′ 7→ if h≤ i ∧ i= i′ then E else χ̇i′

| . . . (straightforward recursion)

118 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Again, the addition of the parameter h permits to use lifting instead of incrementation
for the index i. Furthermore, if for both versions of substitution we lift the expression
parameter E when crossing a binder, in the context aware version we use the exact λ-
height parameter value h instead of the default value 0.

To understand why, let us consider the two approaches on an example:

Example 8.1.9 (Standard substitution and lifting)

[i\E]S∀∀P = ∀ [i+1\↑E]S∀P = ∀∀ [i+2\↑↑E]SP

Example 8.1.10 (BiCoq substitution and lifting)

[i\E]0∀∀P = ∀ [↑0 i\↑0 E]1∀P = ∀∀ [↑1↑0 i\↑1↑0 E]2P

As we have the following result:

Proposition 8.1.1 (Lifting composition)

h′≤h ⇒↑h′ (↑h T) =↑h+1 (↑h′ T)

that is with h=h′ ↑h (↑h T) =↑h+1 (↑h T)

We can prove that both versions of substitution are extensionally equivalent for any well-
formed invocation:

↑↑↑ . . . ↑ E = ↑0 (↑0 (↑0 . . . (↑0 E)))

= ↑1 (↑0 (↑0 . . . (↑0 E)))

= ↑1 (↑1 (↑0 . . . (↑0 E)))

= ↑2 (↑1 (↑0 . . . (↑0 E)))

= . . .

In other words, applying h times the function ↑ yields exactly the same result as applying
successively ↑0, followed by ↑1, . . . , ↑h−1. Therefore lifting the expression E from the λ-
height h instead of 0 during recursion in the context aware version of the substitution does
not change the final result.

We have indicated in Section 8.1.3 that de Bruijn levels appear to be simpler to use
because the λ-height parameter is never required. To some extent, our work on de Bruijn
indexes shows that they are easier to deal with by ensuring that the λ-height parameter
is always present. This is why we systematically use the exact λ-height h instead of the
default value 0 for example in the function Abstr , and why we generalize the λ-height h

parameter to all operations, even those that do not require it, such as the substitution.
The intuitive justification about this statement is provided by considering typical com-

mutation lemmas required in such developments, whose generic form is f(g(T))=h(T) with
f , g and h functions such as freeness, abstraction, lifting, substitution and so on. With the
standard version of such functions, problems arise when the λ-height parameter appears in
some but not all of these three functions, and require side conditions as well as technical
meaningless lemmas to be proven. Our modified versions on the contrary explicitly intro-
duces the λ-height parameter in all of them, ensuring for example its consistency between
the two sides of the equality during induction steps.

Our estimate using this approach is that about 90% of the side conditions to avoid
ill-formed calls can be removed. This is further explored and illustrated in Section 8.4.5,
dealing with the same concepts and optimisations, but applied to a simpler calculus.

8.1. DE BRUIN REPRESENTATIONS 119

8.1.6 Representing application

In a deep embedding of a λ-calculus it is standard to represent the application directly
in the syntax as a term constructor; the embedded syntax therefore includes terms such
as (λ x·T) Ta. The β-reduction can then for example be represented as a relation between
syntactical terms, relying on external operations:

Example 8.1.11 (Syntactical application and functional reduction)

(λ x·T) Ta →β [x\Ta]T

It is indeed an external operation, as [x\Ta]T does not denote a syntactical term of the
language but the invocation of an external operation, the meta-language substitution,
whose computation produces a term of the language.

The β-reduction can also be defined as a relation between syntactical terms without
relying on external operations. The explicit substitution approach [ACCL91, CHL96] for
example defines a syntactical sort for substitutions (such as x\E) and a construct [S]T , S

being a syntactical substitution, T and [S]T being syntactical terms of the language.
Both types of approaches are interesting for example to study the influence of normal-

isation strategies, yet this is not relevant in our case, as our objectives with regard to the
B are not related to such meta-theoretical studies.

Therefore, we choose to represent application not as a constructor of the language, and
in fact more generally we do not provide any way to represent application. The immediate
consequence is that our language for the syntax of the B logic only represents terms in
normal form ; furthermore we can not compare various reduction strategies for the guest
language, as we have to rely on the reduction strategy of the host language – here Coq.

Instead of having an application constructor, we encode the binder elimination rules
as external operations that represent the application followed by β-reduction – a form of
normalization by evaluation [Lin05, AHN08, Boe10]. It is interesting to note that we are
mixing deep and shallow approaches: we represent B terms and B proofs as terms in Coq,
but B applications are in fact embedded as the invocations of Coq functions on B terms,
that is we transform a B redex into a Coq redex whose reduction produces B terms.

We define a functional application for each B binder as follows:

Definition 8.1.13 (BiCoq functional applications)

T@∀E , match T with ∀ T ′ 7→ App0 E T ′

T@{}E , match T with {E′ | T ′} 7→ E∈̇E′∧̇App0 E T ′

where App is the following function:

Apph(E :E) :T→T,

| ∀P ′ 7→ ∀(Apph+1 (↑h E) P ′)

| {E′ | P ′ } 7→ {Apph E E′ | Apph+1 (↑h E) P ′ }

| χ̇i′ 7→

8><>:
χ̇i′−1 if h < i′

E if h= i′

χ̇i′ if h > i′

| . . . (straightforward recursion)

The functional applications only apply to terms starting with the appropriate binder –
the partiality is encoded in Coq by an additional proof parameter left implicit here. The
interesting aspect is that we factorise the common underlying process in the function App.

120 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

The functional abstractions, the substitution function and the functional applications
are such that the following properties hold (the first one being valid only after generalising
the λ-height parameter to the substitution function):

Proposition 8.1.2 (Substitution as a composite operation)

[i\E]hT =Apph E (Abstrh i T)

or more simply [i\E]T = (∀̇i·P)@∀E

Thanks to this property of our calculus, the elimination rules of the B logic can be rewritten
with a slightly different presentation:

Proposition 8.1.3 (Alternative presentation of binder elimination rules)

Γ ˙̀ ∀̇i·P

Γ ˙̀ (∀̇i·P)@∀E

Γ ˙̀ E∈̇{̇i :S |̇ P }̇

Γ ˙̀ ({̇i :S |̇ P }̇)@{}E

As indicated, the standard definition of β-reduction in λ-calculus is λx·T@E→β [x\E]T ;
it describes the semantics of application using substitution. In our embedding, on the
contrary, application is directly defined (as an external operation) whereas the substitution
is a composite operation. The point is that beyond considering substitution as an external
operation, it is not even primitive in our calculus.

Note also that we can write Apph χ̇i (Abstrh i T)=T , or more simply at λ-height 0 and
using the functional universal quantification (∀̇i·P)@∀χ̇i =P , to emphasise that application
at χ̇i is the “inverse” of abstraction at i. Furthermore this result commutes, that is:

Proposition 8.1.4

h≤ i ⇒ Freeh i (∀T)=⊥ ⇒ Abstrh i (Apph χ̇i T)=T

This last property gives a method to build a term in the functional representation which
is equal to a term in the raw representation, that is for universal quantification we have:

Proposition 8.1.5 (Inverse universal quantification)

Free0 i (∀P)=⊥ ⇒ ∀P = ∀̇ i·(App0 χ̇i P)

The combination of the two properties about functional application and functional ab-
straction also justifies the fact that our de Bruijn representation is indeed α-quotiented,
that is for universal quantification:

Proposition 8.1.6 (α-renaming for universal quantification) Two α-equivalent
terms are structurally equal in the de Bruijn representation:

Free i P =⊥ ⇒ ∀̇i·[j\i]P = ∀̇j ·P

Indeed, we can develop the expression:

∀̇i·[j\i]P = ∀̇i·(App0 χ̇i (Abstr0 j P)) = ∀Abstr0 i (App0 χ̇i (Abstr0 j P))

Then, noting that Free i P =⊥ ⇒ Free0 i (∀Abstr0 j P)=⊥, we simplify as follows:

∀Abstr0 i (App0 χ̇i (Abstr0 j P)) = ∀Abstr0 j P = ∀̇j ·P

8.2. PROVING BY INDUCTION 121

8.2 Proving by induction

As mentioned in Section 3.2, the definition of an inductive datatype in Coq yields auto-
matically the associated structural induction principle.

When considering B terms (that is more precisely P and E), this structural induction
principle is relevant to prove structural properties such as those about freeness (cf. the
definition of Free in the previous paragraph), but it is hopelessly inadequate to prove
semantic results, i.e. results dealing with statements of the B logic instead of predicates
and expressions. To be accurate, all induction principles are equivalent, being derivable
from each other; yet in practice some induction principles are better than other for proving
specific properties.

Indeed, the inductive definition of P presented in Section 7.2.1 includes the constructor
definition ∀ :P→P. It indicates how to build a new term ∀P :P using an existing term P :P,
but also identifies P as the structural predecessor of ∀P when using structural induction
in a proof. In other words, proving that a property Q over P is valid for any predicate by
structural induction requires proving a subgoal of the form ∀ (P :P), Q(P)⇒Q(∀P).

However, it should be clear that with a de Bruijn representation this approach is not
always appropriate, as illustrated thereafter:

Example 8.2.1 (Structural predecessors in de Bruijn representation)

de Bruijn representation ∃(1∗0>2) ∀(∃(1∗0>2))

Natural representation ∃ z ·X0∗z>X1 ∀ y ·∃ z ·y∗z>X0

The two de Bruijn terms are related structurally, the term on the right side being the
quantified version of the term of the left side. However, considering the associated natural
representations, they are not related semantically – intuitively because of the changes of the
λ-height, causing unmonitored shifts of the context modifying free variables representation.

To address this problem and some others, numerous induction principles have been
derived in the first version of our embedding: (weak) structural induction, semantic in-
duction, strong induction based on a measure for a given type or for mutually recursive
types. And this was not yet sufficient for induction on B proofs, because the predecessors
– that is the sub-proofs – of a step in a proof have different (dependent) types. This was
not considered as a proper approach, due to the number of principles to be expressed and
proved as well as the absence of genericity of the proof method.

We have therefore designed a more general approach, which is furthermore relatively
intuitive. It may also have the potential to help for a better automation of proofs in
BiCoq, e.g. using Ltac, the Coq tactic languages. It combines a single strong induction
principle based on a measure in N (this is the intuitive part) with a strategy for conducting
the proof defined through an inductive relation (the so-called accessibility relation).

The strong induction principle on N is unique and very generic. Indeed D is any family
of types indexed by any type T , (i.e. for any t :T , D(t) is a type), M any measure on this
family and Q any predicate on this family:

Proposition 8.2.1 (Strong induction principle on a measure)

∀ (T :Type)(D :T→Type)(M :∀ (t :T), D t→N)(Q :∀ (t :T), D t→Prop),

(∀ (t :T)(d :D t), (∀ (t′ :T)(d′ :D t′), M(t′)<M(t)⇒Q(t′)⇒ Q(t)))⇒ ∀ (t :T), Q(t)

122 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

For any inductive proof in BiCoq, the idea is to select an appropriate accessibility relation
A and to select or define a measure M compatible with this relation, that is a measure
which is such that the following property holds:

PredA (t1, t2, . . . , tn) t′ ⇒M(ti) < M(t′)

In other words, the measure M has to be such that t1, t2, . . . , tn (the predecessors of t′

according to the accessibility relation A) are strictly smaller than t′. The accessibility
relation A is therefore only used to make a case reasonning, and the strong induction
principle on N allows for the derivation of a result for a term by using the result for all its
predecessors.

Choosing the relation A is choosing the strategy, the cases in a proof by cases, the
predecessors for the entity that we are considering. Intuitively, it defines paths to reach
terms in D, and provided the measure M is compatible with the relation it allows to derive
proofs along these paths.

The accessibility relation can be surjective or not in D; in the later case it defines a
strict subset of accessible terms and can be used to prove that any term of this subset
satisfies a property. Note that we do not really need an accessibility relation as such, but
rather a destruction principle, to express properties of the form:

∀ (t :T)(d :D(t)), A(d)⇒ d = e1 ∨ . . . ∨ d = en

A(d) defining the subset of accessible terms in the type D(t) and e1, . . . , en all the possible
forms for a term in this subset, defining the cases for a proof by cases.

For example a semantically relevant strategy for the B logic has to show that any term
is accessible following natural operators such as the function ∀̇ instead of the raw de Bruijn
universal quantifier ∀. Such a strategy can be defined as follows:

Definition 8.2.1 (Semantic accessibility relation)

Inductive ΣSem :T→Type,

| Σχ :∀ (i :I), ΣSem χ̇i

| Σ∀ :∀ (P :P)(i :I), ΣSem P→ΣSem ∀̇ i·P
| Σ{} :∀ (P :P)(E :E)(i :I), ΣSem P→ΣSem E→ΣSem {̇i :E |̇ P }̇
| . . . (straightforward induction)

This relation is indeed surjective, i.e. we prove:

Proposition 8.2.2 (Semantic construction of T)

∀ (T :T), ΣSem(T)

To prove a property Q for any term T , it is possible to apply the generic induction principle
(with M the standard depth function on B terms) and then to use this relation to make
a proof by cases by destructing the Coq term ΣSem(T). The generated subgoals are then
semantically relevant, that is considering for example the binder cases, we have to prove
the following induction steps:

∀ (E′ :E)(P ′ :P), Q E′ ⇒ Q P ′ ⇒ Q {̇i′ :E′ |̇ P ′}̇

∀ (P ′ :P)(i′ :I), Q P ′ ⇒ Q (∀̇ i′ ·P ′)

8.3. GRAFTING, CONGRUENCE AND NAMESPACES 123

8.3 Grafting, congruence and namespaces

In Section 7.5.2, we present new congruence results proven to be valid for the B logic,
related to the replacement of bound subterms. Using the standard concepts of the B
logic, e.g. the meta-language substitution, such a replacement is not possible. Indeed,
substitution prevents captures of free variables.

In the natural notation λV of the B method, the absence of captures is ensured by
requiring appropriate α-renamings when substitution crosses a binder. In the de Bruijn
representation used in BiCoq, the absence of capture is a mechanical consequence of the
lifting applied to the replaced variable and the replacing expression when crossing a binder
(cf. Sections 8.1.2 and 8.1.5).

This is a standard approach, but it also strongly limits the interest of the associated
standard congruence rules. Consider the Leibniz ’ rule:

Example 8.3.1 (Leibniz ’ rule)

Γ`E =F Γ` [V :=E]P

Γ` [V :=F]P

We cannot use this rule directly to prove results such as the following ones:

Example 8.3.2 (Bound subterms)

` ∀x·x∈N⇒ x∗0≤0 ` ∀x·x≤y ⇔ ¬¬(x≤y)

In the first case, knowing that x∗0=0 (for any x), we have no way to substitute x∗0 by 0

because x is bound. In the second case, knowing that P ⇔ ¬¬P , similarly we cannot use
the Leibniz’ rule for predicates (cf. Section 7.5.1) because P is here instantiated by x≤ y

in which x is bound.
Of course, these results can be proven, but this requires at some point an elimination

of the binders to be able to apply the Leibniz’ rules using capture-avoiding substitution.

To derive more powerful congruence rules applicable to our two examples, we therefore
need a special operator representing a form of substitution allowing for captures. The idea
is to create an arbitrary Coq function f : T→ T – in the sense that we provide the code
of a function making unjustified modifications to a term – and to prove that a term T

and its transformation f(T) have a semantic relationship. That is, as we do not add any
syntactical construct or any inference rule, we do not modify in any way the B logic, but
we provide new tools for more efficient operations.

Note that the operation for replacing subterms whose free variables are bound by the
context is a form of modified substitution; it does not aim at replacing a bound variable
by an expression, but to replace a free variable by an expression in which some of the free
variables can be captured by a parent binder. To understand why, consider once more
the Leibniz ’ rule given herebefore. This rule, in practice, justify the replacement of the
expression E1 appearing in a term by the expression E2, provided we have a proof that
they are equal. The fact that we present this replacement through an intermediate pattern
form [V := . . .]P is just a trick, and the variable V can be arbitrarily chosen. The situation is
similar for the extended form of substitution that we want to define, and we can therefore
restrict ourselves to the overloading of free variables.

124 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

8.3.1 A missed attempt: collapsing terms

Several attempts have been conducted to develop interesting congruence results, before
finding an appropriate solution. We describe in this paragraph a nearly successful attempt,
for the sake of completion; it was in fact extensively developped, before we were led to
some tricky observations.

The idea was to define operations on terms as simple and atomic as possible – beyond a
form of elegance, such an approach can considerably simplify associated proofs. Therefore,
instead of defining a new capture-allowing substitution, we have tried to define a simpler
function which, composed with other functions, was able to represent capture-allowing
substitution. Our main experimentation with this approach was called collapsing, and
denoted . In essence, it is a function replacing any occurrence of a given free variable by
a given bound variable, or more precisely in our representation replacing any occurrence
of a dangling index by a bound index. Such a function can be seen as a form of reverse of
Skolemisation.

Whereas unusual, collapsing does not seem meaningless and is relatively simple. When
trying to use this function to prove semantic results, for example the expected congruence
rules, we identify interesting lemmas, such as this one:

(Γ ˙̀ E1=̇E2) ∧ i\Γ ?⇒ Γ ˙̀ i
d(E1)=̇ i

d(E2)

This does not seem unreasonable; indeed, the condition i\Γ requires the variable i to not
appear (free) in Γ. It is therefore equivalent to a universally quantified variable, and
collapsing it, that is in a way instantiating it so that it is captured, should not be a
problem. Being unable to prove this lemma (in the absence of any convincing strategy),
we have generalized it to the following form:

(Γ ˙̀ P) ∧ i\Γ ?⇒ Γ ˙̀ i
d P

Unfortunately, we have identified for this last lemma different forms of counter-examples.
Consider the following trivial result:

` ∀ x·∃ y ·x 6=y

Eliminating the head binder, we got the equivalent statement ` ∃ y ·x 6= y. Unfortunately,
collapsing the free variable x so that it is captured by the existential quantifier leads to the
false statement ` ∃ y·y 6=y. In fact, whereas x is indeed universally quantified, collapsing in
this situation results into an inversion of the quantifiers, and intuitively breaks the causal
dependencies between x and y.

Albeit the important investments into studying this solution, and the fact that such
examples are refutation of one of the sufficient lemma but not of the congruence result
itself, we have therefore decided to stop our investigations on collapsing, considering such
subtle problems as non-intuitive and therefore misleading.

8.3.2 A (nearly) successful attempt: grafting

The collapsing approach being unsuccessful, we describe here a different approach, this
time successful with regard to our objectives, that is the development of a specific operator
for the replacement of subterms whose free variables are bound by the context and the
proof of associated semantic results.

We define a special operator, called grafting, which compared to the standard substi-
tution allows for the capture of variables in its parameter E by never lifting it:

8.3. GRAFTING, CONGRUENCE AND NAMESPACES 125

Definition 8.3.1 (Grafting)

[iCE]h :T→T , ∀P ′ 7→ ∀([↑h iCE]h+1P ′)

| {E′ | T ′ } 7→ { [iCE]hE′ | [↑h iCE]h+1P ′ }

| χ̇i′ 7→ if h≤ i′ ∧ i′= i then E else χ̇i′

| . . . (straightforward recursion)

As mentioned, grafting does not permit to replace a bound variable – we have kept in
the grafting function the guard h ≤ i′ when applying to a variable, inherited from the
substitution function. Grafting however allows for the replacement of a free variable by
an expression whose free variables can be captured.

Note that, compared to the standard substitution, for grafting the transformation of a
term T into a pattern, that is the construction of terms S and T ′ such that [iCS]T ′=T , is very
simple. Indeed, the subterm S in this pattern being never lifted during the computation
of the result of grafting, it has exactly the form that it has in the context of T ; there is no
transformation required on its bound or dangling indexes.

This arbitrary function however causes rather strange transformations with regards to
the indexes, that is the variables; consider the following example:

Example 8.3.3 (Illustration of grafting in λdBI and λV)

λdBI notation [3C0+1+2]0 ∀(4 ≥ 0) →β ∀(0+1+2 ≥ 0)

λV notation [x3Cx0+x1+x2](∀ z ·x3≥z) ∀ z ·z+x0+x1≥x0

The first line illustrates the use of grafting, and the second line is the pretty-printing of the
λdBI terms in λV. This shows that when computing grafting, the variable x1 is transformed
into x0 and x2 into x1 – without any control.

Indeed, not lifting the expression when crossing a binder also means in our de Bruijn
representation not managing the variable representations consistently with the context.
We have therefore typical unmonitored shifts in the representations of variables, loosing
trace of the semantics of the indexes.

We can however prove very interesting semantic properties (the proof is sketched in
Section 8.3.4) using grafting as a description trick. These results uses a specific condition:

Definition 8.3.2 (Orthogonality condition) Γ ⊥ T is a condition requiring the proof
environment Γ to have no common free variable with the term T .

The congruence result for the grafting of expressions is:

Proposition 8.3.1 (Congruence rules for grafted expressions)

Γ ˙̀ E1=̇E2 ⇒ Γ⊥E1=̇E2 ⇒ Γ ˙̀ [iCE1]P⇔̇[iCE2]P

Γ ˙̀ E1=̇E2 ⇒ Γ⊥E1=̇E2 ⇒ Γ ˙̀ [iCE1]E=̇[iCE2]E

Similarly provided the extension of the B syntax with propositional variables discussed
in Section 7.5.1, it is also possible to define a predicate grafting function, and to derive
similar congruence results for equivalent predicates:

126 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Proposition 8.3.2 (Congruence rules for grafted predicates)

Γ ˙̀ P1⇔̇P2 ⇒ Γ⊥P1⇔̇P2 ⇒ Γ ˙̀ 〈aC P1〉P⇔̇〈aC P2〉P

Γ ˙̀ P1⇔̇P2 ⇒ Γ⊥P1⇔̇P2 ⇒ Γ ˙̀ 〈aC P1〉E=̇〈aC P1〉E

The orthogonality condition directly results from the unmonitored shifts of context men-
tioned herebefore. It ensures that the unpredictable changes of the variables have no effect
on the validity of the equality or of the equivalence; in essence, if the free variables for
example of E1=̇E2 do not appear in Γ, that means that they are intuitively universally
quantified, and therefore their capture should not cause a problem3. It is easy to exhibit
a counterexample when not respecting the orthogonality condition:

Example 8.3.4 (Role of the orthogonality condition)

χ̇0=̇Ω, χ̇1=̇Ω ˙̀ χ̇0=̇χ̇1 6⇒ χ̇0=̇Ω, χ̇1=̇Ω ˙̀ [1Cχ̇0](∀ χ̇2=̇χ̇0)⇔̇[1Cχ̇1](∀ χ̇2=̇χ̇0)

that is χ̇0=̇Ω, χ̇1=̇Ω ˙̀ χ̇0=̇χ̇1 6⇒ χ̇0=̇Ω, χ̇1=̇Ω ˙̀ (∀ χ̇0=̇χ̇0)⇔̇(∀ χ̇1=̇χ̇0)

However this orthogonality condition limits the interest of these results. In their current
form, they help to justify for example the simplification of propositional equivalences, e.g.
¬̇¬̇P into P , or the unfolding of a standard definitions. But we are not yet able to deal
with predicate equivalences or conditional definitions such as:

Example 8.3.5 (Conditional definition for division)

y 6=0⇒ (x/y) = max{z :N | x≥y∗z}

8.3.3 Introducing namespaces

To improve the congruence results and avoid this limitation, several approaches have been
considered, such as using names (to adopt a locally nameless representation), marking de
Bruijn indexes during grafting, and so on. We have finally designed a simpler solution,
using parameterised de Bruijn indexes.

In its most general form, this representation describes free and bound variables by
pairs (n, x), the first component n :N being the namespace and the second component i : I
the index. Binders of the language are themselves parameterised by a namespace n :N in
which they capture variables.

Namespaces can be seen as sorts, used to mark binders and indexes4. This has limited
consequences on the complexity of the code of the various operations on terms, e.g. lifting
is as well parameterised by a namespace and only modifies indexes in this namespace.

Note that this representation defines in fact a form of names: if there is no binder in
a namespace n, a pair (n, x) always represents a free variable and can be considered as a
name, being never subject to computations. The only required operation on such pairs is
an equality check. The application of these principles is considered for a generic λ-calculus
in Section 8.4.

We just discuss in the rest of this section the simplified approach adopted for BiCoq.
We use the namespace set N , N, and all the B binders act implicitly in the dedicated
namespace 0, the other namespaces n+1 being used for eternally free variables. Therefore,
we define a new type for our indexes:

3The same type of intuitive explanation is invalid for collapsing, as illustrated in the previous paragraph.
4Two sorts of de Bruijn indexes are considered in [DL07] but for different reasons, each of the two

binders of the defined language using its own space of de Bruijn indexes.

8.3. GRAFTING, CONGRUENCE AND NAMESPACES 127

Definition 8.3.3 (BiCoq parameterised de Bruijn indexes)

IP =N× N

The first natural value is the namespace, the second natural value is the index in this
namespace.

We do not modify the binders ∀ and { | }: they do not need to be parameterised by a
namespace because they only capture indexes in the namespace 0. The parameterised de
Bruijn index (n, i) : IP is therefore dangling at the λ-height h iff n 6= 0 ∨ h≤ i; consistently,
lifting only modifies pairs of the form (0, i) in a term, etc.

With these minor modifications, we can reconsider the expression and the proof of the
congruence results of the previous paragraph. The new versions are as follows5:

Proposition 8.3.3 (Congruence rules for grafted expressions)

Γ ˙̀ E1=̇E2 ⇒ Γ⊥0 E1=̇E2 ⇒ Γ ˙̀ [iCE1]P⇔̇[iCE2]P

Γ ˙̀ E1=̇E2 ⇒ Γ⊥0 E1=̇E2 ⇒ Γ ˙̀ [iCE1]E=̇[iCE2]E

The difference with the similar congruence results of the previous paragraph is that the
side condition ⊥0 is modified, and now precisely requires Γ and E1 =E2 to have no common
free variable in the namespace 0.

The previous technical difficulty of unmonitored shifts is still there, but is now limited
to the namespace 0. Remember that grafting, by not lifting its expression parameter when
crossing a binder, does not maintain consistency between the λ-height and the variable
representation. However, as all binders only operate in the namespace 0, we can guarantee
the preservation of the semantics of the indexes in the other namespaces.

This is a purely technical trick: namespaces have no semantics. Yet provided we
avoid using the namespace 0 for free variables, through an extended form of α-conversion,
changing the name of the free variables, we got the full expressiveness of our results.
In their most general form, they allow for strong β-reduction, unfolding of (conditional)
definitions under a binder... or more generally any form of first-order rewriting.

It is interesting to note that [DHK00] addresses similar considerations, using explicit
substitutions to finely describe and manage various phenomenas such as reductions and
captures; thanks to the expressiveness of the chosen representation, precise and exact
algorithms are developed. In our case on the contrary, the algorithms are very simple but
their validity is limited by side conditions. The introduction of namespaces reduces the
scope of these conditions, to the point that they become purely technical and trivial to
satisfy. The simplicity of the algorithm also leads to rather long and complex proofs, as
illustrated in the next paragraph.

8.3.4 Sketch of the congruence proof

Introduction

The different versions of the proofs of the congruence results, that is for grafting expressions
or predicates, and with or without namespaces, are not significantly different. They are
however rather long and technical, and we just present here a sketch of their structure.

5Parameterised de Bruijn indexes are only defined in the latest version of BiCoq, which at the date of
redaction is not yet as complete as the first version. The results for expression grafting are proven, but
not the results for predicate grafting. However we do not foresee any technical difficulty to adapt them.

128 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

We use semantic induction, that is induction over a measure in T→N associated with
a destruction principle derived from the relation ΣSem, which is semantically relevant (cf.
Section 8.2). However, working directly on the congruence result is doomed to fail; consider
the induction step for the universal quantifier:

Γ ˙̀ e1=̇e2 ⇒
Γ ⊥0 e1=̇e2 ⇒
Γ ˙̀ [jCe1]p⇔̇[jCe2]p ⇒ Γ ˙̀ [jCe1](∀̇ i·p)⇔̇[jCe2](∀̇ i·p)

To use the induction hypothesis Γ ˙̀ [iCe1]p⇔̇[iCe2]p we need to be able to commute grafting
and universal quantification, that is grafting and abstraction (cf. Section 8.1.5). In other
words, we need to transform a term such as [jCe1](∀̇ i·p) into a term of the form ∀̇ i′·[j′Ce′1]p

′.
However, we have not been able to discover any relevant way to commute these two
operations without unacceptable side effects.

As it is often the case using induction, we have therefore decided to prove a more
generic result – whose expression requires the definition and the formalisation of parallel
substitutions, similar to those of λ-calculus.

A theory of parallel substitutions

There are two main properties justifying the introduction of parallel substitution. First,
lifting and abstraction as well as any other standard operation on terms – with the notable
exception of grafting – can be emulated by the application of specific parallel substitutions.
Second, applying two parallel substitutions to a term is equivalent to applying a third
parallel substitution, computable from the two other ones. Such properties, of course,
have to be proven, and are in fact associated to a rather extensive formalisation of the
parallel substitutions in BiCoq – even if they have no real operational interest, being
mainly used as a proof tool for the congruence results6.

In the first version of our embedding, parallel substitutions were defined as lists of
pairs (i, E) : IP ×E and associated to a dedicated functional application of such parallel
substitutions to terms. Note that such lists are well-formed only provided that there are
never two pairs (i, E) and (i, E′) s.t. E 6=E′, that would represent divergent substitutions.

On the contrary, our latest version uses maps to represent parallel substitutions, that
is we define the type of parallel substitutions as follows:

Definition 8.3.4 (Parallel substitutions)

M , IP→E

This approach has several merits that deserve consideration. The first one is that this
representation of parallel substitutions does not contains ill-formed entities – the problem
of divergent substitutions simply does not exist here – nor does it introduce artificial prop-
erties, such as a meaningless order between the pairs in an association list. Furthermore,
we do not have to deal with functions looking for a value or the numerous theorems about
manipulations of such lists.

But the most interesting property is that maps represent infinite parallel substitutions.
Consider for example lifting: applied to a term, it increments all dangling indexes. Using
(finite) lists of pairs in IP ×E, we cannot define a parallel substitution whose application
emulate lifting for any term; we can only prove that for any term there is a parallel substi-
tution emulating lifting. On the contrary, parallel substitutions represented by (infinite)
maps allow for a generic substitution emulating lifting for any term.

6However we use the same tools to embed the Gsl in Section 7.3.2.

8.3. GRAFTING, CONGRUENCE AND NAMESPACES 129

We first define the following constants and functions7:

Definition 8.3.5 (Neutral parallel substitution)

� :M , fun i′ :IP 7→ i′

Definition 8.3.6 (Overloading of a parallel substitution)

m⊕ (i\E) :M , fun i′ :IP 7→ if i= i′ then E else m i′

Definition 8.3.7 (Lifting of a parallel substitution)

↑h m :M , fun i′ :IP 7→match i′ with

| (0, 0) 7→ i′

| (0, j′+1) 7→ if h≤j′ then ↑h (m (0, j′)) else i′

| 7→↑h (m i′)

Definition 8.3.8 (Application of a parallel substitution to a term)

[[m]]h :T→T , ∀P ′ 7→ ∀([[↑h m]]h+1P ′)

| {E′ | T ′ } 7→ { [[m]]hE′ | [[↑h m]]h+1P ′ }

| χ̇(n′,i′) 7→ if n′ 6=0 ∨ h≤ i′ then m i′ else χ̇(n′,i′)

| . . . (straightforward recursion)

The last function represents the application of a parallel substitution to a term; as for
any other operations in our de Bruijn representation, we systematically explicit the λ-
height parameter h, and we use it as precisely as possible (for example to lift the parallel
substitution parameter in the recursive calls when crossing a binder).

As indicated, it is then possible to define parallel substitutions whose application to a
term emulate standard terms operations:

Definition 8.3.9 (Parallel substitution emulating substitution)

M
\
h(i :IP)(E :E) :M , fun (n′, i′) :IP 7→ if (n′ 6=0 ∨ h≤ i′) ∧ i=(n′, i′) then E else (n′, i′)

Proposition 8.3.4 (Substitution emulation)

[i\E]h T = [[M
\
h i E]]hT

Definition 8.3.10 (Parallel substitution emulating lifting)

M↑
h :M , fun i′ :IP 7→↑h i′

Proposition 8.3.5 (Lifting emulation)

↑h T = [[M↑
h]]hT

Definition 8.3.11 (Parallel substitution emulating abstraction)

MAbstr
h (i :IP) :M , fun (n′, i′) :IP 7→ if (n′ 6=0 ∨ h≤ i′) ∧ i=(n′, i′) then (0, h) else ↑h (n′, i′)

7For the sake of readability we do not distinguish here the index i and the variable χ̇i.

130 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Proposition 8.3.6 (Abstraction emulation)

Abstrh i T = [[MAbstr
h i]]hT

Definition 8.3.12 (Parallel substitution emulating application)

MApp
h (E :E) :M , fun i′ :IP 7→

8><>:
(0, j′−1) if i=(0, j′) with h<j′

E if i=(0, h)

i′ in any other case

Proposition 8.3.7 (Application emulation)

Apph E T = [[MApp
h E]]hT

Note that the λdBL representation does not enjoy these properties. Indeed lifting for
example in λdBL increments all levels, bound or dangling, and therefore cannot be emulated
by the application of a parallel substitution (only affecting free variables, that is dangling
levels, and unable to change a bound level). This is the reason why we have preferred to
use the λdBI representation (cf. Section 8.1.3).

We have also numerous associated properties, for example the distribution of lifting
over the application of a parallel substitution:

Proposition 8.3.8 (Distribution of lifting)

↑h ([[m]]hT) = [[↑h m]]h+1 ↑h T

Such properties are of course reminescent of results of the explicit substitution calculus.
The second important aspect for the congruence proof about parallel substitutions is

that there is a composition law, that is multiple applications of parallel substitutions is
equivalent to the application of a single parallel substitution:

Definition 8.3.13 (Composition of parallel substitutions)

m1 }h m2 :M , fun i′ :IP 7→ [[m1]]h(m2 i′)

Proposition 8.3.9 (Validity of composition)

[[m1]]h([[m2]]hT) = [[m1 }h m2]]hT

Note again that even for composition, we explicit and use the λ-height parameter.

Tackling infinity

As indicated, one of the main interests of maps is the ability to represent infinite substitu-
tions, for example to have a generic parallel substitution emulating lifting. On the other
hand, maps require additional theorems that may be complex to deal with as I→E is not
well-founded. This for example forbids the use of an induction principle.

Fortunately, we are not interested in BiCoq by properties of maps, but by properties
about the application of parallel substitutions to terms – a point that makes a significant
difference. For example, the following semantic property indeed deals with the application
of a parallel substitution, and is an important lemma for our congruence proof:

8.3. GRAFTING, CONGRUENCE AND NAMESPACES 131

Proposition 8.3.10 (Semantic lemma for parallel substitutions)

Γ ˙̀ P ⇒ ∀ (m :M), (∀ (i :IP), m i= i ∨ i\(Γ ˙̀ P)) ⇒ Γ ˙̀ [[m]]P

That is, if P is provable under the assumptions Γ in the B logic, and if m is a parallel
substitution that only modifies variables that do not appear free in both P and Γ, then [[m]]P

is provable as well under the same assumptions.

Intuitively, if a variable does not appear free in both P and Γ, it can be universally
quantified and then instantiated for any value, that is any change by a parallel substitution
is acceptable. This condition is called the compatibility condition between m and Γ ˙̀ P .

When considering the application of parallel substitutions to terms, the infiniteness
of maps is irrelevant because there is only a finite number of dangling indexes in a term
that can be affected. Using this idea, we define in BiCoq scoped application of a parallel
substitution as an application whose effects are limited to indexes listed in a list. It is
then possible to prove a form of induction principle on these lists, and to finally derive the
following result:

Proposition 8.3.11 (Induction-like principle for parallel substitutions)

∀ (T :T)(P :T→Prop), P (T)⇒

(∀ (m : M), P ([[m]]T)⇒ ∀ (i : I)(E : E), P ([[m⊕ (i\E)]]T))⇒

(∀ (m : M), P ([[m]]T).

If a property is true for a term T (in other words for [[�]]T), and if provided the property
is true for [[m]]T then we can prove that it is also true for [[m⊕ (i\E)]]T , then the property
is true for [[m]]T , for any m.

This looks like an induction principle, but it is not complete with regard to maps.
Using only � and ⊕ as constructors, the only accessible maps are those that have a finite
scope, that is those having a finite (yet arbitrary high) number of indexes for which the
substitution is not the identity. Maps such as M↑

h are therefore not accessible. Yet we are
not trying to prove a property on maps but on parallel substitutions applied to a term; the
principle is valid because for any term T and any map M , there is a map M ′ whose scope
is finite and such that [[M ′]]T = [[M]]T . In other words, the set of maps is not well-founded,
but the set of relevant maps is.

We just discuss a few last remarks about maps. First, whereas maps are implemen-
tations for example in Ml-like languages, they are generally considered to be inefficient.
But here maps are a representation for parallel substitutions that are just used as a proof
tool in BiCoq. That is, for example, the proven prover discussed in Section 7.4 may
have B tactics for the application of the congruence results without having to implement
parallel substitutions. Second, before choosing to use maps all the consequences should be
carefully analysed. For example, they cannot be analysed extensionally; it is not possible,
given m :M, to check whether it has a finite scope or not.

Generalisation of the congruence results

Now that we have a theory about parallel substitutions and some semantic results, we can
return to our initial objective, that is the proof of the congruence results. In its local and
generic form for the grafting of expressions, the extended congruence result with parallel
substitutions is as follows:

132 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Proposition 8.3.12

∀ (Γ: list P)(E1 E2 :E), Γ ˙̀ E1=̇E2 ⇒ Γ ⊥0 E1=̇E2 ⇒

∀ (T :T)(i :IP)(m :M), (∀ (n′ i′ :N), m (n′+1, i′)=(n+1, i′) ∨ (n′+1, i′)\(Γ ˙̀ E1=̇E2)) ⇒

match T with

|Trm of Prd P ′ → Γ ˙̀ [[m]]([iCE1]P
′⇔̇[iCE2]P

′)

|Trm of Exp E′ → Γ ˙̀ [[m]]([iCE1]E
′=̇[iCE2]E

′)

The main difference with the simpler congruence result that we were initially trying to
prove is the universal quantification over M. The former can be derived from the latter
using the parallel substitution � which satisfies the compatibility condition with Γ ˙̀ E1=̇E2.

The proof is done by using the semantic induction principle derived from ΣSem . We
only discuss two illustrative cases. When the term is a variable, and more specifically the
grafted variable, the goal becomes:

Γ ˙̀ [[m]](E1=̇E2)

This is proven using the semantic result about parallel substitutions – which is indeed
applicable because of the compatibility condition on m.

The universal quantification case is much more tricky; we have to prove:

Γ ˙̀ [[m]]([iCE1]∀̇ i′ ·P⇔̇[iCE2]∀̇ i′ ·P) that is

Γ ˙̀ ∀ [[↑0 m]]1[↑0 iCE1]1Abstr0 i′ P ⇔̇ ∀ [[↑0 m]]1[↑0 iCE2]1Abstr0 i′ P

We can use the inverse universal quantification result at the end of Section 8.1.6 to con-
struct a functional representation for this term; the goal then becomes:

Γ ˙̀ ∀̇ i′′ ·App0 i′′ [[↑0 m]]1[↑0 iCE1]1Abstr0 i′ P⇔̇∀̇ i′′ ·App0 i′′ [[↑0 m]]1[↑0 iCE2]1Abstr0 i′ P

Thanks to the reintroduction of a form of natural representation – the functional repre-
sentation – we can apply a standard B semantic result to purely and simply eliminate the
universal quantification:

Γ ˙̀ App0 i′′ [[↑0 m]]1[↑0 iCE1]1Abstr0 i′ P⇔̇App0 i′′ [[↑0 m]]1[↑0 iCE2]1Abstr0 i′ P

This is an important step, the disparition of the quantifier corresponding to the reduction
of the depth (the measure) of our term, and therefore allowing for a later application of
the induction hypothesis. Through various simplifications and equalities, as well as the
transformation of the application into a parallel substitution followed by its composition
with m, we build a parallel substitution m′ (not detailed here) and have to prove:

Γ ˙̀ [[m′]]([↑0 iCE1]Abstr0 i′ P⇔̇[↑0 iCE2]Abstr0 i′ P)

We then apply the induction hypothesis, and check that indeed we satisfy the associated
conditions to conclude for this case.

This is a rather long and technical proof – its complexity resulting from the use of a de
Bruijn representation combined with an oversimplistic vision of grafting – whose validity
would be difficult to assess without the support of proof mechanisation. Yet once proven,
this theorem can be used to build tactics in a prover without having to care about parallel
substitutions; the use of a very simple grafting function then becomes relevant.

8.4. THE λTDB NOTATION 133

8.4 The λTdB notation

We have introduced in Section 8.1 numerous concepts and optimisations related to the
representation of terms in BiCoq. We summarise in this section these principles and apply
them to the formalisation of a simpler λ-calculus, denoted λTdB (for Typed de Bruijn).

There are two very different forms of adaptations to consider. The first one is struc-
tural, and corresponds to the generalisation of the concept of namespaces, introduced in
BiCoq to tackle complex problems when dealing with de Bruijn indexes for unusual op-
erations such as grafting. This section explores a variation of this idea, using types, before
reintroducing namespaces later.

The second one is just a form of optimisation of the theory by an explicit and precise
management of the context in which term transformations operate. It is presented here
as well, but this time with less justifications; please refer to the previous chapter about
BiCoq to have the full details.

Our description is, at this stage, limited to simple results; the interest of this calculus
is yet to be explored. In essence, this new representation (with its associated operations)
does not bring any new result but seems to provide simpler ways to deal with complex
situations. Note that unless indicated otherwise, the following definitions and propositions
have been formalised in Coq.

8.4.1 Using types as part of variable identifiers

The classical notations of the λ-calculus are often described as Church’s or Curry ’s rep-
resentations, and differ in the way types are associated to terms; in both cases, variables
are represented by a name. One of the underlying ideas of this section is that a variable
can also be represented by the ordered pair composed of a name and a type.

The formal details of this representation (denoted λTV, for typed variables) are not
given, as we are introducing later another representation with the same principles, but
using de Bruijn indexes. We just provide here a few illustrations to explain some of the
principles before introducing additional layers of complexity. In λTV a variable is a pair
(σ, n) where σ is a type and n a name. That is, if σ1 6=σ2, then (σ1, n) and (σ2, n) denote two
different variables.

As usual, binders are parameterised by the variable they bind, that is here a pair. It is
important to distinguish between the standard notation λx :σ·L, that represents the term L

in which (free) occurrences of x are captured, the parameter σ indicating the assumed type
for x, and our notation λ (σ, x)·L, that represents the term L in which (free) occurrences of
(σ, x) are captured:

Example 8.4.1 (Comparing binders in λV and λTV)

λV notation X0 :σ′ ` λx :σ ·(x+λy :σ′ ·(x−y) X0)

λTV notation ` λ(σ, x)·((σ, x)+λ(σ′, y)·((σ, x)−(σ′, y)) (σ′, X0))

The representation of variables as pairs has several consequences. The most evident is
that we do not need anymore to manage a typing context, as it is now embedded in the
term itself8. But the real justification for this vision is provided in the rest of this section,
when considering de Bruijn indexes; it is sufficient to say at this stage that we are in fact

8A similar approach is discussed in [GMW09], not yet published; it is apparently a recent and indepen-
dent development, using a locally nameless representation with standard de Bruijn indexes, only named
free variables being associated to a type.

134 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

providing a set of names per type, and that we are implicitly managing one context of
names per type.

Note that the approaches presented here are expected to be used as internal represen-
tations. Indeed, an OCaml code adopting this type of convention would be considered as
misleading – without even using a de Bruijn representation.

Example 8.4.2 (Typed identifiers in OCaml) We can first consider a version in which
type information would be inferred:

let x = 1;;

let x = ’a’;;

if 1<x then x else ’b’;;

Interestingly, this code would be accepted, being well-typed. It is indeed equivalent to the
following one, in which the types are explicit:

let (int ,x) = 1;;

let (char ,x) = ’a’;;

if 1<(int ,x) then (char ,x) else ’b’;;

8.4.2 The λTdB syntax

We now adapt the principle of typed variable identifiers to a de Bruijn representation with
indexes; this can be seen as a generalisation of the concept of namespaces introduced in
Section 8.3.

Provided a set Φ of sorts (with a decidable equality), the types Σ and the terms Λ are
defined as follows:

Definition 8.4.1 (λTdB syntax)

Σ , (Φ) Sorts
| ΣIΣ Functional types

Λ , δ(Σ, N) de Bruijn indexes
| λ(Σ, Λ) Abstractions
| Λ@Λ Applications

Any index is associated to a type to describe a free or bound variable. As in the previous
subsection, the idea is not to infer the type of a variable before decorating the term, but
to enforce the type to be part of the identifier. If σ1 6= σ2 then χ(σ1, i) and χ(σ2, i) denote
different variables, and both can appear in the same term at the same λ-height.

The abstraction, being a raw de Bruijn binder, is denoted λ; as previously we reserve
the notation λ for a more user-friendly notation. It is parameterised by a type in which
indexes are captured, but not by a name or a value, as it is usual in de Bruijn notations.

Notation 8.4.1 λσ l denotes the constructor λ applied to the type σ and the term l.

As mentioned, the most visible impact of our modification is that there is no syntactical
category for typing contexts, that is compared with standard representations of λ-calculus
in which typing judgements are of the form Γ ` l : σ, we do not need to define a syntactical
category for Γ, nor even to have such a Γ to express a typing judgement.

In contrast with the BiCoq calculus, we embed the application as a constructor of
the language. This is done to adopt the standard vision, and ease comparison with other
calculi. The consequences are that we now have in the formal language terms that are not
in normal form, or that are ill-typed (cf. the next subsection); in BiCoq such terms were
only described in the meta-language.

8.4. THE λTDB NOTATION 135

8.4.3 Typing

Without surprise, we define the typing relation l :σ, l is of type σ, as follows:

Definition 8.4.2 (Typing relation)

δ(σ, i) :σ

l :σ1

λσ2 l :σ2Iσ1

l1 :σ2Iσ1 l2 :σ2

l1@l2 :σ1

It is obviously decidable, deterministic but not complete: any term has at most one type,
but some terms are not typable. We can therefore implement a function typeof , not
detailed here, that for any term l, returns an option type, such that:

Proposition 8.4.1 (Decision procedure for typing)

l :σ ⇔ typeof(l) = some σ

(∀ (σ :Σ), ¬l :σ) ⇔ typeof(l) = none

8.4.4 Standard operations for λTdB

We now define a few usual operations on terms, adapted to our representation. We first
describe a standard implementation of these operations – denoted here with an S exponent
– before introducing in the next paragraph changes similar to those done in BiCoq,
enforcing a precise context management. We keep the two versions to allow for a smoother
introduction of the notations and associated concepts, but also to permit comparisons.

To start with a trivial example, we consider the function deciding whether a variable
appears free in a term, that is more precisely whether an index appears dangling:

Definition 8.4.3 (λTdB standard freeness)

FreeS
(σ, i) :Λ→B , δ(σ′, i′) 7→ σ=σ′ ∧ i= i′

| λσ′ l′ 7→ FreeS
(σ, if σ=σ′ then i+1 else i) l′

| l1@l2 7→ FreeS
(σ, i) l1 ∨FreeS

(σ, i) l2

The index parameter i is conditionnaly incremented when a binder is crossed: we only
increment the index if the variable is in the scope of the binder, that is if they have the
same type. We implicitly manage one λ-height per type, as this will be clarified later.
Indeed in λTdB crossing a binder of a given type has no influence on the representation of
variables of other types, as illustrated by this example:

Example 8.4.3 (Contexts and variable representations in λTdB)

λV notation X0 :σ ` λx :σ ·(x+λy :σ′ ·(x−y) X0)

λTdB notation λσ((σ, 0)+λσ′((σ, 0)−(σ′, 0))(σ, 1)) if σ 6=σ′

λσ((σ, 0)+λσ ((σ, 1)−(σ , 0))(σ, 2)) if σ=σ′

The next operation is lifting, that increments dangling indexes in a term. It is used
to adapt terms when crossing a binder in order to avoid captures of free variables. In our
case, binders are parameterised by a type, therefore the lifting operation is parameterised
as well by a type, and only increments indexes of this type; it also needs a contextual
parameter, the current λ-height (for the considered type):

136 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Definition 8.4.4 (λTdB standard lifting)

↑Sσ,h: Λ→Λ , δ(σ′, i′) 7→ δ(σ′, if σ=σ′ ∧ h≤ i′ then i′+1 else i′)

| λσ′ l′ 7→ λσ′ (↑Sσ,(if σ=σ′ then h+1 else h) l′)

| l1@l2 7→ ↑Sσ,h l1@ ↑Sσ,h l2

As usual, the parameter h is left implicit when lifting from λ-height 0 – which is the only
valid one from the user perspective, as other values of the λ-height may only result from
recursive calls when progressing in the term.

The next operation is called here elimination, and is denoted [↓]S. It represents BiCoq
functional application9, that is it is such that (λσ l)@la reduces into [↓ la]Sσ,0 l – it computes
the reduction of a redex. It is a form of higher-order substitution, as dangling indexes of
the considered type need to be decremented:

Definition 8.4.5 (λTdB standard elimination)

[↓ le]Sσ,h :Λ→Λ , δ(σ′, i′) 7→

8>>>><>>>>:
δ(σ′, i′) if σ 6= σ′ (extern)
δ(σ′, i′) if σ = σ′ ∧ h > i′ (bound)
le if σ = σ′ ∧ h = i (instantiate)
δ(σ′, i′−1) if σ = σ′ ∧ h < i′ (dangling)

| λσ′ l′ 7→ λσ′ [↓↑Sσ′ le]
E
σ,(if σ=σ′ then h+1 else h) l′

| l1@l2 7→ [↓ le]Sσ,h l1@[↓ le]Sσ,h l2

Regarding the elimination on a variable, the cases are as follows:

- extern: elimination in a different type (no effect, as there is one context per type);

- bound: the index is bound by a binder which is not the one being eliminated;

- instantiate: the index is bound by the binder which is being eliminated, and is there-
fore replaced by the parameter expression;

- dangling: the index is dangling and needs to be decremented to represent the same
variable after binder elimination.

In our representation, elimination does not need to be parameterised by a variable or an
index, but by a type – the one of the binder that we are eliminating.

These operations are sufficient for example to discuss strategies of reduction. Yet, we
can consider as for BiCoq a few additional operations, such as functional abstraction
and substitution. Functional abstraction offers a form of user-friendly notation, and can
also be used as part of a translation operator between λTV (the representation with typed
names) and λTdB:

Definition 8.4.6 (λTdB standard functional abstraction)

λS (σ, i) · l , λσ AbstrS
0 (σ, i) l

where AbstrS is the following function:

AbstrS
h (σ, i) :Λ→Λ , δ(σ′, i′) 7→ δ

0B@ σ′,

8><>:
h if σ=σ′ ∧ h≤ i′ ∧ i= i′

i′+1 if σ=σ′ ∧ h≤ i′ ∧ i 6= i′

i′ if σ 6=σ′ ∨ h>i′

1CA
| λ(σ′, l′) 7→ λσ′ AbstrS

if σ=σ′ then h+1 else h (σ, if σ=σ′ then i+1 else i) l′

| l1@l2 7→ (AbstrS
h (σ, i) l1)@(AbstrS

h (σ, i) l2)

9We have changed the name of this operation to avoid the confusion with the term constructor in λTdB.

8.4. THE λTDB NOTATION 137

Based on the same principles, the encoding of substitution is straightforward:

Definition 8.4.7 (λTdB standard substitution)

[(σ, i)\ls]S :Λ→Λ , δ(σ′, i′) 7→

(
ls if σ=σ′ ∧ i= i

δ(σ′, i′) if σ 6=σ′ ∨ i 6= i′

| λσ′ l′ 7→ λσ′ [(σ, if σ=σ′ then i+1 else i)\ ↑Sσ′ ls]
S l′

| l1@l2 7→ [(σ, i)\ls]S l1@[(σ, i)\ls]S l2

8.4.5 Context aware operations for λTdB

The previous definitions of the operations on terms are fully valid, but as indicated, not
entirely satisfactory from our perspective. Indeed, we want also to validate these definitions
through the proof of various properties, for example commutation results, as well as to
examine properties of our calculus, such as confluence.

As explained in Section 8.1.5, our experimentations in BiCoq have led us to favour
a form of detailed and precise context management for all the operations. In essence,
when using operations such as elimination or substitution, that lift their parameters when
crossing a binder, we want to use the correct λ-height parameter instead of the default
value; this leads us to explicit this parameter, and to generalize it to all operations, even
to those that do not require it, such as freeness or substitution. Having this parameter
explicit and generalised, we also use it to condition the behaviour of the operations, for
example not making anything if the call is ill-formed. These changes simplify many of our
theorems, that have less side conditions and more natural expression, but also the proof
of these theorems.

Making the same adaptations for λTdB is relatively straightforward, with the exception
of the nature of the contextual parameter. Indeed, because we have implicitly one context
per type, a single natural value is not sufficient; we need instead a map, that is a function
in Σ→ N, returning for any type the current λ-height. Let us illustrate the principle by
expliciting the evolution of the context when progressing in a term:

Example 8.4.4 (Evolution of context)2664 σ1 :0

σ2 :0

σ3 :0

3775λσ1 λσ2 λσ1 l→ λσ1

2664 σ1 :1

σ2 :0

σ3 :0

3775λσ2 λσ1 l→ λσ1 λσ2

2664 σ1 :1

σ2 :1

σ3 :0

3775λσ1 l→ λσ1 λσ2 λσ1

2664 σ1 :2

σ2 :1

σ3 :0

3775 l

The reason why we want to keep trace of this context are the same as for BiCoq: re-
membering for example that in the substitution [i\l]h, l is such that it has already been
lifted h times, and has therefore no dangling index i < h. In λTdB, this is similar, except
that this information is detailed for each type; the cost may appear important, but we can
remember that a mapping is similar to the context encountered in other representations,
and that our calculus only use such mapping for internal computations during recursion.
That is, this level of complexity is hidden to the user.

This being said, we should remember that these changes have no computational justifi-
cation, and are not economical in terms of memory – but they give a very different flavour
to the theorems and proofs. Note also that the λTdB representation does not enforce such
a context management, it is just our optimised version of the operations that requires it.

Using maps, we first introduce a constant µ representing the context for the root of
a term, a common condition D checking whether an index is dangling in given type and
context, and an operation ⊕ to increment the λ-height for a specific type:

138 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

Definition 8.4.8 (Root context)

µ :Σ→N , fun σ′ :Σ 7→ 0

Definition 8.4.9 (Dangling index characterisation)

Dσ,m(σ′, i′) :B , σ=σ′ ∧ (m σ′)≤ i′

Definition 8.4.10 (Context incrementation)

m⊕σ :Σ→N , fun σ′ 7→ if σ=σ′ then (m σ′)+1 else (m σ′)

Applying these principle first to freeness, we add such a contextual parameter:

Definition 8.4.11 (λTdB context aware freeness)

Freem(σ, i) : Λ→ B , δ(σ′, i′) 7→ if Dσ,m(σ′, i′) then i= i′ else⊥

| λσ′ l′ 7→ Freem⊕σ′ (σ, if Dσ′,m(σ, i) then i+1 else i) l′

| l1@l2 7→ Freem(σ, i) l1 ∨Freem(σ, i) l2

Note that the contextual parameter is also used to condition the answer. That is, for an
index, instead of returning directly i = i′ as previously, we first check that i is dangling
in the context. Intuitively, the condition Dσ,m(σ′, i′), which defines a well-formed call, is
explicited and internalised as a guard in the code.

In the case of lifting, the λ-height parameter exists in both versions, but is here gener-
alised as a map. This is sufficient to be able to identify dangling indexes in all types, even
if lifting still increment only the dangling indexes of the type σ passed as a parameter:

Definition 8.4.12 (λTdB context aware lifting)

↑σm: Λ→Λ , δ(σ′, i′) 7→ δ(σ′, if Dσ,m(σ′, i′) then i+1 else i)

| λσ′ l′ 7→ λσ′ ↑σm⊕σ′ l′

| l1@l2 7→ ↑σm l1@ ↑σm l2

For elimination, the contextual parameter is also used with the internal liftings:

Definition 8.4.13 (λTdB context aware elimination)

[↓ le]σm :Λ→Λ , δ(σ′, i′) 7→

8><>:
le if Dσ,m(σ′, i′) ∧ (m σ)= i′

δ(σ′, i′−1) if Dσ,m(σ′, i′) ∧ (m σ) 6= i′

δ(σ′, i′) if ¬Dσ,m(σ′, i′)

| λσ′ l′ 7→ λσ′ [↓↑σ
′

m le]
σ
m⊕σ′ l

′

| l1@l2 7→ [↓ le]σml1@[↓ le]σml2

Similarly for functional abstraction and substitution, we got10:

Definition 8.4.14 (λTdB context aware functional abstraction)

λ (σ, i)·l , λσ Abstrµ(σ, i) l

10For the sake of clarity, we make an abuse of our notations by using the expression ↑σ′,m (σ, i) to denote
(σ, if Dσ,m(σ′, i′) then i+1 else i).

8.4. THE λTDB NOTATION 139

where Abstr is the following function:

Abstrm(σ, i) :Λ→Λ , δ(σ′, i′) 7→ δ

0B@ σ′,

8><>:
(m σ′) if Dσ,m(σ′, i′) ∧ i= i′

i′+1 if Dσ,m(σ′, i′) ∧ i 6= i′

i′ if ¬Dσ,m(σ′, i′)

1CA
| λσ′ l′ 7→ λσ′ Abstrm⊕σ′ ↑σ′,m (σ, i) l′

| l1@l2 7→ Abstrm(σ, i) l1@Abstrm(σ, i) l2

Definition 8.4.15 (λTdB context aware substitution)

[(σ, i)\ls]m :Λ→Λ , δ(σ′, i′) 7→ if Dσ,m(σ′, i′) ∧ i= i′ then ls else δ(σ′, i′)

| λσ′ l′ 7→ λσ′ [↑σ′,m (σ, i)\ ↑σ′,m ls]m⊕σ′ l
′

| l1@l2 7→ [(σ, i)\ls]ml1@[(σ, i)\ls]ml2

8.4.6 A quick analysis

To illustrate the fact that the λTdB notation indeed introduces implicitly a context per
type, we can consider the following properties:

Proposition 8.4.2

typeof(↑σ,m l) = typeof(l)

typeof(Abstrm(σ, i) l) = typeof(l)

le :σ ⇒ typeof([↓ le]σml) = typeof(l)

ls :σ ⇒ typeof([(σ, i)\ls]ml) = typeof(l)

lb :σ ⇒ λ (σ′, i)·lb :σ I σ′

The first one is very significative, as lifting does not preserve typing in standard de Bruijn
notation. Similar results exist, but require shifting the typing context in parallel with
lifting the term. This form of context calculus is internalised in our term representation.

We can also quickly compare the two versions of our operations detailed herebefore by
considering the expression of various properties. Let us consider the very simple example
of the commutation lemmas of two liftings (such lemmas are often required, for example
to prove the results of the next paragraph). Using the two versions of lifting, we have the
following properties:

Proposition 8.4.3 (Commutation of standard liftings)

h1≤h2 ⇒ ↑Sσ,h1
(↑Sσ,h2

l) =↑Sσ,h2+1 (↑Sσ,h1
l)

σ1 6=σ2 ⇒ ↑Sσ1,h1
(↑Sσ2,h2

l) =↑Sσ2,h2
(↑Sσ1,h1

l)

Proposition 8.4.4 (Commutation of context aware liftings)

↑σ1
m⊕σ2

(↑σ2
m l) =↑σ2

m⊕σ1
(↑σ1

m l)

140 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

There is no miracle: in essence, these results are similar, and the side conditions associated
to the results for the first version of lifting are just embedded as notations and computa-
tions in the second version. Note also that the result for the improved version of lifting
presented here can only be used when there is a common context m for the two liftings.
This is of course restrictive, but sufficient for some of our purposes. But the interesting
observation is that this constraint about a common context cannot be written at all with
the first version of lifting.

The consequences of these differences are not to underestimate: we have (a little) more
lemmas with the standard versions of the operations, that are (a little) more difficult to
express, and (a little) more difficult to prove. By this last statement, we mean that for
example during proofs by induction, the standard version leads to a rewriting accompanied
by a proof that the condition is satisfied, whereas the improved version is just a rewriting;
the difference can have strong impact for example on the efficiency of proof automation.

We just consider another example, a property discussed for BiCoq and still valid here:

Proposition 8.4.5 (Standard substitution as a composite operation)

h≤ i ⇒ [↓ ls]Sσ,hAbstrS
h (σ, i) l = [(σ, i)\ls]S l

Proposition 8.4.6 (Context aware substitution as a composite operation)

[↓ ls]σmAbstrm(σ, i) l = [(σ, i)\ls]ml

These results both show that substitution does not need to be primitive in our calculus,
as it is equivalent to abstraction followed by elimination. Yet again the second version is
easier to handle in the absence of side condition.

8.4.7 β-reduction and normal form

The β-reduction is defined using the operations introduced in the previous subsection:

Definition 8.4.16 (β-reduction relation)

(λσ l)@la →β [↓ la]σµ l (β-red)

l→β l′ ⇒ λσ l →β λσ l′ (β-abstr)

l1 →β l′1 ⇒ l1@l2 →β l′1@l2 (β-appl)

l2 →β l′2 ⇒ l1@l2 →β l1@l′2 (β-appr)

We also define the function normal , not detailed here, checking whether a term is in a
normal form, and prove the consistency with β-reduction:

Proposition 8.4.7 (Characterisation of normal forms)

normal(l)⇔ (∀ (l′ : Λ), ¬(l→β l′))

normal(l) ∨ ∃ l′, l→β l′

The constructive proof of the second result is a program that decide whether or not a term
is in normal form, and in the latter case returns a reduction.

β-reduction, as expected, preserves typing; we need just to ensure that the initial term
is well-typed, as an ill-typed term can become well-typed after a reduction:

8.4. THE λTDB NOTATION 141

Proposition 8.4.8 (Preservation lemma)

l :σ ⇒ l→β l′ ⇒ typeof(l) = typeof(l′)

We have also proven results about commutations between eliminations, and derived
the following standard semantic results:

Proposition 8.4.9 (Commutation lemmas)

l→β l′ ⇒ [↓ le]σµ l→β [↓ le]σµ l′

le→β l′e ⇒ [↓ le]σm l→∗
β [↓ l′e]σm l

Note that these lemmas are not expressed with substitution but with elimination, and
that the first lemma is only valid with the context µ.

With these results, confluence can be proven; at this stage, we have just shown the
weak confluence:

Proposition 8.4.10 (Weak confluence)

l→β l1 ⇒ l→β l2 ⇒ ∃ l′, l1→∗
β l′ ∧ l2→∗

β l′

The proof for strong confluence is expected to be immediate, and the proof of confluence
is likely to be rather easy as well. Normalisation is yet to be done.

8.4.8 Grafting

The last operation described in this section is the grafting, defined as follows:

Definition 8.4.17 (Grafting)

[(σ, i)Clg]m :Λ→Λ , δ(σ′, i′) 7→ if Dσ,m(σ′, i′) ∧ i= i′ then ls else δ(σ′, i′)

| λσ′ l′ 7→ λσ′ [↑σ′,m (σ, i)Clg]m⊕σ′ l
′

| l1@l2 7→ [(σ, i)Clg]ml1@[(σ, i)Clg]ml2

It is very similar with substitution, the only difference being that substitution lifts its term
parameter when crossing a binder, while grafting does not. That is, substitution prevents
the capture of the free variables in its parameter, but grafting does not.

In λTdB, grafting obviously preserves typing:

Proposition 8.4.11 (Grafting and typing)

lg :σ ⇒ typeof([(σ, i)Clg]ml) = typeof(l)

This property is not valid in standard de Bruijn representations, and contrary to what was
noted for lifting and typing, we are not aware of any reasonable way to derive a similar
property in a standard notation – shifting the typing context would not be sufficient.

In essence, the satisfaction of this property is the main justification for introducing
namespaces in BiCoq and typed de Bruijn indexes here. Indeed, grafting, by not lifting
its parameter when crossing a binder, does not update variable representation to ensure
their consistency with the context. That is, in practice, we lose the semantics of the
indexes, and in a named representation this would correspond to an unmonitored and
untraceable replacements of y by x, z by y, etc. – a situation made worse if the grafted

142 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

variable appear several times, as these replacements would not be the same at different
locations in the term to which grafting is applied.

At this stage however, grafting is still an exotic operation, possibly meaningless as
would be any other operation scrambling terms. We have not yet developped an associated
formal theory, and we just provide here the intuition behind the definition of this function,
and its potential uses – solely based on the observations and proofs done for BiCoq.

Grafting, in a way, is the form of substitution that is used for rewriting. Provided a
rule l→r, when identifying that in a term t the subterm matches l, we can apply the rule
to obtain a new term where the subterm l has been replaced by r. Such a replacement is
independent from the fact that l or r can have free variables captured by a binder in t –
that is, it is inherently first-order.

A rewriting rule can be emulated using grafting: given a term t with a subterm l, we
produce a form of pattern t=[(σ, i)Cl]t′, where (σ, i) is an arbitrary free variable (a dangling
index), then apply a congruence rule such as:

C ⇒ l r ⇒ [σ, iCl]t′ [σ, iCr]t′

Where C is a side condition. Of course the validity of such a congruence rule has to be
proven, as it was done for BiCoq in the B logic. Grafting is therefore just a tool to express
such rules, substitution being too limited.

An intuitive illustration of these concepts is provided by the β-reduction, which is
defined as a base rule β-red and recursion rules that transform the base rule into a rewriting
rule. β-reduction can indeed also be defined using grafting as follows:

Definition 8.4.18 (β-reduction by grafting)

λ(σ, l)@la →β′ [↓ la]σµ l β′-red

(lg→β′ l
′
g) ⇒ [(σ, i)Clg]µ l →β′ [(σ, i)Cl′g]µ l β′-graft

8.4.9 Namespaces and meta-variables

Back to generic congruence rules, it may happen that the side condition C is not trivial.
For example, in BiCoq, the congruence results that allow for the replacement of equal
expressions or of equivalent predicates are associated to a condition about the variables
appearing free in the proof context and in the equality or equivalence proposition – the
so-called orthogonality condition (cf. Sections 8.3.2 and 8.3.3).

As indicated, this is justified by the fact that grafting permits captures but also results
into a loss of context. This has led us to introduce namespaces in BiCoq, not as a solution
to prevent losses of context, but rather as a solution to limit the scope of such losses –
allowing for a weaker side condition, easier to satisfy, and with an intuitive justification
(counter-examples are easier to elaborate). In fact, the use of namespaces is nothing more
than a technical trick to benefit of stronger results by weakening side conditions.

In the λTdB notation we have extended the idea of namespaces to types. However, our
feeling is that for advanced results, the problem of the loss of context caused by grafting
can reappear. Of course, by construction, such losses of context will never results into
losses of typing, but nevertheless we are not able to preserve the semantics of the dangling
indexes. That is, we still need a way to restrict the scope of such losses by extending the
notation, a way to “put apart” some variables to preserve them from unmonitored shifts.

A possible solution to this problem is to introduce a new syntactical class of named
(meta) variables, with N a type of names with a decidable equality:

8.4. THE λTDB NOTATION 143

Definition 8.4.19 (Syntax extended with meta-variables)

Λ , δ(Σ, N) de Bruijn indexes
| χ(Σ,N) Variables
| λ(Σ, Λ) Abstractions
| Λ@Λ Applications

Such variables are never bound, and never lifted or subject to computations – this is why
we use names instead of indexes. It is then possible to extend all the operations previously
defined, and to prove the same properties. For advanced results, side conditions can for
example be the obligation to work only with terms without dangling indexes (at least for
some given types), free variables being represented only by named variables.

The other solution is to reintroduce namespaces. In such a case, N is a type of names-
paces with a decidable equality, parameterising the variables (represented by tuples with
indexes) and the binders11:

Definition 8.4.20 (Syntax modified with namespaces)

Λ , δ(Σ,N , N) de Bruijn indexes
| λ(Σ,N , Λ) Abstractions
| Λ@Λ Applications

We can consider for example a infinite set of namespaces, being able to define as many
context scopes as required to derive interesting results. In other words, if a grafting leads to
a possible confusion between variables x and y in the type σ, a possible solution is to move
x and y in their own namespaces, that can be such that they are never bound. For example
we can use Z as the set of namespaces, and parameterise binders by a namespace in N; by
doing so, we can ensure that negative namespaces are never bound, and that indexes in
these namespaces can be considered as names, while indexes in positive namespaces can
still be bound or dangling, lifted, etc. Remember that we do not expect namespaces to
have semantics; they are merely a technical trick.

Beyond not introducing a new constructor – a rather trivial observation – we consider
that this solution has some merits of its own when compared with the introduction of
meta-variables.

The first justification is that, compared with the named variables approach, we can keep
a set of operations that is generic and reduced: considering for example substitution, we
do not need to assess whether we want an operation for the substitution of free variables
represented by a dangling index and another one for the substitution of free variables
represented by a named variable.

A much more important justification is provided by considering possible extensions, for
example to polymorphic types. As previously illustrated, in λTdB, variables representations
can be tricky to determine:

Example 8.4.5 (Context and variable representations)

λV notation X0 :σ ` λx :σ ·(x+λy :σ′ ·(x−y) X0)

λTdB notation λσ((σ, 0)+λσ′((σ, 0)−(σ′, 0))(σ, 1)) if σ 6=σ′

λσ((σ, 0)+λσ ((σ, 1)−(σ , 0))(σ, 2)) if σ=σ′

11We have kept here both parameters, that is a type and a namespace; this ensures for example that
lifting preserves typing, and does not require the management of typing contexts. Yet if such properties
have no interest, it may be more efficient to drop types and to keep only namespaces in this representation.

144 CHAPTER 8. TECHNICAL REVIEW OF BICOQ

We see that the question whether σ = σ′ or not is important to process the correct term
representation. Now suppose we introduce type variables in the syntax of types to represent
polymorphism, and let us reconsider our previous example with type variables α and β

instead of σ and σ′:

Example 8.4.6 (Polymorphic λTdB)

λα((α, 0)+λβ((α, 0)−(β, 0))(α, 1))

Instantiating these type variables is unfortunately not so easy. Indeed, if they are instan-
tiated by different types, then it is just replacing the occurrences of the variables; but if
these types are equal then we also need to renumber some of the indexes. We have in
fact collapsed together two separate contexts and we need to adapt the representation
accordingly.

On the contrary, using for example type variable names as namespaces (represented
thereafter by boxed characters), we have a solution to maintain artifically the context
separation. Even if we instantiate the type variables α and β by the same type σ, we can
avoid renumbering the indexes; the procedure of instantiation is simpler and common to
all cases. Applied to the previous example, the polymorphic and instantiated versions are
as follows:

Example 8.4.7 (Polymorphic λTdB with namespaces)

λα, α ((α, α ,0)+λ
β, β

((α, α ,0)−(β, β ,0))(α, ∅ ,0))

λσ, α ((σ, α ,0)+λ
σ, β

((σ, α ,0)−(σ, β ,0))(σ, ∅ ,0))

Our feeling is that such representations, with parameterised variables or indexes, de-
serve additional studies. Whereas they are relatively complex to interpret for a human
reader, their manipulation by programs is straightforward. These representations seem to
mix some of the advantages of named representations and de Bruijn representations.

One could note however that a representation with namespaces is not α-quotiented as
soon as there is more than one possibly bound namespace (per type). In such case we
either need to define such an α-equivalence, or to swap between several representations
according to the problems we have to tackle, introducing namespaces as special marks to
deal with grafting results for example.

Chapter 9

Conclusion and Perspectives

9.1 Security traps and oversights

We have started this memoir with a question about the scope and the level of confidence
resulting of the use of deductive formal methods for the development of secure systems.

This question, initially motivated by personal experiences emphasising the difficulties
to correctly specify some elusive security requirements, has led us to a detailed review of
specification-driven developments supported by deductive formal methods in Chapter 5.
And, adopting a very skeptical vision, there is indeed a lot to say about the problems that
can result of contradictory or insufficient specifications and of unexpected uses of proven
systems – whatever the method that is used.

Yet, beyond illustrations of the potential consequences of inappropriate specifications,
of the Refinement Paradox or of overoptimistic hypotheses, we have also tried in this
memoir to explore the causes, to propose recommendations for developers or evaluators,
or to discuss possible technical solutions.

We have emphasised why some common practices should be reconsidered when dealing
with security applications. For example, the use of preconditions does not appear to be
relevant, and guards should be preferred instead.

Inappropriate specifications also result of misunderstandings of the theory supporting
the formal method – misunderstandings that can be tackled by more intuitive presentations
of the underlying concepts. We have adopted this approach in this memoir with an explicit
representation of the refinement process, illustrating how for example it is possible for a
malicious developer to introduce hidden dependencies, in the B method but also in Coq
or FoCaLize. We have also noted that the assessment of the quality of specifications can
be supported by tools, such as model animators, test generators, and so on.

On the other hand, as far as the promotion of formal methods in industry is concerned,
we are not convinced at this stage by alternative approaches that would complexify the
theory to address all possible concerns related to security, such as for example finer refine-
ment relations considering not only non determinism but also randomness and observabil-
ity. Whereas these approaches definitely have an academic justification, such an increased
complexity would have a cost – possibly unbearable for the industry – both in terms of
training and use, without even speaking about the existence of tool support.

It is our feeling that, on the contrary, the interaction of deductive formal methods
with other (more automated) approaches is preferrable. That is, for example, a form
of dependency calculus can easilly deal with our concerns related to confidentiality and
covert channels. This advocates the development of Ides that would integrate such various
approaches, as it is the objective for the FoCaLize environment.

145

146 CHAPTER 9. CONCLUSION

9.2 Validation of theories and tools

Having noted the potential consequences of paradoxes in theories or tools, we have also
explored in this memoir the validation of formal methods, with the example of the B
method and the embedding of its logic in the Coq proof assistant in Chapters 7 and 8.

Such a validation is not a simple problem, and it has a cost which is not negligible. On
the other hand, we have illustrated that it is both feasible and necessary, identifying for
example multiple oversights in the B logic. The validation of the theory is in our view a
typical academic activity, to be done once, for the benefit of the whole formal community,
including industrial users. Such a validation has of course to be mechanically assisted, but
several tools perfectly fitted for this task exist, and beyond confidence in the results their
use brings various additional advantages.

In our case for example, we have benefited of the use of Coq not only to consider
the validation of the B logic, but also to explore different representations, to derive me-
chanically checked tools, and to prove new congruence results. Having the support of
a proof assistant, we have been able to tackle in trust numerous administrative details
when dealing with advanced results such as substitution of subterms having free variables
bound by their context. More generally, these tools appear relevant to deal efficiently and
confidently with mathematical theories.

As far as the tools supporting formal methods are concerned, we have also noted that
the completeness and the correction of a prover, for example, are not the only objectives
to be considered when developing a formal environment. Indeed, one can also expect
simplicity, ergonomics and automation – favouring again effective use in the industry. This
can in our view justify the coexistence and collaboration of several tools and approaches.

9.3 A few perspectives

This memoir discusses numerous additional activities, that unfortunately have not been
addressed by lack of time. We propose here a short summary of the perspectives that we
have identified.

The seamless integration of mutiple approaches in a formal environment to support
secure developments, for example, would be a conspicuous improvement. Such an integra-
tion is an observable trend in the B community – yet for better efficiency and ergonomics,
rather than improved security – and is one of the primary objective of the FoCaLize
project. Whereas we are not sure that the integration into a unified theory (of refinement
for example) would be usable in an industrial environment, the ability to combine mul-
tiple orthogonal analyses, e.g. proofs for functional compliance, dependency graphs for
confidentiality, and so on, would bring a much more complete vision at a minimal cost –
at least as far as the development of secure systems is concerned.

Beyond existing techniques, it is our feeling that additional features should be ad-
dressed as well for integration into such formal environments. Dependency calculus, for
example, operates at implementation level, and can identifies undesirable information flows
for the benefit of an independent evaluator. Yet we have not identified how to spec-
ify dependencies in such a way that the constraints are propagated automatically during
refinements. This would be a very interesting feature, for both safety (assessing fault
propagations) and security (identifying covert channels), to be able to express dependency
constraints at the abstract level while having guarantees about their preservation at the
concrete level.

Similarly, additional specification engineering tools should also be considered. Such

9.4. ON THE INTEREST OF FORMAL METHODS 147

tools would for example help to criticize specifications e.g. by generating additional proof
obligations (to detect vacuous truths, empty types, and so on) or by building counter-
examples (to detect inconsistencies or insufficient specifications). Another interesting ap-
plication would be the ability to transform – or to assist with the transformation of – the
specification, in whole or in part, into guards integrated within the code.

We have also discussed at length the problem of the validation of the theory and tools
associated to a formal method. With respect to BiCoq for example, there is still a lot to
do, such as assessing the consistency of the B logic and the exact role of the well-formedness
checking. The integration of BiCoq with other B tools seems also desirable, e.g. as a
robust base for shallow embeddings or as a proof checker for Ides. The development of
new results, such as the congruence rules presented in this memoir, should also be further
explored for example to enrich tactics – and potentially increase automation – of the
existing provers.

Finally, we have described various forms of de Bruijn representations for terms, and
the associated operations, considering better context management and variable identifiers
with sorts (namespaces) or types. The interest of these approaches has to be studied, one
of the immediate results being the definition of typed λ-calculi not requiring explicit typing
contexts. One of the other subjects deserving further investigations is the development
of a library for language mechanisation, not using a specific representation but combining
them, e.g. describing notations with names, de Bruijn indexes and levels but also homo-
morphism properties between them. This would allow for choosing the most appropriate
representation for the proof of a result, before being able to propagate this result toward
the other representations using homomorphisms.

9.4 On the interest of formal methods

The presentation of deductive formal methods provided in this memoir, and in Chapter 5 in
particular, is biased, considering worst-case scenarios and well-chosen examples to support
our discussion. This leads to numerous remarks about the traps that any secure system
development is facing.

As mentioned, however, we consider that formal methods in general, and deductive
formal methods in particular, are very powerful tools that allow for effectively developping
bug free implementations.

In our view, formal methods do provide a silver bullet for system engineering, and
appropriately used they can lead to the detection and the eradication of flaws in protocols
or policies, of non-compliancies, or of other forms of problems such as buffer overflows, out-
of-bound accesses, and exceptions due to invalid computations. One of the other benefits
of the use of deductive formal methods – and of other user-assisted formal methods – is
that they bring a genuine knowledge about the system under development. If nothing else,
proving a program is a remarquable way to reconsider and justify its design.

In our view, formal methods are not sufficiently used by industry today. They indeed
have a poor reputation of being too complex and too expensive, and as a consequence
they are mainly used for critical systems to support the certification process – that is as a
mean to convince the independent evaluators and the certification authorities rather than
to improve the reliability of the system.

But the fact is that the genuine complexity of a formal development is not related to
the method – once appropriate training has been given, of course – but to the considered
system. It is clear for example that the difficulty of software development is generally
underestimated; formal methods just emphasise this difficulty by requesting justifications

148 CHAPTER 9. CONCLUSION

and forbidding oversights. And as far as the cost is concerned, various studies and surveys
indicate that the appropriate use of formal method in fact leads to significant reductions of
the overall cost, considering not only development but also verification and maintenance.

We have decided, for the work described in this memoir, to always use formal methods
to support our reasonings and developments. It has clearly illustrated both the interest of
such an approach as well as its feasibility, and it has in fact helped us to consider problems
that we would never have tried to tackle without such mechanical support. We expect this
experience to give some weight to our recommendations and proposals.

Bibliography

[ABF+05] B.E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized
metatheory for the masses: The POPLmark challenge. In Hurd and Melham
[HM05], pages 50–65.

[ABHR99] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core
calculus of dependency. In ACM, editor, POPL ’99. Proceedings of the 26th
ACM SIGPLAN-SIGACT on Principles of programming languages, January
20–22, 1999, San Antonio, TX, pages 147–160, New York, NY, USA, 1999.
ACM Press.

[ABM01] Alessandro Avellone, Marco Benini, and Ugo Moscato. How to avoid the formal
verification of a theorem prover. Logic Journal of the IGPL, 9(1), 2001.

[Abr96] J. R. Abrial. The B-Book - Assigning Programs to Meanings. Cambridge
University Press, August 1996.

[ACCL91] M. Abadi, L. Cardelli, P-L. Curien, and J-J. Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375–416, 1991.

[ACM05] Jean-Raymond Abrial, Dominique Cansell, and Dominique Méry. Refinement
and reachability in Event-B. In Helen Treharne, Steve King, Martin C. Henson,
and Steve A. Schneider, editors, ZB, volume 3455 of Lecture Notes in Computer
Science, pages 222–241. Springer, 2005.

[ACPM05] June Andronick, Boutheina Chetali, and Christine Paulin-Mohring. Formal
verification of security properties of smart card embedded source code. In John
Fitzgerald, Ian J. Hayes, and Andrzej Tarlecki, editors, FM, volume 3582 of
Lecture Notes in Computer Science, pages 302–317. Springer, 2005.

[AHN08] Klaus Aehlig, Florian Haftmann, and Tobias Nipkow. A compiled implementa-
tion of normalization by evaluation. In Otmane Aı̈t Mohamed, César Muñoz,
and Sofiène Tahar, editors, TPHOLs, volume 5170 of Lecture Notes in Com-
puter Science, pages 39–54. Springer, 2008.

[AL91] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
Theor. Comput. Sci., 82(2):253–284, 1991.

[AP02] A. Azurat and I.S.W.B. Prasetya. A survey on embedding programming logics
in a theorem prover. Technical Report UU-CS-2002-007, Institute of Informa-
tion and Computing Sciences, Utrecht University, 2002.

[Bac81] R-J. Back. On correct refinement of programs. J. Comput. Syst. Sci., 23(1):49–
68, 1981.

149

150 BIBLIOGRAPHY

[Bac88] R-J. Back. A calculus of refinements for program derivations. Acta Inf.,
25(6):593–624, 1988.

[Bar99] B. Barras. Auto-validation d’un système de preuves avec familles inductives.
Thèse de doctorat, Université Paris 7, November 1999.

[BAW98] Ralph-Johan J. Back, Abo Akademi, and J. Von Wright. Refinement Calculus:
A Systematic Introduction. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1998.

[BBM98] Patrick Behm, Lilian Burdy, and Jean-Marc Meynadier. Well defined B. In
Bert [Ber98], pages 29–45.

[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer Verlag, 2004.

[BC06] Mike Bond and Jolyon Clulow. Integrity of intention (a theory of types for
security APIs). Information Security Technical Report, 11(2):93 – 99, 2006.

[BCM07] Nazim Benäıssa, Dominique Cansell, and Dominique Méry. Integration of
security policy into system modeling. In Julliand and Kouchnarenko [JK06],
pages 232–247.

[BDD07] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon : An extensi-
ble automated theorem prover producing checkable proofs. In Dershowitz and
Voronkov [DV07], pages 151–165.

[BDFF04] K. Berkani, C. Dubois, A. Faivre, and J. Falampin. Validation des règles de
base de l’Atelier B. Technique et Science Informatiques, 23(7):855–878, 2004.

[BDL01] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of eliminating errors in cryptographic computations. J. Cryptology, 14(2):101–
119, 2001.

[BDM98] P. Behm, P. Desforges, and J. M. Meynadier. MÉTÉOR : An industrial success
in formal development. In Bert [Ber98], page 26.

[Ber98] D. Bert, editor. B’98: Recent Advances in the Development and Use of the
B Method, Second International B Conference, Montpellier, France, April 22-
24, 1998, Proceedings, volume 1393 of Lecture Notes in Computer Science.
Springer, 1998.

[BF02] J.P. Bodeveix and M. Filali. Type synthesis in B and the translation of B
to PVS. In Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken
Robinson, editors, ZB ’02: Proceedings of the 2nd International Conference of
B and Z Users on Formal Specification and Development in Z and B, volume
2272 of Lecture Notes in Computer Science, pages 350–369, London, UK, 2002.
Springer-Verlag.

[BFM99] J.-P. Bodeveix, M. Filali, and C. Muñoz. A formalization of the B-Method in
Coq and PVS. In Electronic Proceedings of the B-User Group Meeting at the
World Congress on Formal Methods FM 99, pages 33–49, 1999.

BIBLIOGRAPHY 151

[BGG+92] R. J. Boulton, A. Gordon, M. J. C. Gordon, J. Harrison, J. Herbert, and J. Van
Tassel. Experience with embedding hardware description languages in HOL.
In V. Stavridou, T. F. Melham, and R. T. Boute, editors, TPCD, volume A-10
of IFIP Transactions, pages 129–156. North-Holland, 1992.

[Bie96] P. Bieber. Formal techniques for an ITSEC-E4 secure gateway. In ACSAC,
pages 236–246. IEEE Computer Society, 1996.

[Boe10] Mathieu Boespflug. Conversion by evaluation. In Manuel Carro and Ricardo
Peña, editors, PADL, volume 5937 of Lecture Notes in Computer Science, pages
58–72. Springer, 2010.

[Bou07] Sylvain Boulmé. Intuitionistic refinement calculus. In Simona Ronchi Della
Rocca, editor, TLCA, volume 4583 of Lecture Notes in Computer Science,
pages 54–69. Springer, 2007.

[BP99] R. Bird and R. Paterson. De Bruijn notation as a nested datatype. Journal of
Functional Programming, 9(1):77–91, 1999.

[BP00] Richard Banach and Michael Poppleton. Retrenchment, refinement, and sim-
ulation. In Jonathan P. Bowen, Steve Dunne, Andy Galloway, and Steve King,
editors, ZB, volume 1878 of Lecture Notes in Computer Science, pages 304–323.
Springer, 2000.

[BP07] Sylvain Boulmé and Marie-Laure Potet. Interpreting invariant composition in
the b method using the Spec# ownership relation: A way to explain and relax
B restrictions. In Julliand and Kouchnarenko [JK06], pages 4–18.

[Bur00] Lilian Burdy. Traitement des expressions dépourvues de sens de la théorie des
ensembles – Application à la méthode B. Thèse de doctorat, Conservatoire
National des Arts et Métiers, may 2000.

[BvW00] Ralph-Johan Back and Joakim von Wright. Encoding, decoding and data
refinement. Formal Asp. Comput., 12(5):313–349, 2000.

[CC] ISO/IEC 15408: Common criteria for information technology security evalua-
tion. http://www.commoncriteriaportal.org/.

[CD08] M. Carlier and C. Dubois. Functional testing in the FoCaL environment. In
B. Berckert and R. Hahnle, editors, Test And Proof (TAP’2008), volume 4966,
pages 84–98. LNCS, 2008.

[CD09] Ana Cavalcanti and Dennis Dams, editors. FM 2009: Formal Methods, Second
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceed-
ings, volume 5850 of Lecture Notes in Computer Science. Springer, 2009.

[CGL96] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking. In
Manfred Broy, editor, NATO ASI DPD, pages 305–349, 1996.

[CH01] Bill Councill and George T. Heineman. Summary. pages 741–752, 2001.

[Cha98] P. Chartier. Formalisation of B in Isabelle/HOL. In Bert [Ber98], pages 66–82.

152 BIBLIOGRAPHY

[CHL96] P-L. Curien, T. Hardin, and J-J. Lévy. Confluence properties of weak and
strong calculi of explicit substitutions. Journal of the ACM, 43(2):362–397,
March 1996.

[CK98] H. Cirstea and C. Kirchner. Using rewriting and strategies for describing the
B predicate prover. In Claude Kirchner and Hélène Kirchner, editors, CADE-
15 : Workshop on Strategies in automated deduction, volume 1421 of Lecture
Notes in Computer Science, pages 25–36, Lindau, Germany, 1998. Springer.

[Clu03] Jolyon Clulow. On the security of PKCS#11. In Colin D. Walter, Çetin
Kaya Koç, and Christof Paar, editors, CHES, volume 2779 of Lecture Notes in
Computer Science, pages 411–425. Springer, 2003.

[CM06a] Dominique Cansell and Dominique Méry. Formal and incremental construction
of distributed algorithms: On the distributed reference counting algorithm.
Theor. Comput. Sci., 364(3):318–337, 2006.

[CM06b] Judicaël Courant and Jean-François Monin. Defending the bank with a proof
assistant. In WITS 2006, Vienna, March 2006. In WITS proceedings.

[CM09] Samuel Colin and Georges Mariano. Coq, l’alpha et l’omega de la preuve pour
B ? 14 pages + annexe de deux pages, 2009.

[Coq] The Coq proof assistant. http://coq.inria.fr.

[CP88] Thierry Coquand and Christine Paulin. Inductively defined types. In Per
Martin-Löf and Grigori Mints, editors, Conference on Computer Logic, volume
417 of Lecture Notes in Computer Science, pages 50–66. Springer, 1988.

[CP95] Jeffrey A. Clark and Dhiraj K. Pradhan. Fault injection. Computer, 28(6):47–
56, 1995.

[CPR+05] S. Colin, D. Petit, J. Rocheteau, R. Marcano, G. Mariano, and V. Poirriez.
BRILLANT : An open source and XML-based platform for rigourous software
development. In SEFM (Software Engineering and Formal Methods), Koblenz,
Germany, september 2005. AGKI (Artificial Intelligence Research Koblenz),
IEEE Computer Society Press. selectivity : 40/120.

[CPW06] A. Charguéraud, B. C. Pierce, and S. Weirich. Proof engineering: Practical
techniques for mechanized metatheory, September 2006. Submitted for publi-
cation.

[CSC] John A. Clark, Susan Stepney, and Howard Chivers. Breaking the model:
Finalisation and a taxonomy of security attacks.

[dB72] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae (Proceedings), pages 381–392, 1972.

[Del00] D. Delahaye. A tactic language for the system Coq. In M. Parigot and
A. Voronkov, editors, Proceedings of Logic for Programming and Automated
Reasoning (LPAR), Reunion Island, volume 1955 of Lecture Notes in Com-
puter Science, pages 85–95. Springer-Verlag LNCS/LNAI, November 2000.

BIBLIOGRAPHY 153

[DHK00] G. Dowek, T. Hardin, and C. Kirchner. Higher order unification via explicit
substitutions. Inf. Comput., 157(1-2):183–235, 2000.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DL07] Z. Dargaye and X. Leroy. Mechanized verification of CPS transformations. In
Dershowitz and Voronkov [DV07], pages 211–225.

[DV07] Nachum Dershowitz and Andrei Voronkov, editors. Logic for Programming,
Artificial Intelligence, and Reasoning, 14th International Conference, LPAR
2007, Yerevan, Armenia, October 15-19, 2007, Proceedings, volume 4790 of
Lecture Notes in Computer Science. Springer, 2007.

[DY81] Danny Dolev and Andrew C. Yao. On the security of public key protocols.
Technical report, Stanford, CA, USA, 1981.

[ED07] Didier Essamé and Daniel Dollé. B in large-scale projects: The canarsie line
cbtc experience. In Julliand and Kouchnarenko [JK06], pages 252–254.

[Flo67] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Mathematical Aspects of Computer Science, Proceedings of Symposia in Ap-
plied Mathematics 19, pages 19–32, Providence, 1967. American Mathematical
Society.

[Foc] The FoCaLize project. http://focalize.inria.fr/.

[GFL05] Frédéric Gervais, Marc Frappier, and Régine Laleau. Vous avez dit raffinement?
Technical Report CEDRIC-829, CNAM, march 2005.

[GHS] Integrity real-time operating system.
http://www.ghs.com/products/rtos/integrity.html.

[GM92] J.A. Goguen and J. Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20. IEEE Press, 1992.

[GMW09] Herman Geuvers, James McKinna, and Freek Wiedijk. Pure type systems
without explicit contexts. Submitted at TLCA’09, 2009.

[Gor93] A. D. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In J. J. Joyce and C-J. H. Seger, editors, HUG ’93: Proceedings
of the 6th International Workshop on Higher Order Logic Theorem Proving
and its Applications, volume 780 of Lecture Notes in Computer Science, pages
413–425, London, UK, 1993. Springer-Verlag.

[Had07] Amal Haddad. Meca: A tool for access control models. In Julliand and
Kouchnarenko [JK06], pages 281–284.

[HAF01] M. Randall Holmes and J. Alves-Foss. The Watson theorem prover. J. Autom.
Reasoning, 26(4):357–408, 2001.

[Hal90] Anthony Hall. Seven myths of formal methods. IEEE Software, 07(5):11–19,
1990.

[HHGB07] Sarah Hoffmann, Germain Haugou, Sophie Gabriele, and Lilian Burdy. The
B-Method for the construction of microkernel-based systems. In Julliand and
Kouchnarenko [JK06], pages 257–259.

154 BIBLIOGRAPHY

[HM05] J. Hurd and T. F. Melham, editors. Theorem Proving in Higher Order Log-
ics, 18th International Conference, TPHOLs 2005, Oxford, UK, August 22-
25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer Science.
Springer, 2005.

[Hoa92] C. A. R. Hoare. Programs are predicates. In FGCS, pages 211–218, 1992.

[HR84] C. A. R. Hoare and A. W. Roscoe. Programs as executable predicates. In
FGCS, pages 220–228, 1984.

[IEC] IEC 61508: Functional safety of electrical, electronic, programmable electronic
safety-related systems. http://www.iec.ch/zone/fsafety/.

[Jae05] Éric Jaeger. De C à B, l’analyse de code par les méthodes formelles. Master’s
thesis, Université Paris 7, September 2005.

[Jaf07] Eddie Jaffuel. Using B machines for model-based testing of smartcard software.
In Julliand and Kouchnarenko [JK06], page 2.

[JK06] Jacques Julliand and Olga Kouchnarenko, editors. B 2007: Formal Specifi-
cation and Development in B, 7th International Conference of B Users, Be-
sançon, France, January 17-19, 2007, Proceedings, volume 4355 of Lecture
Notes in Computer Science. Springer, 2006.

[JL07] Eddie Jaffuel and Bruno Legeard. LEIRIOS test generator: Automated test
generation from B models. In Julliand and Kouchnarenko [JK06], pages 277–
280.

[JLH+09] Steffen Jost, Hans-Wolfgang Loidl, Kevin Hammond, Norman Scaife, and Mar-
tin Hofmann. ”carbon credits” for resource-bounded computations using amor-
tised analysis. In Cavalcanti and Dams [CD09], pages 354–369.

[Jos88] Mark B. Josephs. A state-based approach to communicating processes. Dis-
tributed Computing, 3(1):9–18, 1988.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: formal ver-
ification of an OS kernel. In Jeanna Neefe Matthews and Thomas E. Anderson,
editors, SOSP, pages 207–220. ACM, 2009.

[Lam73] Butler W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, 1973.

[Lam02] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002.

[Ler09] Xavier Leroy. A formally verified compiler back-end. CoRR, abs/0902.2137,
2009.

[Lin05] Sam Lindley. Normalisation by Evaluation in the Compilation of Typed Func-
tional Programming Languages. PhD thesis, University of Edinburgh, College
of Science and Engineering, School of Informatics, 2005.

BIBLIOGRAPHY 155

[Mag03a] Nicolas Magaud. Changements de Représentation des Données dans le Calcul
des Constructions. PhD thesis, Université de Nice Sophia-Antipolis, October
2003.

[Mag03b] Nicolas Magaud. Changing Data Representation within the Coq System. In
TPHOLs’2003, volume 2758. LNCS, Springer-Verlag, 2003.

[M.J88] M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In
G.M. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware
Verification and Automatic Theorem Proving (Proceedings of the Workshop on
Hardware Verification), pages 387–439, Banff, Canada, 1988. Springer-Verlag,
Berlin.

[MM04] Annabelle McIver and Carrol Morgan. Abstraction, Refinement and Proof
for Probabilistic Systems. Monographs in Computer Science. Springer Verlag,
2004.

[MMM09] Annabelle McIver, Larissa Meinicke, and Carroll Morgan. Security, probability
and nearly fair coins in the cryptographers’ café. In Cavalcanti and Dams
[CD09], pages 41–71.

[Mor90] C. Morgan. Programming from Specifications. Prentice-Hall, 1990.

[Muñ99] C. Muñoz. PBS: Support for the B-method in PVS, 1999.

[Mus05] L. Mussat, 2005. Private Communication.

[NV07] M. Norrish and R. Vestergaard. Proof pearl: de Bruijn terms really do work. In
K. Schneider and J. Brandt, editors, TPHOLs, volume 4732 of Lecture Notes
in Computer Science, pages 207–222. Springer, 2007.

[PL07] Daniel Plagge and Michael Leuschel. Validating Z specifications using the
ProBAnimator and model checker. In Jim Davies and Jeremy Gibbons, edi-
tors, IFM, volume 4591 of Lecture Notes in Computer Science, pages 480–500.
Springer, 2007.

[RCMP04] Jérôme Rocheteau, Samuel Colin, Georges Mariano, and Vincent Poirriez.
Évaluation de l’extensibilité de PhoX: B/PhoX un assistant de preuves pour B.
In Valérie M. Morain, editor, Journées Francophones des Langages Applicatifs
(JFLA 2004), pages 37–54. INRIA, 2004.

[Req08] Antoine Requet. Bart: A tool for automatic refinement. In Egon Börger,
Michael J. Butler, Jonathan P. Bowen, and Paul Boca, editors, ABZ, volume
5238 of Lecture Notes in Computer Science, page 345. Springer, 2008.

[RM05] Tom Ridge and James Margetson. A mechanically verified, sound and complete
theorem prover for first order logic. In Hurd and Melham [HM05], pages 294–
309.

[Sch] Arno Schönegge. Proof obligations for monomorphicity.

[Sch95] Arno Schönegge. Would you ever risk a non-monomorphic specification?, 1995.

156 BIBLIOGRAPHY

[SL00] D. Sabatier and P. Lartigue. The use of the B formal method for the design
and the validation of the transaction mechanism for smart card applications.
Formal Methods in System Design, 17(3):245–272, 2000.

[SV07] Marko Samer and Helmut Veith. On the notion of vacuous truth. In Dershowitz
and Voronkov [DV07], pages 2–14.

[TCS] DoD 5200.28-STD: Trusted computer system evaluation criteria.
http://csrc.nist.gov/publications/history/dod85.pdf.

[Wer94] Benjamin Werner. Une théorie des constructions inductives. Thèse de doctorat,
Université Paris 7, 1994.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John S. Fitzgerald.
Formal methods: Practice and experience. ACM Comput. Surv., 41(4), 2009.

[WN04] Martin Wildmoser and Tobias Nipkow. Certifying machine code safety: Shal-
low versus deep embedding. In K. Slind, A. Bunker, and G. Gopalakrishnan,
editors, Theorem Proving in Higher Order Logics (TPHOLs 2004), volume
3223 of LNCS, pages 305–320. Springer, 2004.

[YML99] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA+

specifications. In Laurence Pierre and Thomas Kropf, editors, CHARME,
volume 1703 of Lecture Notes in Computer Science, pages 54–66. Springer,
1999.

Appendix A

Cross References with Coq
Developments

The developments discussed in this memoir can be downloaded from the scientific publi-
cations pages of the Anssi web site (http://www.ssi.gouv.fr); they are made available
under CeCILL-B licence.

A.1 Refinement

The various representations of refinement have been developed with Coq version 8.2.
The edition of the sources requires the use of Utf-8 encoding and the Everson Mono

Unicode font (evermono.ttf). The content of the Coq files is as follows:

- subset_gen.v, relation_gen.v

Definitions, operations and proofs for subsets and relations.

- data_ref.v

Definitions and proofs for data-refinement.

- choice_ref.v

Definitions and proofs for choice-refinement (with preconditions and guards).

- gen_ref.v

Definitions and proofs for gen-refinement.

- choice_ref_pre.v, choice_ref_guard.v, choice_ref_try1.v, choice_ref_try2.v

Definitions and proofs exploring different (limited) versions of choice-refinement.

- gen_ref_pre.v, gen_ref_guard.v

Definitions and proofs exploring different (limited) versions of gen-refinement.

- bool_choice.v

Illustration of the refinement paradox using Coq modules.

157

158 APPENDIX A. CROSS REFERENCES

A.2 BiCoq

A.2.1 BiCoq 2

BiCoq 2 is the first complete version of the embedding of B in Coq; it was developed
with Coq version 8.1. It is considered to be deprecated, and should not be used anymore;
it is provided for reference.

The edition of BiCoq 2 sources requires the use of Utf-8 encoding and the BiCoq
font (BiCoq.ttf). The dependencies are explicited in the file make.txt. The content of the
Coq files is as follows:

- Mscratch.v, Mbool.v, Mindex.v, Mlist.v

Bootstrap not including any element specific to the B method.

- Bterm.v

Definition of B terms, induction principle, equality, non-freeness, fresh variables.

- Blift.v, Binst.v, Bbind.v, Baffec.v

Lifting, instantiation (that is functional application), binding (that is functional
abstraction), affectation (that is meta-language substitution) and associated results,
including commutation lemmas.

- Bgamma.v, Binfer.v

Definition of proof environments (as lists of predicates) and B provability predicate.

- Bprop.v, Biffres.v, Bpred.v, Bset.v

Results for propositional calculus, predicate calculus and set theory.

- Bdbinfer.v

Raw B inference rules and theorems.

- Bcoqinfer.v, Binfer2.v

Correspondance between Coq and B logical operators, and derived lemmas for B
proofs in Coq.

- Btrmind.v, Binfind.v

Semantic induction on terms and induction on proofs.

- Baffprd.v

Results for the substitution of (unbound) equivalent predicates.

- Bmaffec.v

Definition of multiple affectations (that is parallel substitutions) as lists of pairs, and
associated theorems.

- Brawprd.v

Weak version of the congruence results for the substitution of bound equivalent
predicates.

- Pinfer.v, Pprop.v, Pinfer2.v, Paffprd.v, Prawprd.v, Ppred.v, Pset.v

B tactics for the proven prover.

A.2. BICOQ 159

A.2.2 BiCoq 3

BiCoq 3 is the second complete version of the embedding of B in Coq; it was developed
with Coq version 8.2. We describe thereafter the content of BiCoq 3I (based on de Bruijn
indexes), which has been developed further than BiCoq 3L (based on de Bruijn levels).

The edition of BiCoq 3 sources requires the use of Utf-8 encoding and the Everson
Mono Unicode font (evermono.ttf). The dependencies are explicited in the file make.txt,
the notations in the file notations.txt, the tactics in the file tactics.txt. The content of
the Coq files is as follows:

- basic_logic.v

Results for booleans and correspondance between predicates and boolean functions.

- basic_nat.v

Results for natural values and generic induction principle based on a measure.

- index.v

Definition of de Bruijn indexes with namespace, lifting of indexes and identification
of dangling indexes (at a given λ-height).

- term.v

Definition of B terms, freeness, fresh variables.

- lift.v

Lifting of B terms and associated theorems.

- abstr.v

Functional abstraction for B terms, definition of notations mimicking natural repre-
sentations for B binders, and associated theorems.

- apply.v

Functional application for B terms and associated theorems.

- esubst.v, psubst.v

Meta-language substitution of expression and predicates for B terms and associated
theorems.

- egraft.v

Grafting of expression for B terms and associated theorems.

- cmp.v

Results about the composition of functional abstraction, functional application and
meta-language substitution: substitution is not primitive, representation is α-quotiented,
and it is always possible to build a functional representation for any term.

- proof_env.v, proof.v

Definition of proof environments as an abstract datatype, and definition of the B
provability predicate.

- lemma.v

Trivial lemmas completing the B inference rules.

160 APPENDIX A. CROSS REFERENCES

- bbprop.v

B-Book results for propositional calculus and associated Ltac tactic.

- congr.v

Standard B congruence results used as lemmas for advanced results.

- bbpred.v

B-Book results for predicate calculus.

- bbfix.v

Stub (incomplete file) for the proof of B fixpoint results.

- bbset.v

A few results about B set theory.

- swap.v

Relationships between B and Coq logical operators.

- raw_proof.v

Raw B inference rules, expressed directly in the de Bruijn representation instead of
the functional representation.

- sem_ind.v

Definition of the semantic accessibility relation, associated with a proof that all B
terms are accessible by this relation.

- wf_proof.v

Definition of a measure for proofs, and associated induction principle.

- mesubst.v

Definition of parallel substitutions as maps, and associated operations (such as lifting
and application to a term). Representation of standard operations on B terms as
parallel substitutions. Composition of parallel substitutions.

- mesubst_framed.v

Definition of framed parallel substitutions (maps whose scope is limited by a list),
and proof of a form of induction principle for parallel substitutions applied to B
terms. Proof of a semantic result about pseudo-ground sequents.

- egraft_congr.v

Full version of congruence results for the substitutions of bound expressions.

- bmeta.v

Considerations about the consistency of the B logic.

- gsl.v

Definition of the B Generalized Substitution Language (Gsl), and representation of
the semantics of predicate transformers through a functional application. Consider-
ations about the refinement.

A.3. λTDB REPRESENTATION 161

A.3 λTdb representation

The formalization of the λTdb representation has been developed with Coq version 8.2.
The edition of the sources requires the use of Utf-8 encoding and the Everson Mono

Unicode font (evermono.ttf). The dependencies are explicited in the file make.txt, the
notations in the file notations.txt. The content of the Coq files is as follows:

- term_weak.v, term.v

Definition of types, indexes, contexts (as maps) and terms. Typing of a term. Lifting
of a term. Binder elimination (that is application followed by reduction), functional
abstraction, substitution, grafting, freeness.

term_weak.v is the standard version, the term.v the version with improved context
management.

- beta.v

Definition of normal forms and β-reduction, asssociated properties.

- tech.v

Technical lemmas.

- results.v

Progress lemma, weak confluence.

