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Abstract. Control flow integrity is a well explored field of software secu-
rity for more than a decade. However, most of the proposed approaches are
stalled in a proof of concept state – when the implementation is publicly
available – or have been designed with minimal performance overhead
as main objective, sacrificing security. Currently, none of the proposed
approaches can be used to fully protect real-world programs compiled
with most common compilers (e.g. GCC, Clang/LLVM). In this paper we
describe a control flow integrity enforcement mechanism for LLVM IR,
called Picon, whose main objective is security. Our approach is based on
compile-time code instrumentation, making the program communicate
with its external execution monitor. The program is terminated by the
monitor as soon as a control flow integrity violation is detected. Our
approach is implemented as an LLVM plugin and is working on LLVM’s
Intermediate Representation.

1 Introduction

Traditional program exploitation by an attacker often involves bypass-
ing the size of a buffer to write to an arbitrary address in memory, and then
redirecting execution to the code newly written to this address. This has
lead to the introduction of protections to prevent these problems. Stack
canaries [10] add random values between frames in the call stack, to detect
stack overflows, and equivalent protections exist to prevent heap overflows.
Data Execution Prevention (DEP) [2] adds a separation between data,
which can be read or written, and code, which should be executable and
never written. It can be enforced by the hardware, e.g. NX (No-eXecute)
bit on x86, XN (eXecute-Never) on ARM.

The generalization of these protections, now widely used in modern
operating systems, has changed the typical form of exploits to work around
them. In addition, the separation between code and data in W ⊕X is not
so clear in real programs: some data are interpreted not directly as code,
but as an indirect way of executing code. This is the case of the return
address, which specifies the address of the instruction to be executed
when returning from a function. This address, if modified, can be used by
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an attacker to execute some existing code in the application, leading to
code-reuse attacks.

The initial attack vector has to be provided by the attacker, usually
in a data buffer. Even when these data are not directly executable, the
attacker can specify a sequence of return addresses, each of them pointing
to some instructions followed by a return. By choosing the effect of these
instructions, the executed code can be controlled by the attacker. This
technique is known as Return-Oriented Programming, or ROP [21] and
has been proved Turing-complete using a set of gadgets from the standard
GNU C library. Other techniques involve code-reuse such as Jump-Oriented
Programming [6] which removes the reliance to the stack and the return
instruction. String Oriented Programming (SOP) [20] and Signal Return
Oriented Programming (SROP) [8] are also based on the same principle.

To protect the execution of a program against code-reuse attacks, a
common technique is to randomize the memory layout of a program on
every program execution, using Address Space Layout Randomization
(ASLR). This way, memory addresses change at each program execution
and are harder to predict. While powerful, this technique is not sufficient,
mostly because addresses of some parts of the program may leak or be
guessed, but also because of remaining problems like format-string vulner-
abilities [17]. Because randomization is done for entire sections at once, the
discovery of one address often means defeating the entire randomization.
In some other cases, brute-force techniques or blind-ROP [4] can be used
to detect the small parts of code preceding a return, also known as gadgets
(ROP Widgets).

To protect the execution flow of a program, other techniques must be
used in addition to existing protections, such as control flow integrity.

1.1 Control flow integrity

Program exploitation often subverts the intended data flow in a vul-
nerable program. This in turns makes it possible to hijack the control
flow in order to control the program behaviour. Control Flow Integrity
(CFI) provides a protection against control flow hijacking attacks. The
CFI property was formalized by Abadi et al. in 2005 [1]. In this paper,
CFI is used to enforce the program execution to follow only paths existing
in the Control Flow Graph (CFG), obtained using static analysis of the
binary. Then, the binary is rewritten to add checkpoints before branch
instructions, along with tags to check that the target is in accord with
the predicted/expected control flow.
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One of the difficult parts of CFI is the extraction of the control flow
graph. It can be recovered statically on the source code [28], on the binary
file (using structural analysis with tools like Hex-Rays decompiler, for
example), or dynamically (e.g. execution profiling [27]). Some of these
reconstructions may be incomplete, when a branch cannot be predicted
precisely, or when the analyzed form does not match the code actually
produced by the compiler (modified by some optimizations).

A first way to classify control flow integrity methods is based on the
type of input program: some of them work on the original sources [13,15,26],
while some others work on the assembly, or binary form of the pro-
gram [1,7,29]. Working at the source code level allows one to extract
a precise control flow graph, and more information about the program.
On the other hand, working at the binary level allows one to protect
programs without requiring the source code, but is architecture-dependent
and inherently less precise.

The second classification method is based on the type of component
responsible for enforcing the security policy, called an Execution Monitor.
The enforcement of security policies by monitoring executions was for-
malized by Schneider in 2000 [24], with the definition of safety properties,
later extended by Basin et al. [3]. An execution monitor can be internal
or external to the protected program. It can also have a different granular-
ity depending on the enforcement policy mechanism used. An execution
monitor must be tamper-proof to ensure control flow integrity, and have
the ability to terminate the process in case the policy is not respected.

An inlined execution monitor integrates the verification code into
the program code during compilation or via binary rewriting. An inline
monitor shares the same address space as the monitored program, and
the verification code has to be protected in the binary itself.

An execution monitor can also be externalized, i.e. be moved out of
the program. In this case, the monitor “observes” the program execution,
and checks that the expected control flow of the program is respected. On
one hand, this approach is more secure than an inlined monitor as the
monitor as its own logic, independent from the monitored program. It can
be implemented in different locations: it can be a user process, a kernel
module, an hypervisor, etc. The more hardened the monitor is, the harder
it will be for an attacker to compromise the binary protected using CFI. On
the other hand, since the monitor must be able to observe quite precisely
the execution flow of some program, and to kill it in case an unexpected
execution flow is detected, an external monitor is a very sensitive “process”.
Actually, some additional care must thus be taken to ensure the monitor
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itself cannot be subverted and/or compromised. Depending on how the
execution flow of the monitored program is concretely observed by the
monitor, the runtime cost of the external approach is by definition more
costly than the integrated/inlined one.

The main advantage of using an external monitor is to globally improve
the security offered by a CFI protection: an attacker needs to control both
the program and its monitor to successfully exploit a vulnerability.

1.2 Limitations of current approaches
Most implementations of control flow integrity make trade-offs between

security and performance. This implies removing some of the checkpoints,
for example by not instrumenting function calls, and only taking care of
return instructions.

However, removing protections leaves the protected program vulnerable
to attacks, because some gadgets are still available for an attacker. As
shown in [12] and [11], most control flow integrity implementations have
been tested and demonstrated to be quite permissive in still allowing an
attacker to build ROP attacks.

Other techniques, like forward-edge CFI [26], or control flow
guard [5,13] as implemented recently in Windows, only protect indirect
forward calls, and thus only provide partial protection.

Another technique, called control flow locking, was introduced in [7]
to mitigate these attacks. The method relies on a lock that is set before
any control flow change, and that the next instrumented point will verify
some predefined condition before unlock it and permit the execution to
continue. However, this work was limited to statically linked binaries.

Unaligned ROP gadgets Many of the ROP gadgets found in binaries
consist of unaligned instructions that have not been produced by the
compiler, but that happen to be interpretable as valid instructions by the
processor. This mainly concerns the x86 architecture, due to the number
and the repartition of possible opcodes, and the fact that instructions
are not required to be aligned on this architecture. This limitation is also
shared by most implementations of CFI on these architectures.

It is possible, however, to analyze the instructions from the binary file,
and apply translations or randomization of instructions, and insertion of
neutral instructions automatically, to ensure that the unaligned gadgets
are replaced by other sequences, as described in [18].

However, even when the unaligned gadgets are removed from a binary,
some gadgets still remains, because of the control flow, especially the



T. Coudray, A. Fontaine, P. Chifflier 5

function returns. As a complement of the elimination of unaligned gadgets,
the program still needs to be protected so that an attacker will not be
able to use any of the two kinds of gadgets.

1.3 Control flow integrity on LLVM IR
In this paper, we present a practical approach to control flow integrity,

with some similarities to control flow locking, but with different properties.
Our work has several key properties:
— external monitor: while the communication with the monitor

reduces performances, the isolation increases the protection;
— complete: the protection is not partial, and not limited to a few

points (e.g. function returns);
— automatic: the protection must be automatic, well-integrated with

existing build tools, and not be a burden for the developer;
— portable: the protection works on different architectures, and does

not rely on a disassembly of specific binaries;
— support of shared libraries: the protection supports programs

that are linked with shared libraries, and this does not break the
chain of verifications.

This paper is organized as follows. In Section 2, we describe a formal-
ization of our model of control flow integrity on LLVM IR, based on a
pushdown automaton. In Section 3, we describe an implementation of the
proposed model, called Picon, as a plugin for the LLVM compiler, and a
separate process for the execution monitor. In Section 4, we analyze the
security impact on binaries protected by Picon, and discuss the results.

2 Theoretical foundations

The goal of this section is to formalize our model of control flow
integrity on LLVM IR, and to show that it can enforce strong protection
against most common attack patterns. One of the main advantages of this
model is to permit easier debugging and a posteriori analysis of a program
execution whose control flow integrity has been compromised. The last
part of this section shows how to tackle a forthcoming implementation
issue of the model, with identical security guarantees and reasonable
debugging and a posteriori analysis features.

2.1 Control flow integrity model
Roughly, the control flow integrity model proposed is based on an

execution monitor [24] whose goal is to enforce a security policy described
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by a pushdown automaton (i.e. a state machine equipped with a stack).
In order to formally define the control flow integrity policy enforced, some
notations and definitions need to be introduced.

First of all, the class of programs considered needs to be defined.
Basically, a program is a set of functions, one of which is the single
entrypoint of the program, i.e. the main function.

Definition 1 (Program). A program P is defined as a pair (F , fP)
where F is a finite non-empty set of functions defined and/or called in P
(directly or transitively) and fP ∈ F is the function corresponding to the
main and unique entrypoint of the program.

In LLVM IR, a function is a set of basic blocks, each of which is a
sequence of LLVM IR instructions. Only a very small subset of these
instructions has to be considered to enforce control flow integrity property.
Actually, it is useless to modelize the behaviour of instructions that cannot
alter the control flow execution such as arithmetic/logic operations. Only
instructions that influence the control flow are thus modelized. To keep
the model as simple as possible, LLVM IR instructions with equivalent
semantic according to the control flow definition are grouped and an
abstract instruction is introduced to represent each group.

Definition 2 (Basic block). A basic block in LLVM IR is a finite non-
empty sequence of instructions. Among the set of all possible LLVM IR
instructions, only the four following abstract instructions are considered:
call, ret, unreachable and branch.

A call instruction interrupts the execution of its enclosing basic block
to execute some function, and so recursively. It corresponds to the LLVM
instructions call and invoke.

A ret instruction can only occur as the last instruction of a basic
block. Its execution stops definitively the execution of the current function
(and thus of its enclosing basic block), and the execution restarts with the
instruction immediately following the last executed call instruction. The
LLVM corresponding instructions are ret and resume.

A branch instruction targets a finite non-empty set of basic blocks. Its
execution selects one of the targeted blocks as the next one to be executed
based on some condition. If only one basic block is targeted, the branch
is unconditional to the single targeted block. It corresponds to the LLVM
instructions br, indirectbr, and switch.

A unreachable instruction is a special instruction to indicate an
unreachable statement and its execution is equivalent to a “do nothing”. It
corresponds to the LLVM instruction unreachable.
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The last instruction of a basic block is systematically a ret, a branch
or a unreachable instruction.

The organization of basic blocks within a function is constrained in
LLVM IR. Each function has a single entry block which has no predecessors
(i.e. it is not possible to jump on the entry block from within the function).
Basic blocks with no successors are terminated by a ret instruction, when
the function returns to its caller, or a unreachable instruction which is a
special LLVM IR instruction to indicate an unreachable statement.

Definition 3 (Control flow graph (CFG) of a function). The con-
trol flow graph of a function f is a directed graph Gf = (Vf , Ef ) where
Vf is a finite non-empty set of vertices consisting in the set of basic blocks
of f , and Ef ⊆ Vf × Vf is a finite set of edges. An edge (b1, b2) exists in
Ef iff the basic block b1 ends with a branch instruction targeting a set of
basic blocks containing b2.

The main and unique entry of a function f is a basic block b ∈ Vf

denoted entry(f) such that ∀b ∈ Vf (b, b′) ∈ Ef =⇒ b′ 6= entry(f).
The finite set exit(f) ⊆ Vf denotes the set of basic blocks with

no successors and terminated by a ret instruction. The finite set
unreachable(f) ⊆ Vf denotes the set of basic blocks with no successors
and terminated by a unreachable instruction. There exists no basic
block b ∈ Vf \ (exit(f) ∪ unreachable(f)) containing an instruction ret
or unreachable, or without successors.

Interactions between functions defined and called/used in the program
must be defined. These interactions have to be completely and statically
known at the model level in order to enforce a control flow integrity
property. This assumption may seem strong, but any missing interaction
will be detected as a control flow integrity violation, so that integrity is
not compromised.

Definition 4 (Call graph of a program). Let P = (F , fP) be a pro-
gram. The call graph of P is a directed graph GP = (VP , EP , BP) where
VP = F is its set of vertices, EP ⊆ VP × VP is its set of edges, and BP is
its edge labeling function.

An edge (f, g) ∈ EP denotes that function f is calling function g. This
edge is attached a label denoted BP(f, g) ⊆ Vf consisting in the subset of
basic blocks of f in which g is called, with Gf = (Vf , Ef ) the CFG of f .

Some sequences of instructions have to be inserted in the program
either to report an upcoming execution flow change to an external entity
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able to kill the program, or to enforce the control flow policy directly
within the program which will terminates if compromised. At the model
level, both alternatives are equivalent. Each kind of sequence to be inserted
is called a hook, and insertion of these hooks is called instrumentation.
The instrumentation step is crucial for later definition of control flow
integrity policy enforcement since a control flow integrity violation will be
detectable only where a hook is inserted.

Roughly, a hook is inserted before any bifurcation of execution flow oc-
curs, that is just before call instructions with a hook called cfiCall, ret
and unreachable instructions with a hook called cfiExit, and branch
instructions with a hook called cfiBeforeJump. Although it is required to
control before the execution flow is modified, it is also important to insert
some control after the execution flow is modified, that is at the entry of a
function with a hook called cfiEnter, at the entry of a basic block with
a hook called cfiAfterJump, and at the return of function calls with a
hook called cfiReturned.

Definition 5 (Program instrumentation). An instrumented program
is a program P = (F , fP), denoted P, verifying all the following properties
for each function f ∈ F and each basic block b ∈ Vf appearing in its CFG
Gf = (Vf , Ef ):

— each call instruction to a function f ′ ∈ F in b is immedi-
ately preceded by the sequence of instructions corresponding to
the cfiCall f ′ hook, and immediately followed by the sequence of
instructions corresponding to the cfiReturned f ′ hook;

— if b ∈ exit(f)∪unreachable(f) then the last instruction of the block is
immediately preceded by the sequence of instructions corresponding
to cfiExit f hook, otherwise b ends with a branch instruction
immediately preceded by the sequence of instructions corresponding
to cfiBeforeJump (f, b) hook;

— if b = entry(f) then b starts with the sequence of instructions
corresponding to the cfiEnter f hook, otherwise b starts with the
sequence of instructions corresponding to the cfiAfterJump (f, b).

An instrumented program contains sufficient hooks to protect its
control flow integrity.

Definition 6 (Control flow integrity policy). Let P = (F , fP) be an
instrumented program and GP = (VP , EP , BP) its call graph. The control
flow integrity policy for program P is described by a deterministic push-
down automatonM = (Q,Σ,Γ, δ, q0, Z0, F ) where Q = {qe, qc, qr, qb} is its
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set of states, Σ = {cfiCall f, cfiEnter f, cfiExit f, cfiReturned f |
f ∈ VP}∪{cfiBeforeJump (f, b), cfiAfterJump (f, b) | f ∈ VP , b ∈ Vf} is
its set of inputs, Γ = {〈f, σ〉 | f ∈ VP , σ ∈ V ∗f } is its finite set of stack sym-
bols, q0 = qc is its initial state, Z0 = 〈fP , entry(fP)〉 is its initial stack sym-
bol, F = {qe} is its set of accepting states, and δ ∈ (Q×Σ×Γ)→ ℘(Q×Γ∗)
is its transition function such that

δ(qe, cfiCall f ′, 〈f, bσ〉) ={
{(qc, 〈f ′, entry(f ′)〉〈f, bσ〉) | (f, f ′) ∈ EP} iff b ∈ BP(f, f ′)
∅ otherwise

(1)

δ(qr, cfiReturned f ′, 〈f, bσ〉) ={
{(qe, 〈f, bσ〉) | (f, f ′) ∈ EP} iff b ∈ BP(f, f ′)
∅ otherwise

(2)

δ(qe, cfiExit f, 〈f, b〉) =
{
{(qr, ε)} iff b ∈ exit(f)
∅ otherwise

(3)

δ(qc, cfiEnter f, 〈f, bσ〉) =
{
{(qe, 〈f, bσ〉)} iff b = entry(f)
∅ otherwise

(4)
δ(qe, cfiBeforeJump (f, b), 〈f, bσ〉) = {(qb, 〈f, bσ〉)} (5)
δ(qb, cfiAfterJump (f, b′), 〈f, bσ〉) = {(qe, 〈f, b′bσ〉) | (b, b′) ∈ Ef} (6)

where Gf = (Vf , Ef ) is the CFG of f and ε denotes an empty sequence.
An instantaneous description ofM is a triple (q, ω, β) ∈ Q× Σ∗ × Γ∗

describing a situation of M where q is a state of the automaton, ω is a
sequence of inputs to treat, and β is a stack.

When no transition exists in the automaton for a given input according
to its current state and stack, it indicates that the control flow integrity of
the program has been compromised. As a consequence, the compromised
program must be immediately terminated.

Proposition 1 (Detection of compromised CFI). If the control flow
integrity of an instrumented program P is compromised while it is pro-
tected by the control flow integrity policy given in Definition 6, then P is
terminated at the first hook encountered in the resulting execution flow or
by the end of P itself.
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Proof. Let P = (F , fP) be an instrumented program and M =
(Q,Σ,Γ, δ, q0, Z0, F ) the automaton describing the control flow integrity
policy enforced on P . Let (q, ω, β) be the instantaneous description ofM
just after the exploited instruction i in basic block b of f is executed.

By definition, instruction i can only be a call, a ret, a branch or
a unreachable instruction as only those instructions can influence the
control flow.

If i is a call, then it is immediately preceded by a cfiCall f ′ hook. So,
according to the definition of the transition function δ, the only valid values
for q and β are qc and 〈f ′, entry(f ′)〉, respectively. From this instantaneous
description, the only valid next input is cfiEnter f ′, which can be emitted
only when f ′ is called, by definition.

If i is a branch, then it is immediately preceded by a
cfiBeforeJump (f, b) hook. So, according to the definition of the tran-
sition function δ, the only valid values for q and β are qb and 〈f, bσ〉,
respectively. From this instantaneous description, the only valid next in-
put is cfiAfterJump (f, b′) with (b, b′) ∈ Ef , which can be emitted only
by jumping on an expected basic block, by definition.

If i is a ret, then it is immediately preceded by a cfiExit f hook.
So, according to the definition of the transition function δ, and because
b ∈ exit(f) by definition, the only valid values for q and β are qr and
〈f ′, b′σ〉, respectively, where (f ′, f) ∈ EP and b′ ∈ BP(f ′, f). From this
instantaneous description, the only valid next input is cfiReturned (f, b′),
which can be emitted only after returning from a call to f occurring in
basic block b′ of f ′, by definition.

If i is a unreachable, then it is immediately preceded by a cfiExit f
hook. Since b 6∈ exit(f), there exists no definition of this transition in
δ. So this instantaneous description does not exist as the unreachable
instruction cannot have been executed. �

When a violation of the control flow integrity policy occurs, the stack
of the monitor contains the call stack trace, i.e. function calls and basic
blocks trace for each function called. This information is crucial for debug-
ging purposes but also for a posteriori analysis of compromised program
execution. However, defined as is, the sequence of basic blocks explored
within a function only grows and will grow very quickly in presence of
cycles in control flow graphs.
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2.2 Partial tracing of intra-procedural executions

Keeping basic blocks sequences in the automaton stack is useless for
enforcing control flow integrity policy as only the topmost (i.e. currently
executing) basic block of the stack is used in practice. The main benefit
of keeping the complete trace of executed basic blocks is to provide
very precise information for a posteriori analysis of control flow integrity
violation. If only the last basic block were kept, it would be very rough
to understand how a violation occurred. As a compromise, we propose in
this section to keep incomplete sequences of basic blocks in a way that
guarantees a bounded size for any basic block sequences without losing
too much information for a posteriori analysis of compromised execution.

In order to build only finite sequences of basic blocks in the transition
corresponding to the input cfiAfterJump of the control flow integrity
policy, we rely on the domination relationship. Computation of this relation
permits to discover the set of basic blocks that will systematically be
explored/executed from a given basic block in order to reach the exit basic
block of a function. Consequently the sequence of explored basic blocks
will be extended only if the basic block prepended to the current sequence
cannot be executed anymore before the end of the function.

Definition 7 (Post-dominator). Let Gf = (Vf , Ef ) be the control flow
graph of a function f with a single entry basic block denoted entry(f) and
a single exit basic block denoted exit(f).

A basic block b1 ∈ Vf post-dominates a basic block b2 ∈ Vf such that
b1 6= b2, noted b1 ∈ pd(b2) iff b1 is involved in every path from b2 to exit(f)
in the CFG.

Knowing that a basic block b1 post-dominates a basic block b2 is
sufficient to decide whether b1 can be prepended to the current sequence
starting with b2 when b1 is executed. However, a more efficient test can
be defined than an inclusion in a set if the immediate post-dominator
relationship is used. A basic block b1 is the immediate post-dominator of
a basic block b2 if it is the first basic block that will be systematically
explored/executed to reach the end of the function when b2 is executed.

Definition 8 (Immediate post-dominator). Let Gf = (Vf , Ef ) be
the control flow graph of a function f .

A node b1 ∈ Vf is the immediate post-dominator of a node b2 ∈ Vf ,
noted b1 = ipd(b2), iff b1 ∈ pd(b2) and @b ∈ Vf b1 ∈ pd(b) ∧ b ∈ pd(b2).

Given these definitions, the transition rule associated to the
cfiAfterJump hook in Definition 6 is modified to push/prepend the
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basic block to be executed only if it is the immediate post-dominator of
the last pushed/prepended one. In order to maintain the Proposition 1
proved in the previous section, the top of the stack (i.e. the first basic
block of the sequence) must always be the currently executing one. So,
when the immediate domination condition is not verified, the top of the
stack is updated to always contain the currently executing basic block.

δ(qb, cfiAfterJump (f, b′), 〈f, bσ〉) ={
{(qe, 〈f, b′bσ〉) | (b, b′) ∈ Ef} iff b′ = ipd(b)
{(qe, 〈f, b′σ〉) | (b, b′) ∈ Ef} otherwise

The size of the sequence of basic blocks explored is now bounded by the
number of basic blocks in the CFG of the currently executing function.

3 Implementation

To experiment with our proposed CFI protection on LLVM IR, an
implementation has been developed, called Picon 1, based on the LLVM
compiler framework [16] version 3.5. This implementation supports any
program compiled by the Clang frontend, which is the “LLVM native”
C/C++/Objective-C compiler.

3.1 Overview

Picon is implemented in a two-step process, to follow the definitions
given in the previous section:

1. during compilation, a plugin instruments the code;
2. at runtime, an external execution monitor implements the state

automaton to enforce the control flow integrity policy of the instru-
mented program.

Unlike others [15,19], we have chosen not to fork the LLVM compiler,
but rather to create a dynamically loaded module for the opt tool to
implement the compilation step. Currently, compilation of an input source
file (C or C++) by the Clang frontend produces a file in the LLVM Inter-
mediate Representation (IR), which is the common code representation
used throughout all target-independent phases of the LLVM compilation
process. We have chosen to instrument the LLVM IR because of the
following advantages:

1. Protect Integrity of CONtrol flow
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— easier to handle than C or C++;
— input/source language independent;
— architecture independent;
— well structured into functions and basic blocks, each of which

contains instructions in Static Single Assignment (SSA) form.
While this choice may restrict possible actions only to the APIs exported
by LLVM, this also greatly reduces the dependency on LLVM internal
functions, and makes maintenance easier (especially to keep the plugin up
to date, LLVM being a very active project). The compilation workflow,
including the Picon plugin step, from a C file to a final binary is depicted
on Figure 1.

C file Clang LLVM IR opt with CFI LLVM IR llc Object ld Binary

Fig. 1. Compilation of a single source file with the Picon plugin in gray.

The main goal of the plugin is to instrument the code to introduce
communication hooks with an external execution monitor. However, it
is also in charge of producing several files where essential data is stored:
identifiers generated for functions and basic blocks to handle separate
compilation units and dynamically linked libraries, and transition tables
which contain all control flow related data that will be passed to the exter-
nal execution monitor. In fact, when an instrumented program is executed,
it requires the execution monitor to be running with the corresponding
transition tables loaded.

It is important to note that the instrumentation and the creation of
transition tables is done in a completely static and automatic manner.

3.2 Instrumentation of the LLVM IR

The Picon plugin has two levels of granularity. One can decide to
protect only inter-procedural control flow (i.e. function calls), or both
inter- and intra-procedural (i.e. basic block transitions) control flow.

The instrumentation is a two-step process. First, unique identifiers
are computed and assigned to each function, and each basic block if
intra-procedural protection is activated. Then, the instrumentation code is
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injected to communicate with the execution monitor, relying on identifiers
previously computed to “name” functions and basic blocks.

Attribution of identifiers A unique identifier is assigned to each func-
tion and to each basic block, when appropriate; these identifiers are later
denoted idFun and idBB, respectively.

Assigning unique identifiers to each function may appear trivial. How-
ever, in case of binaries created from multiple source files, some difficulties
arise because function identifiers must be identical for the same functions
across different compiler executions. To solve this problem, the plugin
creates and maintains across compilations a file where each function al-
ready encountered is mapped to its unique identifier. When a call to a
function not yet defined is encountered, the plugin assigns it a new unique
identifier according to those already used and updates the file. Algorithm 1
depicts this straightforward algorithm. An analogous process is applied to
compute and to assign a unique identifier to each basic block per function.

Algorithm 1 Function Identifier Attribution at Compile Time
1: procedure GetFunctionIdentifier
2: for f in all functions do
3: if HasAlreadyBeenIdentified(f) then
4: idFun← GetIdentifier(f)
5: else
6: idFun← GetUniqRandomID(f)

Once a unique identifier is assigned to each function and each basic
block, the plugin creates the transition tables according to the desired
level of granularity for the control flow integrity protection, i.e. with(out)
intra-procedural control flow. The inter-procedural transition table exactly
consists in the set of edges appearing in the call graph along with the edge
labeling function (Definition 4), so if the plugin has to build this transition
table, it iterates over all functions and all basic blocks of these functions of
the compilation unit to build its call graph. Building the intra-procedural
transition table is a completely analogous process, but applied to each
function for which it has to build its control flow graph (Definition 3).

Code instrumentation Code instrumentation must be done according
to the Definition 5 in the model section. That is, instrumentation consists in
inserting some hooks, i.e. predefined sequences of instructions, at strategical
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positions in the code, to report execution flow bifurcations to the execution
monitor, as shown in the Definition 6.

There are several ways to implement these hooks: a hook can be a call
to a custom function, a specific syscall, a jump to some inlined basic block,
etc. It is important to note that a hook is a sensitive piece of code that
must be written carefully not to introduce vulnerable code such as gadgets.
In the implementation proposed, we have chosen to implement each hook
by a custom function call. Figure 2 gives an example of a non-instrumented
foo function, and Figure 3 shows the same foo function with injected
instrumentation code (both inter- and intra-procedural related hooks).

entry:
 %a.addr = alloca i32, align 4
 store i32 %a, i32* %a.addr, align 4
 br label %start

start: 
 %0 = load i32* %a.addr, align 4
 %cmp = icmp sgt i32 %0, 10
 br i1 %cmp, label %if.then, label %if.else

T F

if.then: 
 %call = call i32 @call_left()
 %1 = load i32* %a.addr, align 4
 %dec = add nsw i32 %1, -1
 store i32 %dec, i32* %a.addr, align 4
 br label %start

if.else: 
 %call1 = call i32 @call_right()
 br label %if.end

if.end: 
 ret void

Fig. 2. Example CFG of a foo function.

According to the level of granularity set in the plugin, only a subset of
the six available hooks may be inserted according to the Definition 5. For
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entry:
 %saved_retaddr_prolog = call i8* @llvm.returnaddress(i32 0)
 call void @__CFI_INTERNAL_ENTER(i32 13, i32 0, i8* %saved_retaddr_prolog)
 %a.addr = alloca i32, align 4
 store i32 %a, i32* %a.addr, align 4
 call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 0)
 br label %start

start: 
 call void @__CFI_INTERNAL_BB_AFTER_BR(i32 1)
 %0 = load i32* %a.addr, align 4
 %cmp = icmp sgt i32 %0, 10
 call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 1)
 br i1 %cmp, label %if.then, label %if.else

T F

if.then: 
 call void @__CFI_INTERNAL_BB_AFTER_BR(i32 2)
 call void @__CFI_INTERNAL_CALL(i32 11, i32 0)
 %call = call i32 @call_left()
 call void @__CFI_INTERNAL_RETURNED(i32 11, i32 0) 
 %1 = load i32* %a.addr, align 4
 %dec = add nsw i32 %1, -1
 store i32 %dec, i32* %a.addr, align 4
 call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 2)
 br label %start

if.else: 
 call void @__CFI_INTERNAL_BB_AFTER_BR(i32 3)
 call void @__CFI_INTERNAL_CALL(i32 12, i32 0)
 %call1 = call i32 @call_right()
 call void @__CFI_INTERNAL_RETURNED(i32 12, i32 0) 
 call void @__CFI_INTERNAL_BB_BEFORE_BR(i32 3)
 br label %if.end

if.end: 
 call void @__CFI_INTERNAL_BB_AFTER_BR(i32 4)
 %saved_retaddr_epilog = call i8* @llvm.returnaddress(i32 0)
 call void @__CFI_INTERNAL_EXIT(i32 13, i32 0, i8* %saved_retaddr_epilog)
 ret void

Fig. 3. CFG of the instrumented foo function of Figure 2.
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the mandatory inter-procedural protection, the four following hooks are
systematically inserted: cfiCall, cfiReturned, cfiEnter and cfiExit.
If intra-procedural protection is activated, then the two following hooks
are also inserted: cfiAfterJump and cfiBeforeJump.

3.3 Resolution of externals

The compilation of a source file is a local process: the LLVM compiler
only has information on the file being compiled. This causes problems
when handling calls to external functions. In particular, it is not possible
at that point to distinguish functions that will be defined in another object
file linked into the same executable from functions that will be stored in
external shared libraries. In the following, the term module designates
a single binary compilation target, for example an executable file, or a
shared library.

A module identifier, later denoted idMod, is assigned for the complete
binary target being compiled (all object files part of the same binary
share the same module identifier). The module identifier is generated at
compile-time, it has to be unique and deterministic. For example, it can
be derived from a cryptographic hash of the binary.

When analyzing a C file, it is not possible to know if a function, e.g.
printf, will be defined in the same binary or in a shared library before
the link step. A function defined in a shared library can also be shadowed
by a function with the same name in the current binary.

We have decided not to try identifying the modules of functions during
the compilation process, because it is not easy, or even feasible. Instead,
function identifiers are automatically assigned. These identifiers are relative
and unique to the current module. This method allows the compilation
process to remain simple, but results in a new problem: the identifier of a
function f will not be the same in module m1 and in module m2.

The compilation process has to be modified to add new steps in order
to identify the symbols and the different modules, and to add information
to the created files for the monitor. The modified compilation workflow is
depicted on Figure 4.

After the compilation process, there is one identifier file per resulting
binary (a standalone executable, or shared library, for example), containing
function identifiers. We have to bind the caller module identifier with
the callee module identifier. This process is done in two steps: symbol
identification and symbol binding (described in the next section). The
symbol identification step resolves dynamically linked function and their
identifiers. For this, a Python script analyzes the compiled binary using
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C file clang LLVM IR opt with CFI LLVM IR llc Object

transitions file
function id.

opt with CFILLVM IRclangC file LLVM IR llc Object

Binarysymbols extraction

Fig. 4. Modified compilation process, with externals

objdump, and finds all symbols related to external functions. Each external
symbol is then searched for recursively in each shared library dependencies
of the binary, to identify in which library it is defined, and thus to find the
associated module and transitions files. The transitions file of the binary
is then updated to link each symbol to the identifier of the found module.

If a function is defined in several libraries, the binary instrumented
with Picon will only be allowed to call the one that matched the function
identification. This provides a protection against library replacement, or
symbol override by one of the libraries.

The identification of symbols is described in Algorithm 2. To be correct,
this algorithm must follow the resolution of symbols as done by the ld
loader, otherwise the function that will effectively be called at runtime
will not be authorized.

Algorithm 2 Module Identifier Merging after the linker pass
1: procedure ResolveExternalSymbols
2: libs← GetAllLibrariesRecursively(binary)
3: for sym in all symbols of binary do
4: if IsExternalSymbol(sym) then
5: lib← GetLibraryContaining(sym, libs)
6: ModuleId← GetFileIdentifier(lib)
7: UpdateModuleIdentifierForFunction(binary, sym, ModuleId)
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For example, the printf function, is first marked as an external symbol
in a.out.cfi. Using ldd and objdump recursively, the symbol is found
in /lib/x86_64-linux-gnu/libc.so.6. The corresponding identifiers
file is libc.so.6.cfi, which has been created during the compilation
of libc.so.6 with Picon enabled. Using this file, we check that an
identifier exists in order to verify the transitions, but, at this point, the
exact identifier of the function is not important. Finally, we update the
binary’s identifiers file and add the information that the printf function
is associated with the module identifier of libc.so.6.

3.4 Execution monitor

The execution monitor is externalized from the instrumented binary;
it can be implemented in different places: for example in a user process or
in the kernel, as described in Section 1.1. In Picon, the execution monitor
is implemented as an external process, which forks and uses the child to
run the instrumented program, and uses pipes to communicate. To ease
the burden of storing the transitions files, and running the monitor before
each instrumented program, the following enhancements have been added:

— the transition files are embedded directly in the instrumented files,
by adding custom ELF sections;

— code to re-exec the monitor is inserted, so running the instrumented
binary will really run the monitor, setup the monitor, and run the
instrumented program.

When the execution monitor starts, it looks in the ELF section headers
of the instrumented binary for a Picon description file, describing the
needed information for that binary. The Picon description file contains
the unique module identifier idMod of the binary, its dependencies, and
the transition table. The monitor must then recursively load all transition
files and dependencies. If they are embedded, it is important to ensure the
Picon description files nor the transition tables are modified. A simple
solution is to use an asymmetric signature to sign the file headers, so that
the monitor will be able to verify the integrity of the headers.

The transition table contains the allowed transitions inside the binary
described in Section 3.2. Dependencies indicate the list of transition tables
required for external libraries. Algorithm 3 describes how the monitor
loads the transition files, and marks identifiers for the same function in
different modules as equivalent.

Each time a function f is used (or defined), the pair (mi, fi) is added
to the equivalence class of f . After loading all the transition files, if the
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Algorithm 3 Loading and unifying the transition files in the monitor
1: procedure MergeTransitionsFile
2: for m in all modules do
3: m_id← GetModuleIdentifier(m)
4: for f in all functions(m) do
5: f_id← GetF unctionIdentifier(f)
6: AddEquivalence(f, (m_id, f_id))

function f is used in different modules, its equivalence class contains a
list of tuples [(m1, f1), (m2, f2), . . .].

When a function f in a module m1 is about to call function g in
module m2, the Picon plugin has inserted a cfiCall with the identifiers
(m1, g1), that is, the identifier of g as seen in module m1. To verify this
function call in m2, the monitor will verify during cfiEnter of g that the
value (m2, g2) as seen in module m2 is equivalent to (m1, g1).

Each time the monitored process hits a Picon hook, it notifies the
execution monitor with current information about the context, as defined
in the Definition 6 of the model section: the current module and function
identifiers, and return address for cfiEnter. The monitor updates the state
of the process being instrumented. Two types of unauthorized behaviours
can be detected: state mismatch, and identification mismatch.

After a cfiCall instrumentation, if the next instrumentation is a
cfiBeforeJump, the execution monitor triggers a state mismatch because
cfiEnter is expected after a cfiCall. The list of all possible automaton
states is described in Figure 5.

qe: IN_FUNCTION qc: EXPECT_CALL

qr: EXPECT_RETURN

qb: EXPECT_BB

cfiCall

cfiExit

cfiBeforeJump cfiEnter

cfiReturned

cfiAfterJump

Fig. 5. Execution monitor’s state machine.
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An identification mismatch can happen, for example, when a cfiCall
registers a function identifier to be called, and a different function identifier
from the CFG allowed-transition (defined at compile time in the transitions
file) is provided during the cfiEnter. Identification can also mismatch
for a basic blocks transition when cfiBeforeJump provides a given idBB,
and cfiAfterJump provides a different one from the CFG expected one.

Identification mismatch and state mismatch both trigger an alert from
the execution monitor depending on the security policy used. The best
action is to kill the instrumented process, but the execution monitor can
also log the unexpected behaviour with precise information about the
transition for debugging purposes.

4 Discussion and results

4.1 Security evaluation

The evaluation of the security of the protected program is done by
comparing the number of gadgets in the original binary, and in the
protected one. While it is not possible to prevent code-reuse attacks
globally, our objective is to reduce the number of available ROP gadgets
as much as possible, and to verify that tools cannot reconstruct a shellcode.

Return-to-libc attacks Return-to-libc is the perfect candidate to bypass
the well known NX protection. With Picon protection applied to all
functions dynamically linked to an instrumented binary, it is possible to
prevent this type of attack by denying calls to forbidden functions of the
libc like system or execve beyond their expected uses.

Return-oriented programming attacks Picon can successfully in-
strument all non-dynamic call instructions, which results in a significant
decrease of the usable ROP gadgets. To successfully bypass our model,
attackers have to find ROP gadgets that are not protected by Picon. How-
ever, as seen before, CFI instrumentation is widely used in a protected
binary, and to fully create a reliable ROP gadgets payload, attackers
have to build their entire payload while taking care not to fall in an
instrumented portion of code, which will result in an execution monitor
alert.

Picon, by instrumenting all return sequences in compiled programs,
avoids all these potential ROP gadgets. Our current implementation does,
however, keep the linked C runtime unchanged, which has 6 such gadgets
in the glibc version of crt1.o used:
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— _init which is preceded by an add and a call instruction.
— _deregister_tm_clones, preceded by a pop %rbp and a ja in-

struction.
— register_tm_clones, preceded by a pop %rbp and a ja instruc-

tion.
— __do_global_dtors_aux, preceded by a movb, pop %rbp, and

call instruction.
— __libc_csu_init, preceded by a popa and a call instruction.
— and __libc_csu_fini.
Another source of gadgets is the Picon runtime itself, which embeds

a few functions containing potential gadgets: seven functions contains
potential gadgets, but five of them are strictly identical in term of sequence
of instructions.

Using a standard disassembler, we measured the number of potential
gadgets in a shared library, the Better String Library 2. With standard
compiler, 134 potential gadgets were found. With Picon enabled, only 9
potential gadgets on aligned instructions remain.

The following programs were also tested, looking for potential aligned
gadgets in Picon protected binaries, including all their dependencies:

— star contains 13 gadgets, 4 protected;
— quark c1ntains 17 gadgets, 8 protected;
— puzzle solver contains 17 gadgets, 8 protected;
— sha1sum contains 18 gadgets, 9 protected.

This confirms that the remaining potential gadgets on aligned instructions
are those previously described, i.e. coming from Picon and C runtimes.
All return instructions in these binaries are unusable ROP gadgets.

Note that tools like ROPgadgets [23] will search gadgets in the entire
program and also in unaligned instruction stream. This increase the
resulting number of gadgets available, but will be greatly reduced (to the
number of gadget protected by Picon minus previous gadgets from the
runtime) with the In-place Code randomization [18].

Return address attacks Another way to hinder ROP is to replace
the return address when entering a function (using cfiEnter hook), and
restore it by the execution monitor in cfiExit hook. This means that,
between the entry and the exit point of a function, the return address
is invalid, to complicate even more the work of an attacker. We have
implemented this extra feature in Picon, but it depends on some security-
oriented changes to the target-specific code generator, which is target

2. http://bstring.sourceforge.net/
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and architecture-dependent. The modification of LLVM to allow the
modification of the return address in a portable way is ongoing work in
LLVM project, and has not yet been finalized. We plan to submit it to
upstream LLVM later, as there might be other uses of this feature.

Jump-oriented programming attacks Possibilities of Jump-Oriented
attacks are reduced, since the source code must not use indirect jumps or
calls. All calls or jumps are statically known during the compilation, so
the attacker cannot gain any gadget to jump to a non-instrumented point.
This, however, adds strong limits on input files: indirect calls are used in
C++ vtables, for example.

Different solutions exist to add support of indirect calls while retaining
protection of the control flow. The first solution is to use the instrumenta-
tion of forward function calls which is currently being added to Clang [25].
Forward-edge CFI could be used as a complement of our protection, and
protect indirect calls using restricted jump tables. Forward-edge CFI is
done during LTO and would not be integrated by Picon, so another solu-
tion is to use the information provided by LLVM to instrument indirect
branches and dynamic calls in our model. This is left for future work.

4.2 Implementation remarks

Compiler optimizations In some cases, compiler optimizations intro-
duce a change in the symmetry of enter/exit points of functions, for
example the tail-call optimization. This optimization changes the instruc-
tions of a function to transform recursive function calls into iterative
execution of basic blocks, heavily modifying the structure and the contents
of the function.

To avoid this kind of problems, the Picon pass must be the last pass
executed on the LLVM IR. Other optimizations must be applied before,
especially those modifying the control flow graph.

Execution environment As our implementation uses an external moni-
tor, it is critical to ensure the security of communications with the monitor.
The process and the monitor should be mutually authenticated, and the
integrity of the communication channel should be ensured to avoid Man-
In-The-Middle (MITM) classes of attacks.

In Picon, the communication channel between the monitor and the
instrumented binary is a pair of unnamed pipes. This requires, however,
the monitor and the process to be created in the same process hierarchy.
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Another possible attack is to preload shared libraries (for example using
LD_PRELOAD) to override some functions, most importantly the functions
used to communicate with the monitor. To avoid that, the execution
environment should be restricted to prevent preloading custom libraries,
for example using the noexec mount option to prevent the user to be able
to build libraries and use them, and/or by patching the ld command to
remove the preload feature. Another workaround is to set file capabilities
on the instrumented program using SELinux or any other mechanism to
disable the preload feature.

Authorized functions whitelist Sometimes, the program has to be
linked with closed-source binary-only dynamic libraries. Picon has the
abilities to handle these cases, and implements a whitelisting mechanism
to permit non-instrumented calls to/returns from some given functions.
When compiling a program with Picon enabled, instrumentation will not
be inserted in functions present in the whitelist, and the transition will
not be verified. However, it is clear that excluding dynamic libraries of
the control flow integrity is insecure, and results in the addition of free
ROP gadgets in the resulting executable.

A workaround, for closed-source libraries, could be to implement the
same protection by disassembling the file, reconstructing the control flow
graph, and adding the hooks to protect it. This has several drawbacks:
notably, it is not portable, and rebuilded basic blocks is not as precise as
computing basic blocks from source code.

4.3 Limitations
Multi-programming Our implementation is currently not able to handle
program with parallel/concurrent programming, i.e. multiple threads/pro-
cesses. One straightforward way to override this limit is to instrument
concurrency-related system calls (clone(2) and fork(2) on POSIX sys-
tems, for instances).

By injecting specific instrumentation code for these calls, it has been
possible to successfully detect the creation of new processes, and to
instantiate a dedicated execution monitor for each process. Each monitor
had its own dedicated state machine, and was able to monitor one process.
However, more work is required to fully implement multi-programming
support in Picon, but also to support multi-threading.

Parallel compilation When compiling different source files of a program
with Picon enabled, each file requires information about other files, for
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example function identifiers in the transitions file as shown in Figure 4.
This requires a sequential compilation because of a race condition on the
access to the transition file. A solution could be to implement locking on
the transition file, to ensure only one instance of the compiler process can
modify it at the same time.

Dynamic code To implement the CFI protection, we rely on the con-
struction of the control flow graph statically, and thus are not able to
track dynamic function calls as used in just-in-time (JIT) compilation,
exceptions, pointer arithmetic on function addresses or dynamic loading
of shared libraries. This limitation is shared by most CFI approaches.

4.4 Future work

Binary instrumentation One fundamental limitation of our approach
is the requirement of the source code, and the need to compile them. When
the source code of a program is not available, as it is usually the case for
commercial software, or it is not supported by Clang, instrumentation of
a program is not possible with our current compile-time instrumentation.

To instrument binary files, one solution is to decompile the executable
into LLVM IR, apply the Picon pass on the resulting LLVM IR, and
then compile it back to an executable. However, the binary translation
environment provides some additional challenges. Static translation has
some fundamental limitations, due to its equivalence to the halting prob-
lem [14] making it undecidable. One such limitation is the presence of
indirect branches and calls, which do not have statically discoverable
targets. In practice, indirect branches are usually caused by the following
constructions:

— indirect gotos (a rarely used feature of the C and other languages);
— switch lowering to jump-tables (a compiler optimization).

In the case of an executable that has not been specially crafted, indirect
calls targets are expected to be in the set of all function symbols available
in the binary, and can usually be recovered by static or dynamic analysis.

Projects such as Dagger [9] have been successfully tested, and provide
a straightforward method to instrument executable files without requiring
the source code.

Link-time optimization Modern compilers such as LLVM support a
feature called Link-Time Optimization (LTO), which defers code gener-
ation to link-time, and keeps the intermediate object files in LLVM IR.
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Traditionally, this was used with great success to enable optimizations
otherwise impossible on isolated file (such as cross-object function inlining).
The Picon pass could be implemented as a part of LTO IR optimizations.
This would solve the problems related to cross-object transition table
and identification uniquing, by having all functions visible in a single IR
module. Also, LTO improves precision by making the program’s complete
control flow graph available. Finally, since LTO passes run as part of
the ld linker, it is also possible to directly use the linker for resolving
external function symbols in linked shared libraries, thus avoiding the
need of symbols identification at compile-time.

Picon and obfuscation mechanisms Picon protects the binary for
execution integrity, but does not hide the instrumentation, or the control
flow graph of the binary. Other protection mechanisms, especially obfusca-
tion techniques such as o-llvm [19] at the LLVM IR layer, or a Protector
Packer [22] like UPX at the binary layer, could be used in addition to
CFI protection.

However, obfuscation and CFI might interfere. The obfuscation must
not break the CFI protection by altering the semantics of the program.
The obfuscation step must not create dynamic-code/self modifying code
(sometimes used in virtualized packer) nor add gadgets for the obfuscation
step. Although CFI and obfuscation could be used together, the CFI
adds extra information about the CFG that could help an attacker to
reconstruct the logic of the program.

5 Conclusion

In this paper, we have discussed a model for robust control flow
integrity protection, and the security properties of programs protected
by this model. A proof-of-concept implementation has been proposed,
based on the LLVM compiler framework, and an external monitor. The
result is a plugin for the LLVM compiler called Picon, which does not
complicate the compilation process. The plugin allows a global protection
of the program, including shared libraries, without having to sacrifice
parts of the protection.

As complementary, simpler protections like prevention of execution
of the stack and randomization become commonplace, we believe that
control flow integrity will become more systematic in the future as it is a
key part of the protection against ROP attacks. The protection of control
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flow integrity must be complete to be powerful, and thus must not be
weakened for the sake of performances.
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