Blocking DNS Messages is Dangerous

Florian Maury, Mathieu Feuillet

October 5-6, 2013
Created in 2009, the ANSSI is the French national authority for the defense and the security of information systems

- in French, ANSSI, Agence Nationale de la Sécurité des Systèmes d’Information

Under the authority of the Prime Minister

Main missions are:

- prevention
- defense of French information systems

One of its priorities is DDoS prevention and mitigation

http://www.ssi.gouv.fr/en
State of the art regarding DNS-related DDoS
DNS reflection attacks

Threat: on IP networks, sender address can be spoiled

Open resolvers/Authoritative nameservers

Spoofed IP: 172.17.0.1

Attacker
Real IP: 192.168.10.42

Target
Real IP: 172.17.0.1
DNS amplification attacks

Principle:

- Based on reflection attacks
- **Increase** the attacker **throughput** by leveraging **non-malicious nameservers**
- DNS answer IP packets are often **40-50 times** the size of the associated query IP packets
- 2 Mbps (attacker) \Rightarrow 100 Mbps (target)
What can an operator do?

DNS messages can be filtered at different levels:

- **L3** Drop packets
- **L4-7** Drop DNS datagrams or queries
- **L7** Response Rate Limiting (RRL):
 - Identical DNS answers detection
 - Bind, NSD, Knot
 - Slips a truncated answer every X queries
 - e.g. 2 Mbps (attacker) \Rightarrow up to 2 Mbps (target)
Can anti-DDoS technologies be useful for cache poisoning attacks?
Cache poisoning attacks reminder

Principle:
▶ Insert forged data in cache

Example:
▶ 2008: Kaminsky attack

Current Fix:
▶ Source Port Randomization

Long Term Fix:
▶ DNSSEC
▶ Requires large adoption
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1. Authoritative Nameserver
2. Resolver
3. Stub Resolver

Attacker Botnet

1. Blocking DNS Messages is Dangerous
October 5-6, 2013
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1: Send a query

Authoritative Nameserver

2 bis

Attacker Botnet

3 bis

Resolver

2

Stub Resolver

3
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1. Authoritative Nameserver
2. Resolver
3. Stub Resolver

2: Perform the recursive resolution
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1. Authoritative Nameserver
2. Resolver
3. Stub Resolver

2 bis: Trigger anti-DDoS mechanism against the resolver
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1. Authoritative Nameserver
2. Resolver
3. Stub Resolver
2 bis
3 bis
2
3
1

3: Either answer with a truncated answer or drop the query
Dropping answers lead to resolver timeouts and retries
Exploiting anti-DDoS mechanisms

Our cache poisoning attack: Step by step

1. Authoritative Nameserver
2. Resolver
3. Stub Resolver

2 bis: Send lots of Kaminsky-style answers to poison the cache

3 bis: Send lots of Kaminsky-style answers to poison the cache
Experiments & results
Attack setup

- A single authoritative nameserver
 - Realistic thanks to authoritative nameserver selection attacks (Shulman fragment attacks, SRTT tricks...)
- A single outbound IP on resolver
- 100 Mbps of spoofed traffic
 - would go unnoticed by most ISP
- RRL with $\text{slip}=2$
Validation of the theoretical model

We mathematically modeled the attack

Details available on demand
Validation of the theoretical model

The model is verified by the experiments

We mathematically modeled the attack
Details available on demand
Based on the model, real-world attacks can be successful with a probability P in less than the following time estimates:

P: Probability of a successful cache poisoning attack

<table>
<thead>
<tr>
<th>P = 10%</th>
<th>\approx 1h 15min</th>
</tr>
</thead>
<tbody>
<tr>
<td>P = 50%</td>
<td>\approx 8h</td>
</tr>
</tbody>
</table>
Are firewalls doing any better?
General-purpose firewalls

Authoritative Nameserver with RRL

Resolver

Attacker

Includes firewall dropping:
- specific qtypes (e.g. ANY)
- "malformed" queries
General-purpose firewalls

is equivalent to

Authoritative Nameserver with RRL

Attacker

Resolver

Firewall

Authoritative Nameserver

Attacker

Resolver

Includes firewall dropping:

▶ specific qtypes (e.g. ANY)
▶ "malformed" queries
General-purpose firewalls

Includes firewall dropping:
- specific qtypes (e.g. ANY)
- “malformed” queries
ANSSI recommendations
Always answer queries

- Never drop DNS queries when you can’t tell which are legitimate

Slip 1 is the only RRL safe configuration against our cache poisoning attack
Disclosure timeline:

- June: DNS Software Vendors, Packagers
- August: NIC and root operators
- May-August: CERTs

Security notifications:

- CVE-2013-5661 and CVE-2013-5752
- CERTA and NCSC advisory bulletin (September 9th, 2013)

All have confirmed the vulnerability

Some raised concerns
Is slip 1 dangerous?
Is slip 1 dangerous?

Concern 1: reflection attacks

As slip 1 grants an even payback, is this configuration dangerous for PPS attacks?
Is slip 1 dangerous?

Concern 1: reflection attacks

Facts:
- **Current** attacks are volumetric/bandwidth-related DDoS
- More susceptible protocols available for PPS attacks
Is slip 1 dangerous?

Concern 2: authoritative nameservers DDoS

 PTR records

- small queries
- large responses to fraction of queries
- queries w/o responses
- starved clients

Network DDoS on the authoritative nameservers because of slip 1?

courtesy of netnod
Is slip 1 dangerous?

Concern 2: authoritative nameservers DDoS

Facts:
- Amplification factor: 1:1
- Operators have symmetric bandwidth

Investigation should be led if upload capacity is reached.
Is slip 1 dangerous?

Concern 2: authoritative nameservers DDoS

Computational DDoS on the authoritative nameservers because of slip 1?
Is slip 1 dangerous?

Concern 2: authoritative nameservers DDoS

Fact:\(^a\):

- Slip 1 **increases** CPU consumption by less than 5% depending on implementations

\(^a\)tested on Xeon X5650 @2.67Ghz with 4000 qps
Concern 3: recursive servers DDoS

Is slip 1 dangerous?

Attacker

Recursive Victim

Auth

qname=random

small queries

large responses

Network DDoS on the resolver because of slip 1 on the authoritative nameserver?

courtesy of netnod
Is slip 1 dangerous?

Concern 3: recursive servers DDoS

Fact:
- On average, the number of packets exchanged between a resolver and authoritative nameserver per query:
 - Slip 1: 9
 - Slip 2: 9.68
Is slip 1 dangerous?

Concern 3: recursive servers DDoS

Computational DDoS on the resolver because of slip 1 on the authoritative nameserver?
Is slip 1 dangerous?

Concern 3: recursive servers DDoS

Facta:

- Slip 1 decreases CPU consumption by up to 20%, depending on implementations

atested on Xeon X5650 @2.67Ghz with 4000 qps
Is slip 1 dangerous?

Summary

RRL with Slip 1:

- Is worthless for attackers performing volumetric or PPS DDoS attacks
- Is less CPU consuming for flooded resolvers
- Is a negligibly more CPU consuming for authoritative nameservers

TL;DR summary: Slip 1 is OK
Timeouts lead to more efficient cache poisoning attacks

Always answering queries:
 - **Thwarts** our attack
 - Offers **no benefit** for attackers

RRL Slip=1 mitigates DDoS
 - RRL Slip=2 is **overkill** for current DDoS attacks and is **vulnerable** to our cache poisoning attack

Always answering is a temporary fix:
 - DNSSEC wake-up call?
Thank you for your attention

Any questions?
Packets count for DOS of recursive servers

\[E(\text{PC}) = \sum_{i=1}^{n} \left(1 - \frac{1}{s} \right)^{i-1} \left(1 + \frac{8}{s} \right) \]

with \(E(\text{PC}) \) being the mean packet count, \(n \) being the number of retries by the resolver and \(s \) being the slip value.